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Abstract

Inflammation and oxidative stress contribute to the pathology of many diseases, but specific therapeutic targets
remain elusive. Oxidative stress, generated by excessive reactive oxygen species (ROS), promotes cardiovascular
disease. However, the precise mechanism of how ROS deteriorate vascular function and promote vascular
remodeling in vivo has not been clearly elucidated. Cyclophilin A (CyPA) is a 20kD chaperone protein that is
secreted from vascular smooth muscle cells (VSMC) in response to ROS, and stimulates VSMC proliferation and
inflammatory cell migration in vitro and in vivo. CyPA (both intracellular and extracellular) contributes to
inflammation and atherosclerosis by promoting endothelial cell (EC) apoptosis and EC expression of leukocyte
adhesion molecules, stimulating leukocyte migration, enhancing T helper cell type 1 (Thl) responses, increasing
proliferation of macrophages and vascular smooth muscle cells (VSMC), and increasing pro-inflammatory signal
transduction in VSMC. We tested the hypothesis that CyPA contributes to cardiovascular diseases by analyzing
several genetic interventions that include the CyPA knockout mouse and the CyPA overexpressing transgenic
mouse (VSMC-Tg). CyPA plays a crucial role in VSMC proliferation/migration and inflammatory cell recruit-

ment, resulting in cardiovascular diseases in vivo. Antioxid. Redox Signal. 12, 675-682.

Introduction

VASCULAR SMOOTH MUSCLE CELLS (VSMC) are among the
most plastic of all cells in their ability to respond to dif-
ferent stimuli. Autocrine/paracrine growth factors from
VSMC have been mentioned for long time as important
mechanisms that mediate varying cellular responses in vas-
cular remodeling (5). The concept of VSMC auto/paracrine
growth factors was first mentioned 30 years ago (10, 11, 23,
32). Dzau (18) and Nilsson (52) used the term autocrine growth
to describe increased expression of VSMC growth factors. It
has now become clear that almost all VSMC growth factors
elicit auto/paracrine growth pathways. Recent evidence
suggests that many other stimuli that modulate VSMC func-
tion including reactive oxygen species (ROS) promote VSMC
growth by inducing auto/paracrine growth mechanisms, as
reviewed by Taniyama and Griendling (72). ROS increase cell
proliferation, mediate agonist-induced hypertrophy, and also
induce apoptosis in a concentration-dependent manner (27). It
has now become clear that ROS plays a crucial role for VSMC

proliferation both directly and indirectly by inducing auto/
paracrine growth mechanisms.

The major topics that will be addressed in this review are a
series of projects that were performed in our laboratory for >15
years. Our questions are as follows: (a) Why do ROS promote
VSMC growth? (b) Does ROS-induced VSMC growth utilize
auto/paracrine growth mechanisms? (c) What might be the
secreted factors that explain the ROS-induced VSMC growth?
(d) What are the mechanisms involved for ROS-induced se-
cretion of growth factor? and finally, (e) Do the ROS-induced
factors actually contribute to vascular remodeling in vivo? In
order to answer these questions, we performed studies and
identified cyclophilin A (CyPA) as auto/paracrine growth
factor released from VSMC in response to increased levels of
ROS. To further demonstrate the role of CyPA for VSMC
growth and vascular remodeling in vivo, we studied CyPA
knockout and VSMC-specific CyPA overexpressing mouse. By
using these transgenic mice, we elucidated that CyPA mediates
a variety of cardiovascular diseases including vascular intimal
thickness and abdominal aortic aneurysms (AAA).
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CyPA as a Molecular Chaperone
with Enzymatic Properties

Cyclophilins are a family of highly conserved and ubiqui-
tous proteins termed immunophilins (48). The most abundant
cyclophilin is cyclophilin A (CyPA) (21), which is widely
distributed in almost all tissues in prokaryotes and eukary-
otes. In 1984, CyPA was identified as the main target for the
immunosuppressive drug cyclosporine A (CsA) (6, 30, 31, 66).
In humans, CyPA was found in all organs and the CyPA
concentration may account for as much as 0.1-0.4% of total
protein in the cell (49, 59, 60). CyPA was abundant in cytosolic
extracts from lymphocytes and to had a high affinity for CsA
(30). CyPA was also shown to be a part of a cytosolic heat-
shock protein-immunophilin chaperone complex that in-
cludes caveolin and cholesterol (75). Due to its enzymatic
properties, cellular localization, and role in protein folding,
CyPA belongs to a diverse set of proteins that are termed
molecular chaperones. Since CyPA catalyzes the cis-trans
isomerization of peptidyl-prolyl bonds of certain proteins
(PPIase activity), CyPA acts as an acceleration factor in pro-
tein folding and assembly. When protein peptide binds, the
trans-state is much more favored compared with cis-state
(>100 times). Therefore, unfolded proteins need an extremely
longer time for trans—cis isomerization, which is a rate limit-
ing step in the folding of proteins (34). The first demonstration
of this activity in vitro was the delayed maturation of collagen
by blocking PPIase activity with cyclosporine A (CsA) (67). In
addition to the role for protein folding, the PPIase activity of
CyPA has recently been demonstrated to have a variety of
roles, including intracellular trafficking (79), signal trans-
duction, and transcription regulation (41).

Following the identification of CyPA, several other mem-
bers of the cyclophilins were cloned and characterized. Cy-
clophilin B (CyPB) (55), Cyclophilin C (CyPC) (64), and
Cyclophilin D (CyPD) (4), were found to be less abundant
and localized not only in cytosol but also in membranes and
subcellular organelles because of the presence of hydrophobic
N-terminal as well as C-terminal extensions. Human CyPB
and murine CyPC are localized to endoplasmic reticulum (4).
CyPD is localized to mitochondria, is an integral part of the
mitochondrial permeability transition complex, and plays a
crucial role in apoptosis. A more detailed classification of the
different cyclophilins has been reviewed elsewhere (21).

Identification of Extracellular CyPA As a Secreted
Protein That Promotes VSMC Growth

Production of intracellular ROS, such as superoxide (O,""),
hydrogen peroxide (H,0O,), and hydroxyl radical (OH), have
been implicated in the pathogenesis of cardiovascular disease,
in part by promoting VSMC proliferation (1, 3, 53). Changes in
vascular redox state are a common pathway involved in the
pathogenesis of atherosclerosis, aortic aneurysms, and vas-
cular restenosis after angioplasty. ROS can be very harmful,
especially under conditions where their production is en-
hanced which then exceeds cellular antioxidant defenses. ROS
target cellular biomolecules and cause severe damage such as
lipid peroxidation, protein oxidation/inactivation, and DNA
damage/mutations. However, while high levels of ROS might
be very dangerous to cells and their content, controlled ROS
levels (physiological levels) are important for the regulation of
cell functions and cell fate (proliferation/death). For example,
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H,0; is also important for endothelial cell (EC) function and
vascular relaxation in a very low concentration (50). In the
vascular wall, ROS are generated by several mechanisms,
including NADPH oxidases, xanthine oxidase, the mito-
chondrial respiratory chain, lipoxygenases, and nitric oxide
synthases (13). ROS formation can be stimulated by me-
chanical forces (e.g., stretch, pressure, shear stress), environ-
mental factors (such as hypoxia), secreted factors coupled to
tyrosine kinase receptors (e.g., platelet derived growth factor,
PDGF) (70), and secreted factors coupled to G protein-coupled
receptors such as angiotensin II, AnglI (26). Initial studies in
our laboratory demonstrated that ROS stimulate cultured
VSMC proliferation and activate intracellular kinases such as
ERK1/2 that is associated with cell growth (3, 57).

In particular, we found that activation of ERK1/2 by a ROS
generator, napthoquinolinedione (LY83583) was biphasic: an
early peak of ERK1/2 activity was present at 5-10 min, whereas
a delayed ERK1/2 activation appeared after 2 h. One logical
mechanism for the delayed ERK1/2 activation was the re-
sponse to the secreted oxidative stress-induced factors (SOXF),
which show autocrine/paracrine signals. In order to identify
the presence of SOXF, we evaluated the ability of conditioned
medium for ERK1/2 activation. ERK1/2 activity was signifi-
cantly increased by conditioned medium from VSMC treated
with LY83583. We analyzed the proteins released into the
medium in response to LY83583. Approximately 35 secreted
proteins were detected, and to purify SOXF we used sequential
chromatography and finally found that CyPA is one of the
major SOXF (44). To study the role of intracellular ROSin CyPA
function, we studied cells transfected with nox1 (homolog of
the NADPH oxidase catalytic subunit) to stimulate ROS pro-
duction. CyPA expression and secretion were increased,
and antioxidants blocked the secretion of CyPA from nox1-
transfected cells (37). To provide further evidence that CyPA is
a SOXF, human recombinant CyPA was tested on VSMC cul-
tures. Human recombinant CyPA stimulated ERK1/2 activity
and DNA synthesis in VSMC in a concentration-dependent
manner (37). Thus, we concluded that CyPA is a novel VSMC
growth factor that may substantially contribute to the growth
promoting activity of ROS in VSMC.

Mechanism of VSMC Growth and CyPA Receptor

There are many publications regarding intracellular func-
tions of CyPA. It may be relevant to note that CyPA intra-
cellular functions include roles as immunophilins that interact
with calcineurin, as components of a caveolin—cholesterol—
cyclophilin complex, and as components of cell cycle (48). Our
model for CyPA action is cell type specific (Fig. 1). In VSMC,
ROS such as superoxide activate a pathway containing vesi-
cles that results in secretion of CyPA (71). CyPA stimulates
ERK1/2, Akt, and JAK in VSMC that contribute to DNA
synthesis, proliferation, and migration (Fig. 1) (37). In EC,
CyPA largely activates proinflammatory pathways including
increased expression of VCAM-1 and E-selectin (36) (Fig. 1).
Despite the mounting evidence that cyclophilins serve mul-
tiple intracellular and extracellular functions, surprisingly
little is known regarding the effect on specific receptors.
Several molecules have been proposed to serve as extracel-
lular receptors for CyPA, including extracellular matrix me-
talloproteinase inducer (EMMPRIN) (56, 68), CD14 (2), and
CD91 (7). To date, none of these proteins have unequivocally
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FIG.1. Proposed mechanisms for ROS-induced CyPA se-
cretion and autocrine/paracrine growth signal in VSMC.
ROS-induced CyPA secretion requires an active process in-
cluding vesicle formation, vesicle transport to the plasma
membrane (requiring myosin II), docking, and fusion (requir-
ing actin cytoskeleton remodeling). Rho, Rho kinase, and
Cdc42 contribute to the myosin II activation and actin re-
modeling. Secreted extracellular CyPA activates ERK1/2, Akt,
and JAK in an autocrine/paracrine manner, which promotes
proliferation and migration of VSMC. On the other hand, in EC,
extracellular CyPA activates ERK1/2, JNK, and p38 and pro-
motes adhesion molecule expression including VCAM-1.

been proved to mediate all the cellular events associate with
CyPA.

Mechanism of ROS-Induced CyPA Secretion

Several growth factors are secreted from VSMC in response
to various stimuli. However, the intracellular trafficking
mechanisms that regulate secretion of these growth factors are
not well understood. The best studied secretory pathway in
VSMC involves tissue factor, the initiator of the clotting cas-
cade. Tissue factor is released in microparticles that bud from
the VSMC plasma membrane (63). We harvested medium
from LY83583-exposed VSMC and performed high-speed
centrifugation onto a 60% sucrose cushion. Although virtually
all of the tissue factor activity (>95%) has been shown to be
precipitated by this technique (63), we did not find CyPA in
microparticles, supporting the concept that CyPA might be
released by vesicle pathway (Fig. 1). In fact, CyPA was secreted
from VSMC via a highly regulated pathway that involves
vesicle transport and plasma membrane binding (Fig. 1). Rho
GTPases, including RhoA, Cdc42, and Racl, are key regulators
in signaling pathways linked to actin cytoskeletal rearrange-
ment (46). The Rho GTPases play a central role in vesicular
trafficking pathways by controlling organization of the actin
cytoskeleton. It has been reported that active participation
of Rho GTPases is required for secretion. Consistently, we
showed that expression of dominant-negative mutants of
RhoA and Cdc42 inhibited ROS-induced CyPA secretion,
suggesting that both RhoA- and Cdc42-dependent signaling
events regulate CyPA secretion. Myosin II is involved in se-
cretory mechanisms as a motor for vesicle transport (51). Rho-
kinase, a downstream effector of RhoA, mediates myosin II
activation via phosphorylation and inactivation of myosin II
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light chain phosphatase (40). We also demonstrated that Rho-
kinase inhibitor reduced ROS-induced CyPA secretion (71).
These results suggest that myosin II-mediated vesicle transport
is required for CyPA secretion from VSMC.

This novel secretory pathway for CyPA involves Rho
GTPase-myosin II activation/actin remodeling regulated
vesicle transport, docking, and a fusion process. Moreover,
CyPA was transported to the plasma membrane and coloca-
lized with vesicle-associated membrane protein (VAMP) in
response to ROS stimulation. In particular, gene silencing of
VAMP-2 by siRNA significantly inhibited ROS-induced
CyPA secretion. These results support the hypothesis that
CyPA is secreted from VSMC through a process requiring
ROS production and vesicle formation.

CyPA as a VSMC Growth Factor
for Vascular Remodeling In Vivo

It has become clear that increases in ROS represent one of
the pathogenic mechanisms for vascular disease (24, 43). ROS
have been implicated in the pathogenesis of neointima for-
mation in part by promoting VSMC growth (3, 57), as well as
stimulating pro-inflammatory events (20, 45, 58). As dis-
cussed above, CyPA is secreted in response to ROS in vitro (37,
44, 71). We demonstrated that extracellular CyPA stimulates
pro-inflammatory signals in EC, including expression of
E-selectin and vascular cell adhesion molecule (VCAM)-1
(Fig. 1) (36). In addition to effects on vascular cells, CyPA has
been shown to be a chemoattractant for inflammatory cells
(15, 39) and promotes activation of matrix metalloproteinases
(MMPs) (39, 80). Therefore, CyPA could be a key mediator
that affects EC, VSMC, and inflammatory cell function during
oxidative stress in vivo (Fig. 2).

To strengthen the link between flow cessation, CyPA ex-
pression, and cell growth, we observed the time course and
distribution of CyPA expression in carotids after ligation (61).
We found that CyPA expression is dramatically increased with
a time course that paralleled neointima formation, suggesting
an important role for CyPA in the cell response to oxidative
stress induced by vascular injury. In parallel with CyPA ex-
pression, carotid ligation induced phosphorylation of ERK1/2
in WT carotids, which was significantly less in CyPA’/ " ca-
rotids, consistent with the reduced number of Ki67" cells in
ligated CyPA~/~ carotids. The distribution of Ki67" cells clo-
sely overlapped with areas of highest CyPA expression, es-
pecially in the rapidly proliferating neointimal cells in WT
mice. Co-localization of CyPA, «SMA, and Masson—Trichrome
staining revealed that CyPA expression was especially
elevated in VSMC. To prove further the contribution of VSMC-
derived CyPA to vascular remodeling, we prepared VSMC-
specific CyPA transgenic mice (VSMC-Tg). VSMC-Tg mice
exhibited no significant change in sham carotids, while ligated
carotids showed increases of 217% in intimal area, 32% in
medial area, and 140% in I/M ratio, compared with control
mice expressing normal levels of CyPA. The observation that
VSMC-specific CyPA overexpression not only increased the
medial area but also the intimal area suggests that VSMC-
derived extracellular CyPA promotes the proliferation and
migration of VSMC via a paracrine manner. The tremendous
vascular proliferation resulting from VSMC-specific over-
expression of CyPA suggests a major contribution for VSMC-
derived CyPA in vascular remodeling.
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CyPA-induced vascular remodeling

FIG. 2. Cyclophilin A (CyPA) is a novel growth factor that mediates VSMC growth under oxidative stress. Decreased
blood flow increases reactive oxygen species (ROS) generation which induces secretion of CyPA. Secreted CyPA promotes
vascular smooth muscle cells (VSMC) proliferation, endothelial adhesion molecule expression, and inflammatory cell mi-

gration, resulting in the vascular remodeling.

CyPA is expressed by all cell types participating in vascular
pathology (35). Additionally, extracellular CyPA has recently
been found to induce IL-6 release in inflammatory cells (54).
Moreover, CyPA function using monocyte/macrophage
cell lines revealed that CyPA induces the expression of
cytokines-chemokines such as TNFz, IL-8, MCP-1, IL-14, and
matrix metalloproteinase (MMP)-9 through a pathway that is
dependent on NF-kB activation (39). In our carotid ligation
model, we observed significant accumulation of CD45" in-
flammatory cells in the intima in ligated CyPA /" carotids
and VSMC-specific overexpression of CyPA (VSMC-Tg) fur-
ther enhanced the accumulation of inflammatory cells in
ligated carotids, supporting the important role for CyPA in
mediating the recruitment of inflammatory cells.

In the context of flow cessation, a predominant Th2 in-
flammatory response could limit vascular remodeling. In fact,
an important aspect of CyPA biology is its effects on T cell
function by regulating calcineurin and Itk (a Tec family ty-
rosine kinase) (14). Consequently, in CyPA ™/~ mice there is
increased responsiveness of T cells with a predominant Th2
response (14). CyPA also regulates T cell function by the ef-
fects of its peptidyl-prolyl isomerase (PPlase) activity on cal-
cineurin. Cyclosporine A (CsA) binds to the site of PPlase
activity and by inhibiting PPIase prevents T cell proliferation,
thereby explaining the anti-inflammatory properties of CsA
(30).

We propose that ROS generated locally by inflammatory
cells causes VSMC to release CyPA, which would promote a
recruitment of inflammatory cells that releasing several pro-
inflammatory cytokines contribute to the intima thickening in
this model. In addition, CyPA could regulate the proteolytic
activity necessary for the migration of inflammatory cells
through the activation of matrix metalloproteinases (MMPs)
(39, 80).

These results were the first direct demonstration that CyPA
contributes to vascular remodeling in vivo (61). This study
revealed three important pathologic consequences of CyPA
activity in vivo. First, VSMC-derived secreted CyPA is mito-
genic by virtue of its ability to promote VSMC proliferation.
Second, secreted extracellular CyPA is pro-inflammatory be-
cause it stimulates the recruitment of inflammatory cells.
Third, secreted CyPA can further promote a pathological
setting, exacerbating the generation of intracellular ROS in
VSMC derived from mouse aorta.

CyPA as a MMP Activator That Initiates
Aortic Aneurysm Formation

In the cardiovascular system, abdominal aortic aneurysm
(AAA) formation results from chronic inflammation of the
aortic wall, associated with decreased medial VSMC, and
progressive destruction of structural components, particu-
larly the elastic lamina. Key mechanisms include VSMC se-
nescence (42), oxidative stress (25, 72), increased local
production of proinflammatory cytokines (8), and increased
activities of matrix metalloproteinases (MMPs) (69, 77) that
degrade extracellular matrix. In animal models of AAA, ge-
netic and pharmacological inhibition of ROS production (22,
73) and MMPs (47, 74) suppressed development of aneu-
rysms. Angll infusion into ApoE /~ mice for 4 weeks pro-
motes AAA formation (16, 17). In this animal model,
the Angll type 1 (AT1) receptor in the vascular wall, not
in inflammatory cells, is required for the initiation of AnglI-
induced AAAs (9). Furthermore, treatment with an AT1
receptor blocker significantly suppressed aneurysm forma-
tion in ApoEf/ ~ mice (29).

As discussed above, ROS stimulate secretion of CyPA
from VSMC, and that extracellular CyPA stimulates VSMC
migration and proliferation (37, 44). Extracellular CyPA also
stimulates EC adhesion molecule expression, and is a che-
moattractant for inflammatory cells (37, 38, 71). Furthermore,
CyPA is upregulated in patients with rheumatoid arthritis and
implied for its crucial role for MMP activation (39). Therefore,
we hypothesized that VSMC-derived CyPA augments AngII-
induced ROS production, MMP activation, and inflammatory
cell recruitment into the aortic VSMC. As expected, AAA for-
mation in the Angll-induced ApoE/~ model was completely
prevented in the CyPA’/ ~ background (62). We also demon-
strated that CyPA is highly expressed in the aorta of patients
with AAA, and co-localizes with active form of MMPs. Based
on these findings, we propose that Angll induces ROS and
MMP activation via a CyPA-dependent pathway, a novel
mechanism for induction of AAA formation by AnglI.

Our data suggest that extracellular CyPA and its signaling
pathways are novel targets for AAA therapy and potentially
other cardiovascular diseases associated with inflammation.
In addition, extracellular CyPA induces ROS production in
VSMC, which is consistent with our previous report that ex-
tracellular CyPA stimulates at least three signaling pathways
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FIG.3. ROS-induced secretion of Cyclophilin A synergistically augments ROS production. ROS inducer such as angiotensin
II, mechanical stress, and environmental factors, promotes Cyclophilin A (CyPA) secretion from vascular smooth muscle cells
(VSMCQ). Secreted CyPA activates ERK1/2 and promotes ROS production, contributing to the augmentation of ROS production.

(ERK1/2, Akt, and JAK) in VSMC (37) that have been shown
to be important for ROS production (25, 72). All these data are
a proof-of-concept that CyPA plays a crucial role in VSMC
through ROS generation. ROS-induced CyPA secretion aug-
ments ROS production synergistically (Fig. 3). AngllI induces
the generation of ROS and promotes the secretion of CyPA.
Then, secreted CyPA, acting as a proinflammatory cytokine,
synergistically augments Angll-mediated ROS production,
contributing to the onset of vascular inflammatory cell mi-
gration and AAA formation.

Summary and Future Directions

Numerous basic and clinical studies have clearly identified
that ROS has a major role in the development of cardiovascular
diseases. However, we still have no strong therapeutic strategy

for clinical benefits of antioxidant administration. One poten-
tial reason for those could be a crucial role of ROS (especially
H,0,) for intracellular signaling pathways that is also impor-
tant for vascular functions in a very low concentration (50).
The identification of CyPA as a mediator of tissue damage
associated with inflammation and oxidative stress provides
insight into the mechanisms of several therapies. For example,
the Rho-kinase inhibitor Y27632, and simvastatin significantly
reduced CyPA secretion from VSMC. Rho-kinase is an im-
portant therapeutic target in cardiovascular disease (65) and
Rho-kinase inhibition has been reported to reduce AnglI-
induced AAA formation (76). Moreover, ATla receptor
blockers and ACE inhibitors have been shown to prevent
AAA formation in mice (9, 19, 29) and reduced CyPA secre-
tion may partially contribute to the therapeutic effect of these
drugs on AAA formation (62). EMMPRIN, a putative CyPA
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FIG. 4. Potential targets for novel therapeutic efficacy targeting on CyPA-mediated cardiovascular diseases. We focus on
blocking (a) CyPA secretion and (b) CyPA binding on CyPA receptor(s). We have shown that Rho-kinase inhibitor and statins
inhibit the secretion of CyPA from VSMC. Additionally, we have recently found several candidates for potential molecules

that mediate cell signaling by extracellular CyPA stimulation.
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receptor, was identified as a tumor cell membrane protein that
is expressed in VSMC, is activated by ROS, and stimulates
MMP production (28). A recent article demonstrated ROS-
dependent increases in EMMPRIN (33), which may be acti-
vated by binding of extracellular CyPA (78). Moreover, it has
been demonstrated that EMMPRIN is strongly expressed in
human AAA lesions (12). Therefore, it is logical to propose
that agents which prevent CyPA binding to its receptors may
have therapeutic potential (Fig. 4).

Because inflammation and oxidative stress contribute to
tissue damage in several situations such as ischemia-
reperfusion injury in the brain, heart, and kidney, future
studies of CyPA-mediated function in appropriate models
may reveal a significant role in other diseases.

By blocking this malignant cycle that augments ROS pro-
duction through CyPA autocrine/paracrine signaling path-
way, we may have a novel therapeutic tool for controlling
cardiovascular diseases in the near future.
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