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Introduction

In recent years, much attention has focused on modifications 
of chromatin because of their critical role in regulating gene 
expression and their active involvement in a number of cellular 
processes such as mitosis and cellular differentiation.1 The acces-
sibility of DNA in eukaryotic cells is determined by its organiza-
tion in a DNA-protein complex known as chromatin. Chromatin 
structure is regulated in part through dynamic modifications of 
the constituent proteins, primarily histones. The fundamental 
unit of chromatin is the nucleosome, which consists of 146 bp 
of DNA wrapped around a histone octamer that is made up of 
two copies each of the four core histones, H2A, H2B, H3 and 
H4.2 The N-terminal histone tails are subject to a variety of 
posttranslational modifications that include acetylation, methy-
lation, phosphorylation and ubiquitination. Accumulating evi-
dence has established a clear link between the pattern of histone 
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modification found at particular loci and the transcription of 
those genes, thus leading to the statement of the histone code 
hypothesis.3 Gene activation correlates with the hyperacetylation 
of histones H3 and H4, whereas hypoacetylation correlates with 
inactive chromatin.4-6

Modification of histones by methylation, which occurs at lysine 
and arginine residues, plays a role in many biological processes 
including transcriptional regulation, heterochromatin formation, 
X inactivation and genomic imprinting.6,7 Unlike acetylation, his-
tone methylation can have both positive and negative effects on 
transcription, depending on the site of methylation. Methylation of 
Lys4 of histone H3 (H3K4), for instance, correlates with gene acti-
vation in most systems, whereas H3K9 and H3K27 are considered 
as hallmarks of a condensed chromatin state.6,8 Furthermore, H3K9 
methylation by histone methyltransferase (HKMTs) has been 
shown to trigger heterochromatin formation and transcriptionally 
silence euchromatic regions by recruiting heterochromatin protein 
1.9 Reflecting the critical roles of methylated lysines at specific sites, 
multiple HKMTs have been identified that recognize the same 
lysine residue for mono-, di- and/or tri-methylations, although the 
biological role of each HKMT still remains elusive. Importantly, 
recent studies have demonstrated that histone methylation can also 
be enzymatically reversed by histone demethylases that include 
PADI4 (peptidyl arginine deiminase, type 4), LSD1 (lysine specific  
demethylase 1), and the JmjC (Jumonji C)-domain containing 
proteins.10

Adipose tissue is an important metabolic organ that is cru-
cial for whole body insulin sensitivity and energy homeostasis.11 
White adipose tissue (WAT), the predominant type of fat in adult 
humans, serves as a storage depot for excess energy, whereas brown 
adipose tissue (BAT) generates heat in newborns (and in animals 
such as rodents) through mitochondrial uncoupling of lipid oxi-
dation.12 Beyond the classical notion of the adipocyte as a storage 
depot for excess energy, the adipocyte also secretes a wide variety 
of bioactive molecules (referred to as adipokines) that regulate 
physiologic processes throughout the body. These include glucose 
metabolism, regulation of blood pressure, angiogenesis, immunity 
and reproductive function.13 The main dysfunctions of adipose 
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Adipocyte differentiation is a complex developmental 
process that involves the coordinated interplay of numerous 
transcription factors. PPARγ has emerged as a master regulator 
of adipogenesis and recent global target gene analysis 
demonstrated that PPARγ targets many genes encoding 
chromatin modification enzymes as well as genes of lipid 
metabolism and storage. Among such modification enzymes 
are histone lysine methyltransferases, which play important 
roles in transcriptional regulation. Histone methyltransferases 
are involved in PPARγ gene expression and subsequent 
adipogenesis. In addition, recent studies revealed that 
demethylation of histone H3 at lys9 is associated with resistance 
to obesity. We here review the role of histone methylation and 
demethylation in adipogenesis, metabolism and obesity.
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the expression of genes encoding histone modification enzymes. 
An epigenetic mechanism could, for example, act downstream 
of PPARγ and constitute a post-selection mechanism for poten-
tial PPARγ-responsive genes by allowing or preventing histone 
modification. By combining global gene expression analyses with 
a ChIP-chip approach, we have discovered that two well charac-
terized HKMT, Setdb1 and Setd8 are coordinately regulated by 
PPARγ and that their expression leads to adipocyte differentia-
tion through chromatin modification27 (Fig. 1).

Setdb1 and Setd8 are the histone lysine methyl transferases 
(HKMTs). Setdb1 tri-methylates histone H3K9 while Setd8 
mono-methylates histone H4K20. Tri-methlylated H3K9 
(H3K9me3) is considered the hallmark of the condensed chro-
matin state and transcriptionally silent euchromatin.5 Mono-
methylated H4K20 (H4K20me1) has been implicated both in 
gene silencing and in transcriptional activation. Knockdown 
of these SET domain proteins confirmed that they are indeed 
involved in adipogenesis. Setdb1 mRNA levels decreased in con-
cert with adipocyte differentiation. Knockdown of Setdb1 per-
mitted the stimulation of adipogenesis even by an incomplete 
differentiation cocktail. By contrast, Setd8 mRNA was increased 
in abundance throughout adipocyte differentiation and knock-
down of Setd8 impaired adipocyte differentiation. In this con-
text, Setdb1 acts as an anti-adipogenic factor and Setd8 acts as 
pro-adipogenic factor and it is reasonable to think that Setdb1 is 
downregulated and Setd8 is upregulated during adipocyte dif-
ferentiation. PPARγ may contribute to the transcriptional regula-
tion of Setdb1 and thereby regulate H3K9me3, a silencing histone 
marker, to promote differentiation as described below.

While it remains to be determined whether Setdb1 is a directly 
downregulated by PPARγ, we demonstrated that Setd8 is a bona 
fide PPARγ target. PPARγ upregulates Setd8 and thereby reg-
ulates H4K20me1 to induce PPARγ and its targets to acquire 
the adipocyte phenotype. Intriguingly, Setdb1 and Setd8 are 
expressed in adipose tissue and reciprocally expressed in rodent 
models of obesity: downregulation of Setdb1 and upregulation of 
Setd8 suggests that these proteins play a role in regulating adipos-
ity in the excess energy state.

Most intriguingly, Setd8 is a target of PPARγ (Fig. 1). 
H4K20me1 levels increase robustly toward the end of adipocyte 
differentiation, and this is accompanied by increased numbers of 
genes modified by H4K20me1. In addition, H4K20me1 modi-
fication levels at PPARγ target genes correlate with PPARγ tran-
scriptional activity. A combination of H4K20me1 ChIP-seq and 
transcriptome analyses revealed that more than 85% of genes 
modified by H4K20me1 are expressed at high levels, demonstrat-
ing a role for activating histone chromatin modification.27 This is 
also supported by the recent ChIP analyses showing a preferential 
association of H4K20me1 with selected transcriptionally active 
or competent genes.28,29

Although the PPARγ1 gene is not modified by H4K20me1 
before differentiation, an appreciable amount of PPARγ1 mRNA 
is detected. Towards the end of differentiation, PPARγ1 gene 
expression levels increase by four- to five-fold in correlation 
with the modification by H4K20me1. H4K20me1 may con-
tribute to the robust gene expression required to progress to the 

tissue, obesity and lipodystrophy, correlate with the development 
of diabetes, hypertension and dyslipidemia.14 Obesity can be 
defined as an excess accumulation of white adipose mass, resulting 
from both an increase in adipocyte cell size and the development 
of new mature cells from undifferentiated precursors.

Adipocyte differentiation is orchestrated by an elaborate cas-
cade of sequentially acting transcription factors and chromatin 
modifying co-regulators. These shape differentiation through 
the actions of hormones and other signaling pathways. The 
physiological program converting preadipocytes into adipocytes, 
called adipogenesis, has been well characterized—predominantly 
in cultured mouse cell lines.11 A wide array of transcription fac-
tors participate in adipogenesis, although most attention has 
focused on several members of the CCAAT enhancer-binding 
protein (C/EBP) family and the nuclear receptor peroxisome 
proliferator-activated receptor γ (PPARγ).

Peroxisome proliferator-activated receptor γ (PPARγ) is con-
sidered the master regulator of adipogenesis. It is a member of the 
nuclear receptor superfamily of ligand-activated transcription fac-
tors and is both necessary and sufficient for adipogenesis.15,16 The 
action of PPARγ is mediated through two protein isoforms: the 
ubiquitously expressed PPARγ1; and PPARγ2, which is restricted 
to adipose tissue. Expression of each isoform is driven by a spe-
cific promoter that confers distinct tissue-specific expression and 
regulation.17 However, both isoforms are strongly induced dur-
ing preadipocyte differentiation in vitro, and both are highly 
expressed in adipose tissues in animals. PPARγ1 is induced earlier 
than PPARγ2 and is maintained at high level during adipocyte 
differentiation.18

CCAAT/enhancer-binding protein α is another principal adi-
pogenic transcription factor and these two factors, PPARγ and 
C/EBPα mutually stimulate each other. They drive the transi-
tion of preadipocytes to mature adipocytes by activating numer-
ous target genes required for maintaining the mature fat-laden 
adipocyte phenotype. Recently, several other transcription fac-
tors have been identified as regulators of adipogenesis. These 
include GATA2,19 the Krüppel like factor (KLF) family,20-22 and 
Nr2f2.23,24 The regulation of adipogenesis by transcriptional 
cascade and the role of histone acetylation have been reviewed 
extensively elsewhere.11,16,25 In this review, we focus on the role of 
methylation and demethylation of histones in adipogenesis and 
in the development of obesity.

Histone Methylations and Adipogenesis

Regulation of adipogenesis by monomethylation of histone 
4 at lysine 20 (H4K20) by PR-Set7/Setd8 and trimethyla-
tion of histone H3 at lysine 9 (H3K9) by Setdb1. Epigenetic 
determinants control the accessibility of promoter chromatin 
and establish lineage-specific heritable states of gene expression 
through the modulation of DNA methylation and posttransla-
tional modification of core histones.5,26 Therefore, the expression 
and activities of histone-modifying enzymes should be distinctly 
regulated during adipocyte differentiation. It is tempting to spec-
ulate that epigenetic mechanisms also potentiate distinct func-
tional states of PPARγ target genes and that PPARγ may regulate 
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regions of active genes.28-30 In addition, recent ChIP sequencing 
assays also revealed strong evidence that H4K20me1 is strongly 
correlated with gene activation in the regions downstream of the 

adipocyte phenotype. Although several studies suggest association 
of H4K20 methylation with repressive chromatin, recent stud-
ies showed that H4K20me1 is enriched in promoter or coding 

Figure 1. Models for the coordinate regulation of transcription and histone modification by PPARγ for adipogenesis. Two well characterized HKMT, 
Setdb1 and Setd8 are coordinately regulated by PPARγ and their increased activity facilitates terminal adipocyte differentiation through chromatin 
modification. PPARγ also drives induction of PPARγ2 via a feedback loop and many other of the target genes via two pathways; one through transcrip-
tion and the other, by way of an epigenetic pathway. PPARγ requires Setd8 to acquire H4K20me1 modification in order to enhance its transcription, 
while Setd8 requires PPARγ to be transcriptionally induced. These two are both required for the expression of PPARγ targets. Setdb1 is an anti-adipo-
genic factor whose expression is downregulated toward the end of differentiation. Setdb1 is also identified as a PPARγ target, however, it remains to 
be determined whether it is a direct downregulated target genes.
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activated by noncanonical Wnt 5a, which 
determines the fate of mesenchymal stem 
cells.

Osteoblasts and adipocytes differentiate 
from common pluripotent mesenchymal 
stem cells. Canonical Wnt signaling stimu-
lates osteoblastic differentiation at several 
steps of cytodifferentiation while inhibiting 
adipogenesis.32-34 Canonical and noncanoni-
cal Wnt signaling pathways are activated by 
multiple Wnt ligands through binding to 
frizzled plasma membrane receptors. During 
activation of the canonical pathway, stabili-
zation and nuclear translocation of the intra-
cellular transducer β-catenin is induced, 
enabling it to associate with members of 
the T-cell factor/lymphoid enhancer factor 
(TCF/LEF) family of transcription factors 
and thus activate the transcription of target 
genes.35 By contrast to canonical Wnt sig-
naling, the signaling events downstream of 
the noncanonical signal are understood only 
vaguely and their physiological impact in 
cell fate decision of mesenchymal stem cell 
remains obscure. In addition, the molecular 
link of histone modification to the transcrip-
tional cascade and response to change in 
the extracellular environment remains to be 
uncovered.

Since noncanonical Wnt ligand, Wnt5a, 
is expressed at significant levels and Wnt5a 
is capable of transrepressing PPARγ func-
tion induced by PPARγ agonists, Takada et 
al. explored the downstream signaling (Fig. 
2). They demonstrated that PPARγ activa-
tion is repressed in trans by the Wnt5a-
mediated activation of the CaMKII-TAK1/
TAB2-NLK cascade and by activated NLK 
(Nemo like kinase). This thereby inhibits 

adipogenesis and stimulates osteogenesis through SETDB1.36 
An HDAC inhibitor, tricostatin A, was unable to reverse NLK-
mediated suppression of PPARγ function in ST2 cells, a line of 
mesenchymal stem cells, indicating a possible role for other inac-
tive histone-modifying enzymes.

NLK-containing complexes were purified from nuclear 
extracts of KCl treated HeLa cells that expressed FLAG-tagged 
NLK, using glycerol gradient centrifugation fractionation. These 
experiments lead to the identification of DEAH-box and CHD 
domain-containing ATPase protein, CHD7,37 and SETDB1.38,39 
The SETDB1 complex associated with PPARγ to methylate 
H3K9 in the promoters of PPARγ target genes, leading to chro-
matin inactivation through consequent histone-inactivating 
modification of H3K9me3. Complex formation of endogenous 
NLK, SETDB1 and CHD7 with PPARγ was seen only when 
ST2 cells were treated with Wnt5a.36 Consistently, an increase 
in histone di- and tri-methylation at histone H3K9 was observed 

TSS, consistent with it being a marker of activation.31 Therefore, 
we postulate that H4K20me1 functions to enhance gene tran-
scription in adipogenesis.

Our data demonstrate that PPARγ is required for Pparγ2 gene 
expression. PPARγ/RXRα heterodimers bind directly to the 
Pparγ2 promoter and result in activating histone modifications 
of Pparγ2 gene, thereby activating transcription. Our results sup-
port a model in which a PPARγ-mediated transcriptional feed-
back-loop, acting through chromatin modification, is essential 
for the transcriptional activation of PPARγ2 and the subsequent 
maturation of adipocytes.

Histone 3 Lysine 9 Methytraseferase SETDB1

While SETDB1 is a PPARγ target that is downregulated during 
adipocyte differentiation and acts as an anti-adipogenic factor, 
Takada et al. independently demonstrated that SETDB1 is also 

Figure 2. A mechanistic model for noncanonical Wnt5a dependent suppression of PPARγ func-
tion. CaMKII, calcium/calmodulin-dependent protein kinase II; TAK1, TGFβ-activating kinase 1; 
TAB2 = TAK1-binding protein 2; NLK, nemo-like kinase.
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MLL3 and MLL4. Lee et al. demonstrated that MLL3 and 
MLL4 function as crucial, but redundant, H3K4MTs for adipo-
genesis, revealing an interesting connection between H3K4 trim-
ethylation and adipogenesis.59 They examined MLL3∆/∆ mice47 
expressing an H3K4MT-inactivated mutant of MLL3 that bears 
an in-frame deletion of a 61-aa catalytic core region in the MLL3 
SET domain. They found that these mice have a significantly 
decreased amount of WAT associated with a favorable overall 
metabolic profile, including improved insulin sensitivity and 
increased energy expenditure. These animals also develop ureter 
urothelium tumors that likely result from an ASCOM coactiva-
tor function for the tumor suppressor p53. They are also resis-
tant to high-fat diet-induced fatty liver formation. The authors 
also showed that ASC-2, MLL3 and MLL4 are recruited to the 
PPARγ-activated aP2 gene during adipogenesis, and that PPARγ 
interacts directly with purified ASCOM. Their results raise 
the interesting possibility that novel antidiabetic and/or anti-
steatohepatitis therapeutics might be developed that modulate 
MLL3/4-H3K4MT activity in appropriate target tissues.

PTIP, a component of a histone lysine 4 methyltransferase 
(MLL4) complex. Cho et al.60 reported that the histone methyla-
tion regulator PTIP (Pax transactivation domain-interacting pro-
tein) is required for the expression of PPARγ and C/EBPα. PTIP 
is a component of a histone lysine methyltransferase (HKMT) 
complex that also contains the histone H3K4 methyltransferases 
MLL3 and MLL4 as well as the JmjC domain-containing pro-
tein UTX.48,49,61 Recent studies demonstrated that most covalent 
histone lysine modifications are reversible and the jumonji C 
(JmjC)-domain-containing proteins possess demethylase activ-
ity. These authors reported that PTIP regulates PPARγ and C/
EBPα expression in murine embryonic fibroblasts (MEFs) as well 
as during preadipocyte differentiation. In preadipocytes, PTIP is 
essential for the robust induction of PPARγ and C/EBPα (but not 
for C/EBPβ) during differentiation. On the other hand, before 
differentiation PTIP is dispensable for the basal level expression 
of PPARγ and C/EBPα. Increased trimethylation of Histone H3 
by MLL4 in the promoters of the PPARγ and C/EBPα genes 
requires PTIP, as does occupancy of these promoters by RNA 
polymerase II (Pol II). These reports demonstrate the critical role 
of H3K4me3 on PPARγ.60

Since knockout of PTIP is lethal in mice, adipose specific 
PTIP mice were generated by crossing PTIP conditional KO mice 
with aP2-Cre mice expressing Cre under the control of adipose 
specific aP2 (adipocyte-specific fatty acid-binding protein 4, also 
known as FABP4) promoter. Although KO mice had body weight 
similar to the control mice, they displayed over 50% decrease 
of BAT mass. Expression markers common to WAT and BAT 
(PRDM16, cidea, ntrk3),62 brown fat thermogenic genes (UCP1 
and PGC1α), and mitochondrial components (cox5b and cox8b) 
also decreased significantly in the residual BAT of KO mice.63 By 
contrast, the mass of WAT did not differ significantly between 
the PTIP KO mice and wild type. These results were consistent 
with previous reports that deletion of PPARγ in BAT leads to 
markedly decreased tissue weight in mice.64 The main function 
of BAT is to burn fatty acids to generate heat. When these mice 
were exposed to environmental cold, the KO mice were unable 

together with hypoacetylation of histone. In addition, noncanon-
ical Wnt signaling activated by Wnt5a induces differentiation of 
adipocytes into osteoblasts in bone marrow. Thus, this complex 
is presumed to be a new type of HKMT corepressor complex for 
nuclear receptors active in signal transduction. These data also 
suggest that SETDB1 may be a nuclear target activated by signal-
ing via cell membrane receptors to co-repress several classes of 
transcriptional factors.

Histone 3 Lysine 4 (H3K4) Trimethylation

As observed for histone acetylation, the methylation of H3K4 
affects transcriptional activation. Several nuclear proteins, includ-
ing transcription factors and chromatin modifying enzymes such 
as MLL3/4, PTIP, Wnt/β-catenin signal are reported that are 
associated with altered H3K4 methylation states in the promoters 
of PPARγ, CEBPα or other adipogenic genes.

H3K4-methyltransferases (H3K4MTs) include yeast and 
human Set1, MLL1, MLL2, MLL3/HALR, MLL4/ALR, Ash1 
and Set7/9.40 These proteins contain a SET domain, which is 
associated with an intrinsic histone lysine-specific methyltrans-
ferase activity.41 Mammalian Set1 and MLL complexes belong 
to a highly conserved family of Set1-like complexes,40 which also 
contain complex-specific subunits and a common core subcom-
plex consisting of RbBP5, ASH2L and WDR5.42-45 In particu-
lar, WDR5 mediates interactions of the H3K4MT unit with the 
histone substrate and also plays crucial roles in maintaining the 
integrity of the complex.43-45

Activating signal cointegrator-2 (ASC-2; also named 
NCOA6, AIB3, TRBP, TRAP250, NRC and PRIP) is a coacti-
vator of numerous nuclear receptors and transcription factors.46 
Importantly, ASC-2 is an integral and unique component of a 
Set1-like complex named ASCOM (for ASC-2 complex). ASCOM 
contains MLL3 or MLL4,42,46 and indeed possesses H3K4MT 
activity.42,47-49 More recent studies identified additional compo-
nents of ASCOM, including UTX,48,49 a protein subsequently 
shown to be a H3K27-demethylase enzyme.50-53 Thus, ASCOM, 
unlike other Set1-like complexes, contains two distinct histone-
modifying enzymes linked to transcriptional activation.

The importance of ASC-2 as a key coactivator of multiple 
nuclear receptors including PPARγ has been reported from stud-
ies with various ASC-2 mouse models. In further support for 
ASC-2 as a physiological coactivator of PPARγ is the observation 
that the transcriptional activity of PPARγ is impaired in ASC-2-
null mouse embryonic fibroblasts (MEFs).54-56 In addition, ASC-2 
plays essential roles for the adipogenic program directed by PPARγ 
as demonstrated by the finding that ASC-2-null MEFs are refrac-
tory to PPARγ-stimulated adipogenesis and fail to express the 
PPARγ-responsive, adipogenic marker gene aP2.56 Interestingly, 
ASC-2 has been reported to play crucial roles in granulocyte dif-
ferentiation as a coactivator of C/EBPα,57 which also functions as 
a key adipogenic factor through its ability to trigger expression of 
PPARγ during adipogenesis.58 Taken together, these results sug-
gest that ASC-2 may exert its adipogenic function as a coactivator 
of at least 2 key adipogenic transcription factors, PPARγ and C/
EBPα.
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components of the Wnt signaling pathway 
with the downstream effectors controlling 
adipogenesis and PPARγ activity.

By combining global gene expression anal-
yses with a ChIP-chip microarray approach, 
Okamura et al. demonstrated that Wnt/β-
catenin signaling activates the expression of 
the nuclear receptor Coup-TFII which in turn 
recruits the SMRT co-repressor complex to 
the first introns located downstream from the 
first exons of both PPARγ1 and γ2 mRNAs 
(Fig. 3). This maintains the local chromatin 
in a hypoacetylated state accompanied by the 
repression of H3K4me3 and thereby represses 
expression of PPARγ.24

COUP-TFII has an important role down-
stream of Hedgehog signaling to inhibit 
adipogenesis by acting at the C/EBPα pro-
moter.23 When combined with the study by 
Okamura et al. the results define COUP-TFII 
as a molecular hub that integrates the input 
of two key developmental signaling pathways, 
Wnt and Hedgehog, with PPARγ gene expres-
sion and adipocyte differentiation. The impact 
of Hedgehog on epigenetic regulation remains 
to be elucidated.

H3K4 Dimethylation

The promoters of adipogenic genes harbor 
the H3K4 dimethylation signal that is already 
present in preadipocytes, labeling these genes 
as silent but poised for transcription.68 This 
mark is restricted to the promoters in preadi-
pocytes. During the differentiation process, 
H3K4 dimethylation increases in the promot-

ers and is found also in the coding region of these same genes, 
coinciding with the start of transcription.68 On the other hand, 
H3K4 trimethylation in the promoters of apM1, lep and glut4 
can be detected only after the start of their transcription, while 
in the coding regions this mark was delayed, being only detect-
able at low levels in fully differentiated adipocytes. Mursri et al. 
reported that treatment with a low dose of the methyltransferase 
inhibitor methylthoadenosine erased this epigenetic mark from 
the promoters studied and resulted in dramatically decreased 
adipogenesis.68 This indicates the importance of this histone 
posttranslational modification in the regulation of adipogenesis. 
However, the transcription factor(s) involved in maintaining 
adequate levels of histone methylation at the adipogenic genes 
remain unknown.

H3K27 Methylation

Recent mapping of histone methylation in pluripotent and 
lineage-committed cells have revealed an unexpectedly high 
frequency of colocalizaion of “activating” H3K4me3 and the 

to maintain body temperatures and were thus cold intolerant. 
This result was consistent with previous reports that ablation of 
BAT led to cold intolerance in mice. A recent study showed that 
BAT shares precursors (Myf5 positive cells) with muscle cells but 
not with white adipocytes. Induction of PRDM16 expression in 
Myf5 positive cells directs them to develop into BAT. PRDM16 
and PPARγ physically interact during BAT differentiation.65

Wnt, β-catenin and COUP-TFII. Canonical Wnt/β-catenin 
signaling prevents the induction of PPARγ and CEBPα gene 
expression and thereby inhibits adipogenesis.66 This inhibition 
does not involve the rapid and transient upstream induction of C/
EBPβ and C/EBPδ. The endogenous Wnt isoform involved has 
been proposed to be Wnt10b.66,67 It is secreted by preadipocytes, 
stabilizes β-catenin, prevents 3T3-L1 differentiation and shifts 
development of bipotential stromal progenitors away from adipo-
genesis and toward osteoblastogenesis. The molecular details by 
which canonical Wnt10b inhibits the downstream induction of 
C/EBPα and PPARγ67 including transcription cascade and epige-
netics remain fully elucidated. Thus, it has been a big challenge 
in the field of Wnt signaling and adipogenesis to integrate known 

Figure 3. A schematic model for canonical Wnt and β-catenin mediated suppression of 
PPARγ gene expression. LRP, low-density lipoprotein receptor-related protein; GSK3, serine/
threonine kinase glycogen synthase kinase-3; APC, adenomatous polyposis coli; Dsh, Dishev-
elled; TCF, T cell factor.
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to the cellular responses downstream of β-adrenergic signaling. 
Based on these findings, they proposed that the obese phenotype is 
due to the loss of JHDM2a which is critical in regulating metabolic 
control through Pparα and β-adrenergic signaling pathways.

The other group, Inagaki et al.76 demonstrated that JHDM2a 
also regulates metabolic genes related to energy homeostasis 
including anti-adipogenesis (Nr2f2 also known as CoupTFII,23,24 
and GATA2,19), regulation of fat storage (Apoc1,78), glucose 
transport (Slc2a4,79), and a gene associated with susceptibility to 
type 2 diabetes (ADAMTS9,80) in WAT. Their JHDM2a-/- mice 
furthermore exhibit fasting-induced hypothermia, indicating 
reduced energy expenditure. These mice also have a higher respi-
ratory quotient, indicating less fat utilization for energy produc-
tion, which may also make them more prone to obesity.

Thus, these two reports demonstrated H3K9 demethy-
lase JHDM2a is a crucial regulator of genes involved in energy 
expenditure and fat storage, which further suggests that it is a 
previously unrecognized key regulator of obesity and metabolic 
syndrome.

Conclusion Remarks

Histone methylation is catalyzed by histone methyltransferases 
and reversed by histone demethylases. Recent studies have uncov-
ered that changes in histone modification are a key component 
of an epigenetic network controlling adipogenesis and energy 
homeostasis. Further work is required to unravel the causal rela-
tionship between diet-induced obesity and histone modification 
in genes associated with nutritional balance. It is interesting to 
speculate that reduced JHDM2a activity may contribute to the 
pathogenesis of common forms of obesity and insulin resistance. 
Together with the finding of the link between H3K4 methyl-
tranferase MLL3 with the metabolic phenotypes,59 the finding 
that H3K9 demethylase protects against obesity indicates that 
modulation of histone lysine methylation in chromatin may be a 
new target in the treatment of obesity and metabolic syndrome. 
Moreover, studies of the role of epigenetic changes in histone 
modification to human nutrition and obesity will be a fruitful 
area for further research.
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“repressive” H3K27me3 on promoters of developmental regula-
tors.69 Genomic regions containing both of these marks are termed 
“bivalent domains” and are of great interest due to their role in 
maintaining a poised transcriptional state.69,70 A characteristic of 
pluripotent cells is the presence of a bivalent histone mark in the 
chromatin of regulatory regions. Interestingly, H3K4me3 and 
H3K27me3 also colocalize on the PPARγ1 promoter in MEFs.69 
Because genes containing bivalent domains are not considered 
transcriptionally active, it is possible that NR response elements 
contain these marks in the absence of a ligand. In response to 
hormone stimulation, removal of the silencing H3K27 mark 
would allow rapid activation. PTIP associates with both histone 
H3K4 methyltransferases MLL3 and MLL4 and histone H3K27 
demethylase UTX.53,71 However, the role of UTX and H3K27 
methylation in adipogenesis is largely unknown.

Histone Demethylase JHDM2A and Obesity

Recent studies demonstrated that most covalent histone lysine 
modifications are reversible and the jumonji C (JmjC)-domain-
containing proteins have been shown to possess such demethy-
lase activities.10,72 However, there is little information available 
on the biological roles of histone lysine demethylation in intact 
animal model systems. JHDM2A (JmjC-domain-containing 
histone demethylase 2A, also known as JMJD1A) catalyzes 
removal of H3K9 mono- and dimethylation through iron and 
α-ketoglutarate dependent oxidative reactions73 and plays essen-
tial roles for spermatogenesis in mice.74

Two groups have recently reported the role of histone demethy-
lase JHDM2a in the protection from obesity.75,76 Mice deficient 
in JHDM2a (JHDM2a-/-) develop adult onset obesity, hypertrig-
lyceridemia, hypercholesterolemia, hyperinsulinemia, and hyper-
leptinemia, which are hallmarks of metabolic syndrome.77 The 
phenotype of the JHDM2A-/- mice is essentially the same; how-
ever, the molecular mechanisms of development of obesity are a 
little differently understood. Tateishi et al. identified Pparα and 
Uncoupling protein 1 (Ucp1), two of the important genes involved 
in controlling energy balance, as direct targets of JHDM2a in 
skeletal muscle or BAT.75 They also showed that Jhdm2a expres-
sion is regulated by the β-adrenergic signaling pathway. Because 
the expression of these two genes as well as Jhdm2a, is induced by 
β-adrenergic stimulation, they suggested that JHDM2a contributes 
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