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Polymer fluids are modeled with dissipative particle dynamics (DPD) as undiluted bead-spring
chains and their solutions. The models are assessed by investigating their steady shear-rate
properties. Non-Newtonian viscosity and normal stress coefficients, for shear rates from the lower
to the upper Newtonian regimes, are calculated from both plane Couette and plane Poiseuille flows.
The latter is realized as reverse Poiseuille flow (RPF) generated from two Poiseuille flows driven by
uniform body forces in opposite directions along two-halves of a computational domain. Periodic
boundary conditions ensure the RPF wall velocity to be zero without density fluctuations. In
overlapping shear-rate regimes the RPF properties are confirmed to be in good agreement with those
calculated from plane Couette flow with Lees—Edwards periodic boundary conditions (LECs), the
standard virtual rheometer for steady shear-rate properties. The concentration and the temperature
dependence of the properties of the model fluids are shown to satisfy the principles of concentration
and temperature superposition commonly employed in the empirical correlation of real
polymer-fluid properties. The thermodynamic validity of the equation of state is found to be a
crucial factor for the achievement of time-temperature superposition. With these models, RPF is
demonstrated to be an accurate and convenient virtual rheometer for the acquisition of steady
shear-rate rheological properties. It complements, confirms, and extends the results obtained with
the standard LEC configuration, and it can be used with the output from other particle-based
methods, including molecular dynamics, Brownian dynamics, smooth particle hydrodynamics, and

the lattice Boltzmann method. © 2010 American Institute of Physics. [doi:10.1063/1.3366658 ]

I. INTRODUCTION

Particle models of complex fluids create the need for
methods to calculate the simulated equivalents of the physi-
cal properties commonly measured in rheometers. The simu-
lated and measured properties can then be matched to cali-
brate the model’s parameters. This operation is of great
importance, especially in mesoscopic simulations, which at-
tempt to capture the observable properties of complex fluids
with coarse graining in space and time. Thus, known atom-
istic interactions are replaced with soft-type interactions
among coarse entities each of which may contain a large
number of atoms or molecules. The validity of such models
is determined by examination of their macroscopic proper-
ties. For models of Newtonian fluids, various methods have
been employed for the calculation of viscosity and other
transport coefficients. These methods often employ the
Green—Kubo (GK) relations derived from correlations of
fluctuations about states of equilibrium. In principle, GK
theory will deliver only the linear viscoelastic properties of
complex fluids. However, steady shear flows at rates beyond
the lower Newtonian regime are not states near equilibrium
and do not appear to be amenable to the GK analysis. Hence,
the virtual analogs of the shear flows of rheometry must be
employed to determine the rheology of the simulated com-
plex fluids.
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As with experimental rheometry, the response of a test
fluid to more than one deformation field is needed for its
complete rheological characterization. However, the first
step, the subject of this work, is nearly always the response
to steady shear flow. Here we investigate the use of reverse
Poiseuille flow (RPF) as an alternative virtual theometer for
the calculation of the material functions of steady-state
shearing. The application of RPF to complex fluids is novel,
although it was first applied to measure the viscosity for
particle models of Newtonian fluids." The flow consists of
two parallel Poiseuille flows driven by uniform body forces
of equal magnitude but in opposite directions. Figure 1
shows the profiles of the imposed shear stress (b) and of the

shear stress

velocity

T=fn(x-3H/2)

T =fn(H/2-x)

FIG. 1. Typical RPF velocity profile (a) driven by the imposed wall shear
stress fnH/2 (b), where f is the body force per unit mass and n is the
number density.
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resulting velocity (a). Periodic boundary conditions imply
that the profiles in Fig. 1 are repeated in each horizontal
direction, and hence, they are effectively stationary, spatial
waves. The shear rate spans the range from zero along the
channel centerline to the maximum wall value. In principle,
this means that a single simulation yields the material func-
tions of steady shear over that range of shear rates.

The standard virtual rheometer, widely used in particle
simulations to obtain steady-state shear properties, is plane
Couette flow with the Lees—Edwards periodic boundary con-
ditions (LECs).2 This configuration has been favored because
its shear rate is uniform and prescribed. It is counterintuitive
to expect that RPF can yield comparable results with its non-
uniform shear rates to be obtained by numerical differentia-
tion. In part, the success of the RPF rheometer is due to the
smoothness of the computed velocity profiles, which are av-
erages of the four half-channel profiles, the statistical equiva-
lent to an ensemble average over four replicas in addition to
the usual time-averaging over many steps. A less obvious
factor may be the benefit of each particle being driven by the
same body force in contrast to the wall-driven Couette flow.
The periodic boundary conditions of both RPF and LEC
eliminate the need for explicit modeling of solid wall bound-
ary conditions. This has the significant advantage of exclud-
ing unknown wall effects, such as slip and density fluctua-
tions, which seem to be endemic to particle-wall models as
they are currently known. This is of particular importance for
fluid mixtures and solutions which exhibit nonuniform con-
centration profiles as a consequence of cross-stream migra-
tion induced by stress gradients.

RPF has been applied successfully to dissipative particle
dynamics (DPD) simulations of dilute polymer solutions®
and colloidal suspensiorls.4 Figure 2(a) shows the bead den-
sity profiles of a dilute polymer solution obtained in wall-
bounded plane Poiseuille flow and RPF, where R, is the
bead-chain radius of gyration. The agreement shows that the
real channel wall, explicitly constructed from fixed DPD-
particle layers, behaves similar to the RPF “wall,” a shear
plane of zero velocity by virtue of the periodic boundary
conditions. Figure 2(b) demonstrates excellent agreement be-
tween the calculated and the experimental viscosities of col-
loidal suspensions obtained with RPF (after accounting for
migration effects) over a range of volume fractions. This
work uses RPF and LEC to explore the steady-state proper-
ties of model fluids consisting of undiluted bead-spring
chains and their solutions. For these simple models, it will be
demonstrated that RPF allows the exploration of their com-
plete theograms, i.e., the viscosity and normal stress coeffi-
cients as functions of shear rate, concentration, and tempera-
ture over the range of shear rates from the lower to the higher
Newtonian regimes. These examples demonstrate RPF to be
a general purpose virtual rheometer, which complements and
extends the capacity of the LEC rheometer for the calcula-
tion of steady-state shear properties of complex fluid models.

The simulations of this work employ DPD. However, it
will be seen below that the only data required for the extrac-
tion of the material functions of steady shear flow are particle
positions and velocities as functions of time. Hence, the out-
put from any particle-based method that delivers those data
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FIG. 2. (a) The bead density profile of dilute polymer solution in wall-
bounded Poiseuille flow and in RPF. (b) Colloidal-suspension viscosity for
different volume fractions obtained with RPF compared with experiments
(Refs. 5-13).

can be similarly treated. At various times after the startup
from rest following the sudden imposition of the driving
force, convergence toward the steady profile begins near the
wall and moves toward the centerline. The calculated veloc-
ity profiles for a system of free DPD particles were found to
be in good agreement with those predicted by the Navier—
Stokes equation. Once the DPD-simulated velocity profiles
become parabolic, the integrated bulk velocity or the maxi-
mum velocity yields viscosities in good agreement with val-
ues calculated from Couette flow by LEC. With the viscosity
in hand, the Navier-Stokes solution can be used with the
elapsed time from startup to check that the profile is indeed
closely parabolic. For bead-chain systems or other complex
structures, no simple theoretical guide exists to determine the
time to establish the steady-state since their rheology is un-
known a priori, and they are taken to be unspecified non-
Newtonian fluids. Convergence to the steady state will also
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proceed from the walls to the centerline and must be deter-
mined empirically. This is analogous to the development of
the velocity profile in turbulent pipe flow where experience
has shown that very long entrance lengths are required to
complete the development near the centerline. The steady
velocity profiles are calculated for each prescribed driving
force. The shear rates across the profile must then be derived
by numerical differentiation since the velocity profile has no
simple mathematical representation. Simultaneously with the
velocity profiles, the complete stress system is calculated
from the Irving—Kirkwood equation14 in the form of stress-
component profiles.

At very high shear rates, DPD simulations fail when the
mean flow dissipation rates begin to overwhelm the thermo-
stat. At low shear rates, the velocity fluctuations are over-
whelming and, consequently, the mean velocities become too
small to be statistically significant. The smoothness of the
RPF velocity profiles tends to compensate for the errors due
to numerical differentiation, and at very low and at very high
shear rates yields smoother rheograms when compared to the
ones derived from the statistically measured stresses of Cou-
ette flow, in spite of its prescribed shear rate.

This paper is organized as follows. In Sec. I we present
the basic continuum equations and concepts of steady shear-
rate rheology to be used to derive shear-dependent viscosities
and normal stress differences of the model non-Newtonian
fluids. Sections III A and III B provide an overview of the
DPD method and the flexible chain polymer model. In Sec.
IV we demonstrate the use of the RPF virtual rheometer with
simulation results for monodisperse “melts” represented as
identical chains and for mixtures of identical bead-spring
chains in “good” solvents of free beads. The concentration
and the temperature dependence of properties are also inves-
tigated. We conclude in Sec. V with a summary of the main
findings.

Il. RHEOLOGICAL MEASUREMENTS AND
PROPERTIES

For a given force f, the RPF configuration shown in Fig.
1 yields for the half-channel one steady-state velocity field
calculated by the combination of time and ensemble aver-
ages as described previously. Shear rates y(x) are then ex-
tracted from the measured velocity profile by numerical dif-
ferentiation of fitted even-order polynomials for the central
region and cubic splines for the wall region. At cross-stream
position x and time ¢, elementary continuum analysis for any
fluid in any shear flow requires the shear stress 7,,(x,7) and
the streamwise velocity u(x,?) to satisfy the equation of mo-
tion

ou  J7y

p_=

ot ox )

At the steady state (7,,(x,#)=7,,(x)), this momentum balance
yields the linear shear-stress profile shown in Fig. 1(b) with
the maximum absolute value of fnH/2 at the virtual walls
(interfaces). This will be referred to as the imposed shear
stress. In addition, the complete stress profile in the form of

components (7, Ty Ty, and 7,,) can be calculated from
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simulations using the virial theorem.'® The calculated shear-
stress profile 7,,(x) can be compared to the corresponding
imposed profile to verify that the stresses calculated as sta-
tistical averages satisfy the continuum equation of motion,
and that steady flow has been attained. With the shear rate
Y(x)=du(x)/dx in hand, the non-Newtonian shear viscosity
77(x) and the first and second normal stress coefficients W (x)
and W,(x) are derived from the stress components from their
definitions,

Ty () = 7(x) Hx),
7y () = T (0) = W1 () ¥ (%), (2)
T(¥) = 7200 = W, (0) 1 (x).

The non-Newtonian viscosity 7(x) is calculated from the
imposed shear stress so that its main source of error will be
the shear rate y(x) derived from the velocity profile by nu-
merical differentiation. The calculated normal stress coeffi-
cients will be intrinsically noisier since they are derived from
the noisier calculated normal stresses and the square of the
shear rate. For polymeric fluids, the viscosity function and
normal stress coefficients typically approach constant zero-
shear-rate plateaus at low shear rates. This low-shear-rate
Newtonian regime is often experimentally inaccessible due
to rheometer limitations. For the RPF simulations of this
work, the zero-shear-rate values have to be extracted from
the low-shear-rate region near the channel centerline where
the velocity profile tends to flatten, and it is also the last
region to converge to the steady state. Thus, larger errors in
numerical differentiation should be anticipated in this region
where the thermal fluctuations for both RPF and LEC domi-
nate over the local average shear rate.

lll. DPD FORMULATION

DPD is a mesoscopic simulation method,m’17 where each
DPD particle corresponds to a collection of atoms or mol-
ecules rather than an individual atom. In general, the DPD
system consists of N point particles of mass m;, position r;,
and velocity v;.

A. DPD governing equations

The time evolution of each DPD particle is calculated
according to the Newton’s second law

dr;=vdt, dv;= LE Fd1, (3)
m;jzi

where F;; is the total interparticle force exerted on particle i
by particle j. The above equations of motion are integrated
using the modified velocity-Verlet algorithm.17

The total interparticle force F;; is a sum of three
pairwise-additive terms: Conservative Fg, dissipative Ff;,
and random Ff; defined as

C_pCr. \a
Fii=Fi(r))t (4a)

ij>

D _ D A Na
Fij=-yo (rij)(vij : rij)l'ij, (4b)
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(4¢)

R R gi' N
Fij: ow (rij)—/—Lr,-j,
Vdt

where £;;=r;;/ 1, r,»j=|r,-j, and v;;=v;—v,. The coefficients y
and o define the amplitude of the dissipative and the random
forces, respectively. In addition, w” and w® are weight func-
tions, and §; is a normally distributed random variable with
zero mean, unit variance, and §l~j=§ji. The above forces are
local and vanish beyond the cutoff radius r,., which defines
the DPD length scale. The conservative force has the follow-

ing definition:

a;(1-=ryr,) for ri;=r,
FC )= 1] e 1y (& 5
() {O for r;;>r,, ®)

where a;; is the conservative force coefficient between par-
ticles i and j, respectively.

The DPD thermostat controls the temperature by balance
of random and dissipative forces such that the fluctuation-
dissipation theorem is satisfied with the equilibrium tempera-

ture T (Ref. 18) determined by
wD(rij) = [wR(rij)]z, o= 2ykgT. (6)

The deviation of the average kinetic energy of the peculiar
particle velocities from the prescribed kzT was monitored in
all simulations. Generally, the weight function wR(rij) is cho-

sen as
(1 =rilr)™ for ri;=<r,
wR(rij) = { ’ / (7)

0 for r;;>r,,

where m=1 for the original DPD method. Other choices of
the exponent for these envelopes have been used™'*? for
systems of free DPD particles, i.e., Newtonian fluids or sol-
vents whose viscosities and Schmidt numbers (Sc) can be
varied with m<<1. In this work, m was set to 1/4. Here Sc
=u/pD, where D is the coefficient of self-diffusion and w/p
is the kinematic viscosity.

B. A flexible polymer model

The flexible polymer is modeled as a chain of N, beads
(DPD particles) connected by the finitely extensible nonlin-
ear elastic (FENE) springs with attractive potential given by

ks |ri - l'~|2
Erﬁmx log|:1 - 2—1] s (8)

rmax

Urpne=—

where k is the spring constant. The spring extension r is
limited by its maximum value r,,,, attained when the corre-
sponding spring force becomes infinite. By definition, a flex-
ible chain can have any angle between two consecutive seg-
ments.

IV. SIMULATION RESULTS

In this section, RPF is demonstrated to be an alternative
numerical rheometer for the calculation of bulk material
functions of steady-state shear flow. The RPF results are
cross compared with those obtained by the LEC method,
which is widely accepted as the numerical rheometer for
steady flow shear properties. A number of DPD simulations
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TABLE I. DPD simulation parameters.

c a Y g kBT m [Eq (7)] kx T'max

3 2.0 250 45 3.0 1.0 0.25 50.0 1.0

were run for systems of monodisperse bead-spring chains
and their solutions in a solvent of free beads.

A. Monodisperse “melts”

The quotation marks applied in the title of this section
serve to emphasize that while the construction of our simu-
lation system appears to model a monodisperse polymer melt
it may not entirely represent the physical properties of real
melts due to soft particle interactions in DPD. The melt sys-
tem consists solely of flexible, monodisperse bead-spring
chains of N=2, 5, and 25 beads connected by FENE springs.
There are no solvent particles, and the chains are distinguish-
able only by their bead numbers. Table I gives the common
parameters that characterize the chains used in DPD simula-
tions of this section, where n is the bead number density. The
computational domain was set to 50 X 20 X 10 in DPD units,
which corresponds to a channel gap of H=25 (see Fig. 1).
The initial chain configurations were assigned to the simula-
tion domain by means of a three-dimensional random walk
with the fixed step length of 0.6. RPF is driven by specifica-
tion of f, a uniform constant force per DPD particle in the
y-direction, positive on the left half and negative on the right
half of the domain, respectively. The time step for all simu-
lations was set to Ar=0.005.

For non-Newtonian fluids, the shear stress is commonly
approximated as a power law in the shear rate over a consid-
erable range. Integration of the equation of motion (1) with
zero wall velocity yields the power-law Poiseuille velocity
profile as a function of x relative to the channel centerline,

X 1+1/p
V(x)=VC|:1—<I%) :|,

p (l’lf) l/p(H)1+l/p
c:1+p ? 5 ’

where p is the power-law index, « is the power-law shear-
stress coefficient, and n is the number density. Figure 3
shows velocity profiles (a) and normalized bead density (b)
across the channel for chains of N=2, 5, and 25 beads driven
by f=0.25. It also depicts excellent velocity-profile fits for
the power law (dots) and for the Ellis model (crosses) with
indices p=0.898 for N=2, p=0.831 for N=5, and p=0.703
for N=25 bead chains. For contrast, the parabolic Newtonian
profiles (dashed lines) are also plotted with the non-
Newtonian curves. The velocity profiles corresponding to the
longer chains have smaller velocity maxima V,. and are flatter
because these melts are more viscous and more strongly
shear thinning (smaller p). In addition, Fig. 3(b) shows that
the bead density distribution is essentially uniform for all
monodisperse melts. The largest density deviations, within
1%—-2% of the bulk density, were observed for the longest
chains of N=25 near the centerline. Absent for this system of

©)
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FIG. 3. Velocity (a) and normalized bead density (b) profiles for three melts
of N=2-, 5-, and 25-bead chains. Power-law indices p are 0.898, 0.831, and
0.703, respectively.

pure monodisperse chains is the cross-stream migration
found for dilute and semidilute solutions.>*' >

As a consistency test, Fig. 4 compares the imposed and
the calculated shear-stress distributions for the melt of N
=25 beads. Within the attainable statistical convergence, the
overall agreement between the assigned and the calculated

shear stress
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shear-stress distributions and the uniform density across the
channel show that the system of monodisperse chains be-
haves as a homogeneous continuum. The small discrepancy
in the near-wall region with thickness of less than 1% of the
channel width H appears to be a consequence of the abrupt
reversal of the driving force just beyond the wall. Repetition
of this comparison for different driving forces showed this
discrepancy to vanish as the driving force gets smaller. The
periodicity of RPF suggests that as the ratio of particle size
over H increases, this stress discrepancy will grow, and this
may signal the breakdown of the continuum assumption. For
the beads of this model, the Stokes—Einstein radius has been
shown elsewhere’ to be a plausible measure of the particle
size. Figure 5 shows the cross-channel distribution of
normal-stress components (a) and normal-stress differences
(b). The much larger fluctuations of the components imply
the isotropic pressure to be nosier than the extra stress. This
may be a consequence of averages taken in overly narrow
subdivisions of the channel cross section, which are required
to obtain the distributions. The subdivision size was chosen
to obtain smooth velocity profiles. However, the average nor-
mal stresses appear to be noisier than both the velocity and
the shear stresses plotted above, which suggests that a
coarser discretization should be used for them.

The regularity assumptions of continuum theory allow
for the expansion of V(x) in powers of x?, and for the low
shear rates near the centerline, the leading terms are

Vix)=V,- n—fx2 +0(x%Y). (10)
27,

0
This suggests that the central region of the velocity profile
can be fitted well with even-order polynomials in x measured
from the centerline, with the coefficient of x> furnishing the
zero-shear-rate viscosity 7,. The calculation of the non-
Newtonian viscosity and the normal-stress coefficients [Eq.
(2)] requires the distribution of the shear rate (x) and
the stress components 7,,(x), 7,,(x), 7,,(x), and 7,,(x) across
the channel. For the viscosity, the noise-free imposed
shear stress, 7,,(x)=fn(H/2-x) for x€[0,H] and 7,,(x)
=fn(x—3H/2) for x e [H,2H], is preferred (see Fig. 1). For
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FIG. 4. The calculated and imposed shear-stress distribution (left) for the melt of N=25 beads and the near-wall region (right, expanded scale).
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FIG. 5. Profiles of normal stress components (a) and normal stress differences (b) for a melt of 25-bead chains driven by f=0.25.

the normal-stress coefficients, the only option is the com-
puted stress differences, i.e., Fig. 5, and hence they are nec-
essarily noisier than the viscosity. The required shear rates
are extracted from the calculated velocity profiles by numeri-
cal differentiation for which the straightforward approach is
to use a simple finite-difference approximation for a uniform
grid of spacing Ax, defined as x;=iAx, i=0,...,M, where
M=[0.5H/Ax]. Constructed from the four-halves of the RPF,
an ensemble-average velocity profile is then interpolated
with cubic splines and projected onto the grid {x;}. This is
appropriate for the near-wall region since polynomial inter-
polation is known to perform rather poorly for power-law
functions [Eq. (9)]. Shear rates at points x;,( 5 are then cal-
culated from the second-order central difference (V(x;)
-V(x;))/Ax.

Figure 6 presents the shear-dependent viscosity (a) and
the first and second normal-stress coefficients (b) for chains
of N=25. The curves denoted by crosses and circles in Fig. 6
(a) display the shear-dependent viscosity obtained by the nu-
merical differentiation described above. The plot shows
clearly how direct numerical differentiation works very well
except at the very low shear rates of the central region where
large errors in the central-difference estimate of the deriva-
tive appear as scatter in the viscosity and the normal-stress
coefficients [symbols in Fig. 6(b)]. This scatter was reduced
by two methods: Firstly by filtering (smoothing) the original
velocity data, and secondly by fits with low even-order poly-
nomials. The solid line in Fig. 6(a) is the result of applying
the Savitzky—Golay filter® two to three times to the velocity
data, followed by the direct numerical differentiation. While
filtering substantially reduces the low shear-rate scatter, it
tends to smooth out data peaks such as the centerline maxi-
mum velocity V.. Consequently, the flattened profile leads to
underprediction of the viscosity near the low shear-rate pla-
teau, as can be seen in Fig. 6(a). Smoothness for improved
accuracy of differentiation in the low shear-rate neighbor-
hood of the Poiseuille flow centerline was achieved with fits
of low-order polynomials in the small neighborhood where

the velocity profile should be nearly parabolic [Eq. (10)].
The curves in Fig. 6 labeled “polyfit” employed a fourth-
order polynomial fitted near the centerline by careful limita-
tion of the region so that the term x* is not dominant. For the
higher driving force, f=0.25, the zero-shear-rate plateau can-
not be obtained because the central region of the velocity
profile is very narrow and not resolvable by fitting with low-
order polynomials. Hence, full curves of viscosity and
normal-stress coefficients for a particular system require at
least two simulations: The first with a low driving force f to
resolve the zero-shear viscosity plateau and, subsequently,
one or more with higher f’s sufficient to provide overlapping
resolution of the power-law region and possibly the high
shear-rate plateau.

Figure 7 shows the shear-dependent viscosity (a) and the
first and second normal-stress coefficients (b) for chains of
N=2,5, and 25 beads obtained by applying a combination of
low-order polynomial fitting, filtering, and numerical differ-
entiation as described above. For each melt the solid and
dashed curves are the results from two simulations of RPF
carried out with nondimensional forces f=0.025 and 0.25,
respectively. The symbols in Fig. 7 denote analogous results
obtained from simulations of plane Couette flow with LEC.
The excellent agreement between the RPF and the LEC re-
sults over most of the shear-rate range suggests that the
steady shear-rate properties of these monodisperse chains are
material functions of the shear rate for any steady shear flow.
Hence, these fluids appear to behave macroscopically as ho-
mogeneous simple fluids in the sense of Noll er al.” The
noticeable disagreement of the normal-stress coefficients for
low shear rates, especially for two-bead chains, is associated
with the errors of the small calculated normal-stress differ-
ences as they approach zero. For LEC these coefficients ex-
hibit increasing scatter at shear rates below the points shown
in Fig. 7(b), while for RPF the same coefficients at low shear
rates can be successfully extracted by use of local, low-order
polynomial fits of the calculated normal-stress difference
data. This procedure is similar to the fits of velocity profiles
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FIG. 6. The shear-dependent viscosity (a) and the first and second normal-
stress coefficients (b) for 25-bead chains by direct numerical differentiation
(symbols) and by curve filtering and fitting (solid and dashed lines).

near the centerline described above. Since the normal-stress
differences in that region have nearly flat distributions, it is
essential to test the sensitivity of their coefficient plateaus to
the chosen range of the fits.

For two- and five-bead chains at very high shear rates,
the LEC first normal-stress coefficient becomes negative.
This unexpected feature was observed only for LEC simula-
tions and not for comparable ones by RPF. Negative first
normal stress coefficients are not expected for simple linear
chains and appear to be artifacts of the LEC configuration.
Although the smaller second normal stress coefficient does
not change sign, the switch of the first for short chains only
is an indication that the values may have become statistically
insignificant. It is not clear why the corresponding Poiseuille
flow with its stress gradient should be more stable than the
uniformly stressed Couette flow. As stated previously, the
stability of RPF relative to LEC at the extremes of the shear-
rate domain may be a consequence of the different ways
these flows are driven, namely, by a constant force on every
particle versus by a prescribed wall velocity.

The integrated velocity profile [Eq. (9)] is based on the
assumption of a power-law shear-stress shear-rate relation
for the entire channel. The viscosity functions exhibited in
Fig. 7 clearly show the power-law region to lie between the
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FIG. 7. The shear dependent viscosity (a) and the first and second normal-
stress coefficients (b) for chains of N=2, 5, 25 beads.

upper and lower viscosity plateaus. The best estimate of the
power p is then the slope 1—-1/p of the viscosity function
taken at the inflection point. Table II shows that values of p
derived from the viscosity function (p,) agree fairly well
with those obtained from the velocity profile fits (p;). The
table also shows asymptotic values of the mean relaxation
time Ny=0.5¢,/ 1, and the ratio —i»/ /4 as y—0.
Remarkably, all viscosity curves in Fig. 7(a) converge at
high shear rates to the same plateau, which corresponds to
the Newtonian viscosity of the DPD fluid of unchained or
free beads (monomers) having the same density and with the
same interparticle forces. Figure 8 shows snapshots from vi-
sualizations of single, marked chains moving within melts of
unmarked chains at low shear rates (a) and high shear rates
(b). At low shear rates, the chains are entangled across the
shear planes, whereas at high shear rates, they tend to com-

TABLE II. Power-law index p; from velocity (Fig. 3) and p, from viscosity
(Fig. 7), the zero-shear-rate viscosity 7,, the mean relaxation time \,, and
the normal stress coefficients ratio.

N Pi P2 o Ao =il
2 0.898 0.89 62.7 0.636 0.003
5 0.831 0.81 138.4 8.564 0.281
25 0.703 0.68 830.9 536.73 0.3
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FIG. 8. Collage of snapshots of a single 25-bead chain within a melt of
unmarked chains at low shear rates (a) and at high shear rates (b) plotted on
the same scale. Constant x defines the shear planes. (Enhanced online.)
[URL: http://dx.doi.org/10.1063/1.3366658.1]

pletely disentangle and are drawn out along and are con-
vected within the unstretchable shear planes. This implies a
passive role for the spring connectors at high shear rates and
suggests why the monomer viscosity is the common plateau
value for all N (the complete visualizations can be viewed in
supplemental materials which show larger amplitudes for
fluctuations at low shear rates than for high shear rates).
Thus, in steady shear flow a typical chain behaves as fol-
lows: It stretches along the shear planes and then tumbles. At
high shear rates, the tumble is constrained mostly within the
shear planes so that the reversal of chain ends occurs within
the same shear plane. The residence time for the stretching
stage depends on the shear rate, bead interactions, and most
importantly, the chain length. While at low shear rates, where
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fluctuations are dominant, the chain ends are frequently im-
pelled across the shear planes, and their near-equilibrium en-
tanglements reach across to neighboring planes with differ-
ent average velocities.

Each symbol in Fig. 7 corresponds to one LEC simula-
tion for each prescribed shear rate. In this case, even though
the computational domain for all LEC simulations was 10
X 10X 10 in DPD units or ten times smaller by volume than
the RPF domain, the total computational expense for the full
material functions of comparable accuracy is several times
larger for LEC than for RPF. Clearly, this depends on the
number of LEC shear rates deemed necessary to define the
curves, and in Fig. 7 that number may be excessive. In ad-
dition, statistical averaging of LEC stresses requires longer
running times than those for RPF which combine both time
and ensemble averages. Thus, the apparent advantage of an
imposed shear rate in LEC is offset by the higher noise levels
of the stresses. In RPF the shear-stress distribution is pre-
scribed, and the shear rate must then be determined by nu-
merical differentiation of the velocity profile. The latter op-
eration turns out to be less noisy than the stress calculation
because the statistical convergence of the velocity is more
accurate and smoother than that of the stresses. This implies
greater accuracy for the RPF viscosity function than for its
normal-stress coefficients. A further advantage of RPF capa-
bility is to more easily extract the low shear-rate plateaus of
the material functions. As a rheometer, RPF performs similar
to experimental real steady-shear rheometers for which it is
generally true that the viscosity function is more accurately
measured than the normal-stress functions. Likewise the
measurement of the low shear-rate plateaus is nearly always
restricted by the limits of instrumental detection.

The properties of the model fluids of monodisperse
chains, introduced above as melts, can now be compared
with those of real melts. The viscosity data of a homologous
series of undiluted polystyrenes with narrow molecular
weight distributions®® exhibit a common power law over a
fivefold range of molecular weights even though 7, varies by
several orders of magnitude. Hence, the power-law expo-
nents in Table II suggest that if the models of this work are
taken to represent whole polymers, the bead number N alone
is not a satisfactory proxy for molecular weight. In prelimi-
nary simulations the fluids of bead-spring chains were inves-
tigated with the cutoff radius r, set to 1, and the resulting
viscosity functions were found to be only slightly non-
Newtonian. Since the number of neighbor interactions in-
creases as ri, this shows the sensitivity of non-Newtonian
response for such models. Thus, it should be possible to ad-
just model parameters to yield a series of fluids of monodis-
perse bead-spring chains with power-law indices indepen-
dent of N, in agreement with the experiment. However, this
amounts to an ad hoc variation in the viscosity of the “mono-
mer” fluids, and its validity would need to be tested for con-
sistency against other properties. The untangling visualized
in Fig. 8 at high shear rates is not thought to occur for real
polymers. Even though the data in Ref. 26, typical for whole
polymers, do not extend beyond the power-law regime, it is
usually accepted that at high shear rates these materials will
exhibit a glassy response. Clearly, the simplistic models em-
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ployed in this work describe at best the rubbery regime. In
spite of these limitations, the ratios —i,/; as y— 0 in Table
II are very close to the reptation theory prediction of 2117
except for N=2. The second normal-stress difference for
two-bead chains is very small at low shear rates, and the
discrepancy of the ratio suggests that either the limit of de-
tection has been reached or that dumbbells are a poor repre-
sentation of a polymer.

Finally, DPD time scales can be related to those of real
polymer fluids from the observation that for both monodis-
perse and polydisperse melts, the transition from the low
shear-rate plateaus to the power-law regime occurs at shear
rates O(\'), e.g., polystyrenes® and polyethylenes,”’ re-
spectively. This is also true for the simulated viscosity func-
tions of this work; hence, matching of \,’s relates the real
and the DPD time scales. Normal-stress data for monodis-
perse melts may be difficult to obtain,”®* and the alternative
is to derive A, from low-frequency dynamic-modulus mea-
surements.

B. Solutions

In this section the steady shear material functions are
calculated for solutions of the bead-spring chains in solvents
of free DPD particles. Two concentrations, 25% and 50%,
were simulated for monodisperse chains of 5 and 25 beads,
respectively. Since the chain beads and the free solvent par-
ticles have the same mass, the chain-bead number density or
concentration n is also the chain mass concentration. The
free particles constitute a good solvent since their force in-
teraction parameters are identical to those of the chain beads.
The simulation parameters are outlined in Table I, and the
RPF computational domain is identical to the one described
in Sec. IV A. Two simulations for each solution were carried
out with imposed nondimensional body forces f=0.03 and
0.3 for the 25% solutions, and f=0.05 and 0.5 for the 50%
solutions, respectively. Corresponding LEC simulations were
also carried out over the same range of shear rates. Figure 9
shows the shear-dependent viscosity (a) and the first and sec-
ond normal-stress coefficients (b) for the solution of
N=25-bead chains at concentrations of 25% and 50%. The
symbols in Fig. 9 stand for the LEC simulations of the same
solutions, and the curves labeled as ‘“direct” are extracted
from the RPF simulations with local low-order interpolation,
filtering and numerical differentiation, as described above in
Sec. IV A. Here, the disagreement between RPF and LEC
results is noticeable with different zero-shear-rate viscosities
and distinctive slopes in the power-law region. Macroscopic
theories of mixtures suggest that the concentration should be
uniform in the absence of stress gradients. Consequently,
plane Couette flow should yield results free from concentra-
tion gradient effects. In all LEC simulations, the concentra-
tion was found to be uniform, whereas in RPF, the concen-
tration distributions were found to be nonuniform. This
behavior is attributed to the stress gradient across the chan-
nel.

Figure 10 presents the chain-bead densities across the
channel normalized by their bulk values, for 25-bead solu-
tions (a) and for 5-bead solutions (b) for two driving forces
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FIG. 9. Shear dependent viscosity (a) and first and second normal-stress
coefficients (b) for solutions of N=25-bead chains at mass concentrations of
25% and 50%. The 50% curves in the lower figure have been “shifted up”
two orders of magnitude for visual clarity.

at each concentration. The effect of the Poiseuille stress gra-
dient is a steeper and more confined concentration distribu-
tion in the central region for longer chains (N=25), higher
body forces, and smaller chain-bead concentrations (25%).
Figure 9 indicates higher viscosities relative to the LEC val-
ues in the lower shear-rate central region where the local
concentration exceeds the bulk value, and vice versa, in the
high shear-rate wall region where the local concentration is
depleted relative to the bulk value. The steady shear-rate ma-
terial functions of real polymer solutions are known to de-
pend on both shear rate and concentration. At different con-
centrations, polymer properties usually correlate by means of
the empirical principle of time-concentration superposition
which requires both the dependent and the independent vari-
ables to scale according to certain rules. In particular, the
concentration dependence is determined by that of the zero-
shear-rate viscosity of the solution 7, relative to the New-
tonian solvent viscosity #,. For concentrated solutions, this
difference is assumed to be of the form,30

70— 1, = mynl 7loe* "7, (11)

where n is the mass concentration (chain-bead number den-
sity here), [ 7], is the intrinsic zero-shear-rate viscosity, and
k' is an arbitrary constant. It is assumed that [%],~ M9,
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FIG. 10. Normalized chain-bead number density distributions for 25-bead
(a) and 5-bead solutions (b) for different bulk concentrations n, and body
forces f.

where M is the molecular weight and a is a power depending
on the critical molecular weight. Thus, [ 7], is constant for a
given polymer and is also taken as such for the model chains
of 5 and 25 beads. The superposition shift factor is formed as

7
e/
n— -

773110[ 7]]Oek ol — @ea(no—n)
= 7

m[ et "o n

where a=k'[ 77]y. Note that a,, is the shift factor only for 7
—17,, and hence, the total shifted viscosity is (77— 7,)a,+ 7,
whereas the normal-stress coefficients are shifted as t//lai and
lﬂzai, and the shear rate as y/a,.

Here, we examine whether this principle applies to the
DPD solutions described above and, in particular, whether
the solid direct curves in Fig. 9, being discontinuous in the
transition from the smaller to the larger f, can be reconciled
to lie on a single curve in agreement with the LEC points.
Returning to Fig. 9, the curves denoted as “superposition”
were obtained from the local concentration (Fig. 10) and the
superposition shift factor a, with a=1.5. The a value was
found by superposition of LEC curves at the two concentra-
tions (not shown). In the absence of LEC results, « can be
found by imposition of continuity on the shifted RPF results
for different driving forces to yield the superposition curves
in Fig. 9. The superposed RPF curves are continuous and

(12)
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FIG. 11. Shear dependent viscosity (a) and first and second normal-stress
coefficients (b) for solutions of five-bead chains at mass concentrations 25%
and 50%. The 50% curves in the lower figure have been shifted up two
orders of magnitude for visual clarity.

agree well with the LEC points, and thus, the principle of
time-concentration superposition applies to the model solu-
tions of 25-bead chains. Although large concentration gradi-
ents would appear to negate the use of the RPF configuration
as a rheometer, useful measurements of bulk solution prop-
erties can be obtained when concentration superposition is
applicable.

For the five-bead chain solutions, Fig. 11 shows that the
time-concentration superposition as implemented above
yields satisfactory results for the viscosity, and the second
normal stress coefficient, but with some inconsistency be-
tween LEC and RPF for the first normal stress coefficient. As
expected, the smaller concentration gradients (Fig. 10) rela-
tive to N=25 reduce the deviations of the direct viscosity
curves from the LEC points and their discontinuities are
smaller than their N=25 counterparts in Fig. 9(a). Here, the
time-concentration superposition, as described above, was
applied with @=0.75 to yield excellent agreement between
the LEC points and the RPF viscosity superposition curves.
Note the scatter in the LEC points for the normal-stress co-
efficients at low shear rates. The surprising result is the be-
havior of the first normal-stress coefficient for which the
LEC points decay faster with shear rate relative to the super-
posed RPF curves, and that the disagreement is worse for the
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TABLE III. Power-law indices and zero-shear-rate properties for solutions
of N=5- and 25-bead chains at two concentrations.

J. Chem. Phys. 132, 144103 (2010)

TABLE IV. DPD parameters for RPF simulations.

re ag Yo o m [Eq (7)] ksO Fmax
Concentration
N %) » o No —l 20 500 45 3.0 0.25 100.0 2.0
5 25 0.95 532 0.924 0.39
5 50 0.9 76.5 2.26 0.43
25 25 0.89 758 347 0.63 L fy=n+ S b, (13)
25 50 078 1945 507 0.49 kgT =

more dilute 25% solution. Eventually, ¢, by LEC becomes
negative (not shown), while agreement between the second
normal-stress coefficients remains very close. This artifact of
the Couette flow appears to be a short-chain phenomenon,
having been seen above for the two- and five-bead melts and
is more pronounced here for the 25% solution of five-bead
chains.

The large concentration changes across the channel indi-
cate that the simulated solutions do not capture the diffusion
rates of real polymer solutions. Cross-stream migration ef-
fects of this magnitude are not known for polymer solutions
flowing in channels of laboratory length scales. An alterna-
tive interpretation is that the nonuniform concentration dis-
tributions are a manifestation of size effects since the chan-
nel width is only twice the fully extended length of the
longest chain. The distributions of Fig. 10 reveal the concen-
tration peaks to be higher for the longer chains, which indi-
cates that the width H is a microchannel scale for these
chains.

Finally, Table III gives the power-law indices and zero-
shear-rate properties for the solutions of chains N=5 and 25
beads at different concentrations. Here again, the mean re-
laxation time A defines the characteristic time scale for the
DPD solutions and which is much smaller for short chains.
The ratio —¢,/ ¢ for all solutions is larger than the value of
2/7 predicted by the reptation theory27 for undiluted poly-
mers. For the five-bead chains, the values of the second
normal-stress coefficient may be at the limit of statistical
significance as y—0.

C. Temperature dependence of rheological properties

In view of the success of superposition to account for
concentration effects, the temperature dependence of the
steady shear-rate properties of monodisperse bead-chain
melts will also be treated by the principle of superposition.
Time-temperature superposition is a well established, but
mainly empirical, procedure31 widely employed for real
polymer materials. The scaling of both the dependent and the
independent variables can be motivated by polymer theories
at the mesoscopic level, such as the Rouse theory.27’3 ! Gen-
erally, in these theories, including that of rubber elasticity,
the equilibrium Helmholtz free energy is athermal, i.e., linear
in kgT. This implies that the entropy is entirely configura-
tional or independent of k3T, and thus the equation of state
for the equilibrium pressure p must be of the form

Here, the second equality follows from the additional as-
sumption that f(n) has a virial expansion whose coefficients
b; must be constant, the best-known example being the hard
sphere gas. For molecules with spherical symmetry, constant
virial coefficients are a consequence of temperature-
independent radial-distribution functions (RDFs).*?

For the DPD fluids of this work, the contribution to the
excess pressure is calculated from the virial theorem as

1
Pvic = a/|:2 rijF[S +2 E rsFS:|

i#j s e {springs}

rilr

N max

= laz rij<l — h)fw + Zkéz rsl%fs} 5
re ! s -
(14)

where the forces were defined above in Sec. III. For a fluid of
free DPD particles at densities well beyond the ideal gas
regime, Groot and Warren'’ found from simulations the
equation of state to be approximately p=nkzT+c,n’, where
¢, is a constant proportional to the conservative force coef-
ficient a. The equation of state found by Groot and Warren'’
is not a truncated virial expansion about the ideal gas state.
Thus, ¢, is not the second virial coefficient as implied by the
second equality of Eq. (13). Pagonabarraga and Frenkel®™*
derived this result with multibody DPD (an enhanced version
of the standard two-body DPD employed here). However,
Groot and Warren’s simulations covered only one isotherm,
and hence, the temperature dependence of a was not consid-
ered.

Statistical mechanics provides examples of mesoscopic
forces whose expressions carry the prefix kzT. Here, the rel-
evant one is the Langevin force on a tethered chain, of which
the FENE force™ is an approximation. Since DPD beads are
point particles which represent loose aggregates of many
molecules it is plausible to assume their soft potentials also
have the k5T hallmark of mesoscopic forces. Indeed, Eq. (14)
suggests the equation of state will have the athermal form of
the first equality of Eq. (13) provided both the conservative
force coefficient a and the spring constant k, are linear in
kgT,

a=kgTay, k,=kgTky, (15)

where a and kg, are the reference parameters corresponding
to temperature kzT=1. This was verified with equilibrium
simulations of a melt of five-bead chains over a range of
bead densities n at three temperatures kz7=0.5, 1.0, and 1.5.
The temperature was set by adjustment of the dissipative
force coefficient according to y=1y,/kzT, which from Eq. (6)
means that o was held constant. Table IV summarizes the
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FIG. 12. log-log plot of the excess equilibrium pressure for different bead
densities at several temperatures. Melts of five-bead chains.

constant DPD parameters specified for simulations. Figure
12 shows the excess equilibrium pressure versus bead den-
sity at several temperatures simulated with the parameter
scaling of Eq. (15). For n=2, the curves for different tem-
peratures clearly plot as parallel lines on logarithmic scales
and shift onto a single line by scaling the excess pressure
with temperature. It is easily verified that the excess pres-
sures at n=2 satisfy 487.14/1.5=~324.73~162.33/0.5. In
Fig. 12 the dashed reference line has slope of 2 to show that
the form of the equation of state of Groot and Warren'” for
free beads also holds for the bead-chain models provided the
conservative force coefficient scales according to Eq. (15).
Although not shown here, the RDF for these melts was veri-
fied to be independent of temperature which demonstrates
the temperature-independent structure requirement of the
athermal fluid.

For the melt of five-bead chains with bead density n=3,
RPF simulations were carried out at three temperatures,
kgT=0.5, 1.0, and 1.5 in a 50X 20X 10 box, with the con-
stant simulation parameters given in Table IV. To capture
both the low and the high shear-rate plateaus of the viscosity
function at each temperature, runs were carried out for three
nondimensional body forces f=0.025, 0.25, and 1.0. Figure
13 shows the resulting shear-dependent viscosity (a) and the
first and second normal-stress coefficients (b) at the three
temperatures. Visual inspection of the shapes of these biloga-
rithmic plots suggests that the curves can be superposed.
Indeed, when the ordinates are normalized by their zero-
shear-rate values, and the shear rates are multiplied by the
factor ay=yYT)/ Y(Ty) 70(Ty)/ 17o(T), then all the curves shift
onto the kzT=1.0 curve. The superpositions are not shown
since the deviations from the common curve are not visible
on the scale of Fig. 13.

For real polymers, the shift factor is generally taken to
be ay=1,(Ty)/ 79(T). No rigorous argument can be given for
including the dissipative force coefficient in the shear-rate
shift factor. However, y (dimension time™') is proportional to
a time scale of the DPD system, and therefore this empiri-
cism is not entirely surprising. Since y is not measurable
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FIG. 13. The viscosity function (a) and the first and second normal-stress
coefficients (b) at three temperatures for five-bead chains.

experimentally, an alternative scaling is employed in Fig. 14.
Here, the viscosities are normalized by their zero-shear-rate
values 7,, and the shear rate is rendered dimensionless with
the mean relaxation time A\, from Table V. This scaling was
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FIG. 14. The time-temperature superposition of the shear-dependent viscos-
ity for five-bead chain melts at three temperatures.
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TABLE V. The power-law indices and zero-shear-rate properties for three
temperatures.

kgT p o Ao =/
0.5 0.665 2015.2 128 0.7
1.0 0.665 1082.4 44.5 0.7
1.5 0.665 757.8 25.4 0.5

used by Graessley et al.®® to correlate viscosity data for
nearly monodisperse polystyrenes. Table V gives the power-
law indices and the low shear-rate properties at the three
temperatures. The temperature independence of the power-
law index agrees with experimental experience for monodis-
perse polystyrenes.28 Compared to the five-bead melt in Fig.
7 (Sec. IV A), the five-bead melt at kz7=1.0 in Fig. 13 ex-
hibits a much stronger shear thinning. The difference be-
tween these chains and those in Fig. 7 is the doubling here of
Fmax» and hence of the fully extended contour length. This
points to contour length rather than bead number as the chain
property that mainly determines the steepness of the viscos-
ity function. Section II discusses the difficulties of extracting
accurate zero-shear-rate values of the material functions; Fig.
14 suggests that they are quite accurate, otherwise the super-
posed curves would tend to separate.

Although the athermal equation of state is a restricted
idealization, it is critical to the definition of a DPD model
which will satisfy time-temperature superposition. The re-
sults (not shown) for simulations carried out with beads hav-
ing constant conservative force coefficients a did not satisfy
the time-superposition principle. The temperature range over
which real polymers are studied is much smaller than the
simulated threefold change in Fig. 14, and thus the athermal
approximation of the equation of state may then become
plausible over the short temperature range of interest.

V. SUMMARY

Numerical statistical mechanics is motivated by the need
to study those systems for which analytical statistics yields
no results. With DPD, as with other particle-based models,
the study of a new model begins with the assumption of
particle forces and structures to represent the “molecules” or
microstructure. The test of a model is the verification of its
macroscopic properties relative to those measured for real
materials, and for this purpose, virtual rheometers are needed
to simulate numerical tests similar to the experimental tests
performed in the laboratory by rheologists. In this work, the
material functions of steady-state shear flow for some simple
models of complex fluids have been calculated with a novel
variant of plane channel flow, RPF, and with the commonly
used uniform shear flow with LEC.

e In each of these virtual rheometers, periodic boundary
conditions avoid the need to model real solid boundary
conditions with their known pitfalls, and this implies
that the calculated properties are bulk values for both
RPF and LEC. This is confirmed for a fluid of mono-
disperse chains in Fig. 3, where the RPF bead density
distribution is shown to be uniform across the channel
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section, and in Fig. 4 where the shear stress calculated
from the simulation data by the Irving—Kirkwood equa-
tion is shown to be consistent with the imposed shear-
stress distribution determined from the continuum equa-
tion of motion. The uniformity of density and stress in
LEC was checked, but is not shown. The reversal of the
driving force over half the RPF computational domain
guarantees zero mean velocity on the dividing shear
plane, which provides a way to check hypotheses for
wall boundary conditions in channels with real walls.

The results presented above demonstrate that shear-rate
dependent properties of model DPD fluids can be accu-
rately determined with the RPF rheometer, and how the
latter complements, confirms, and extends the results
obtained with LEC. Continuum theory requires these
shear-rate dependent properties to be material functions
of the shear rate, independent of the type of shear flow.
Examples of experimental data conforming to this re-
quirement are given in Ref. 25. This requirement is also
satisfied for the simple DPD models investigated here,
for instance, Fig. 7, which indicates they are continuum
fluids. The concentration and temperature dependence
of their calculated material functions were also found to
be consistent with the empirical principles of concentra-
tion and temperature superposition satisfied by most
real polymer fluids. Furthermore, time-concentration
superposition was demonstrated for solutions of flexible
chains with concentration gradients (see Figs. 9 and 11).
This implies that for the systems of this work the steady
shear-rate material functions depend only on the local
temperature, concentration, and shear rate.

During the course of this work, it was found that RPF
has some advantages over the conventional LEC con-
figuration. Firstly, the latter determines material-
function values for only one shear rate per simulation,
whereas a single RPF simulation yields the same data
for a wide range of shear rates from zero at the center-
line to the wall value. This efficiency appears to be
negated by the extra data analysis, which is demanded
by the spatially varying shear rate; however, the nu-
merical differentiation of the velocity field is conve-
niently implemented with standard packages such as
MATLAB. The computational domain of the RPF con-
figuration used here is several times larger than the
LECs. The determination of the smallest, and hence
most economical, satisfactory RPF domain is left for
future work. Secondly, RPF yields more complete rheo-
grams than those computed from LEC alone. In particu-
lar, near the zero-shear-rate plateaus RPF values are
smooth, whereas LEC results tend toward increased
scatter. Likewise, at the highest shear rates first normal
stress differences by LEC unexpectedly change sign,
while the corresponding RPF values remain positive. It
is inherent in DPD that at the low shear-rate extreme the
thermal fluctuations overwhelm the steady-state dy-
namic properties, and that at the highest rates, viscous
dissipation overwhelms the thermostat. The stability at
the extremes of RPF relative to LEC is not easily ex-
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plained, but it may be a reflection of the way these
flows are driven: A uniform body force applied on every
particle versus a uniform velocity applied on the bound-
ary, respectively. This hypothesis could be investigated
with the DOLLS (Ref. 35) or the SLLOD (Ref. 36)
algorithms in which the Couette flow is driven by body
forces in contrast to the boundary-driven LEC algo-
rithm. The smoothness of the channel profiles of both
velocity and stress derived from RPF appears to be a
consequence of the fourfold ensemble averaging over
half-channels inherent in the configuration. The unex-
pected conclusion of this work is that viscosities ob-
tained by numerical differentiation of the RPF velocity
distribution combined with the prescribed shear stress
are often a less noisy operation than the prescribed
shear rate of LEC combined with calculated shear
stress. Since the RPF normal stress differences are not
prescribed, they are necessarily noisier than the shear
stress, but still benefit from the inherent smoothness of
RPFE.

e The fluid models composed of monodisperse chains, re-
ferred to as melts, were shown to have steady shear-rate
material functions of forms typical of polymer fluids.
These functions were found to satisfy the principle of
time-temperature superposition only when all the bead
forces have a linear dependence on temperature, which
is a characteristic of mesoscopic forces. This has been
long understood for the force-extension relations for
chains derived from statistical mechanics, but not ex-
plicitly for the soft potentials of DPD beads, which are
usually studied at only one temperature. At equilibrium,
these melts were shown to satisfy an athermal equation
of state, i.e., their entropy is purely configurational.
However, in their present form these models only par-
tially capture the behavior of real monodisperse poly-
mer melts and solutions. In particular, the tendency for
complete disentanglement of chains at high shear rates
does not correspond to what little is known for real
polymers; data are rare at shear rates approaching the
upper plateau viscosity. To bring the model predictions
into quantitative correspondence with the response of
real polymer fluids requires a deeper understanding of
the coarse graining of real polymer chains into bead-
chain systems. The examples of this work demonstrate
that the steady shear response of a polymer model can
efficiently yield important insights into its adequacy
without the need for a costly, complete rheological char-
acterization. Hence, RPF used in conjunction with LEC
is a useful tool for the assessment of new and improved
models.
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