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Counter-Intuitive Stochastic Behavior of Simple Gene Circuits
with Negative Feedback
Tatiana T. Marquez-Lago* and Jörg Stelling
Department of Biosystems Science and Engineering and Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
ABSTRACT It has often been taken for granted that negative feedback loops in gene regulation work as homeostatic control
mechanisms. If one increases the regulation strength a less noisy signal is to be expected. However, recent theoretical studies
have reported the exact contrary, counter-intuitive observation, which has left a question mark over the relationship between
negative feedback loops and noise. We explore and systematically analyze several minimal models of gene regulation, where
a transcriptional repressor negatively regulates its own expression. For models including a quasi-steady-state assumption, we
identify processes that buffer noise change (RNA polymerase binding) or accentuate it (repressor dimerization) alongside
increasing feedback strength. Moreover, we show that lumping together transcription and translation in simplified models clearly
underestimates the impact of negative feedback strength on the system’s noise. In contrast, in systems without a quasi-steady-
state assumption, noise always increases with negative feedback strength. Hence, subtle mathematical properties and model
assumptions yield different types of noise profiles and, by consequence, previous studies have simultaneously reported
decrease, increase or persistence of noise levels with increasing feedback. We discuss our findings in terms of separation of
timescales and time correlations between molecular species distributions, extending current theoretical findings on the topic
and allowing us to propose what we believe new ways to better characterize noise.
INTRODUCTION
Negative feedback loops have long been thought of as

dynamic stabilizers in cell-signaling pathways, possibly

due to their prototypical role in engineering design (1).

A biology equivalent is a simple gene circuit in which a

protein (a transcriptional repressor) negatively regulates its

own expression (Fig. 1). This is an interesting and well-

studied case because gene expression is an inherently noisy

business (2), a fact that is backed by numerous findings on

the topic (3–5). The key question is to clarify the relations

between feedback structures and noise characteristics of

the regulated system. It has been addressed in several theo-

retical and experimental studies (1,6–13), with contradicting

results. In this study, we elucidate the reasons for such

discrepancies by development, simulation, and analysis of

mathematical models for simple negative feedback circuits.

Early experimental and theoretical studies such as the one

by Becskei and Serrano (6) showed that protein levels will be
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more tightly controlled—less noisy—with increasing

strength of the feedback loop. However, the experimental

results refer to variability of protein levels of cellular popu-

lations, rather than to variations in single-cell time courses.

Moreover, many of these theoretical analyses lump transcrip-

tion and translation into a single process and they do not use

a full stochastic treatment of the noise-generating processes

in gene expression. More recent studies treat transcription

and translation as distinct processes (Fig. 1 B) where, after

linearization of the self-regulation, the noise appears to be

reduced as the feedback is increased (13). Yet, without line-

arization of the feedback, and considering a wider range of

feedback values, noise actually increases. This makes the

noise at high-level feedback greater than that of unregulated

systems (1), a result that is consistent with reports using

different approaches (9,11).

Most published models use a QSS assumption on the

possible states of the gene, primarily to reduce computational

costs. However, the QSS assumption breaks down at high

feedback levels (1). By consequence, the noise behavior of

the system will also depend on whether a QSS assumption

holds or not. Fortunately, the biggest proportion of biologi-

cally feasible (e.g., typically observed) parameter values

lies within areas where the QSS may actually be a reasonable

assumption. Nevertheless, it is important to understand when

this is so, and what the differences between both cases are.

For all the above reasons, it is not clear if, even in the

simplest biological contexts, negative feedback loops reduce

noise and, if not, what the exact relations between circuit

design and noise characteristics are. To tackle both issues,

we analyzed seven minimalist models of gene expression,

some of them resembling partial or full models considered
doi: 10.1016/j.bpj.2010.01.018
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FIGURE 1 The basic modules of gene regulation modeling including (A)

RNA polymerase binding to the gene, (B) making a clear distinction between

mRNA transcription and protein translation, and (C) including repressor

dimerization.
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previously in literature (1,6,11,13). As is standard in prokary-

otic gene expression models, we will assume molecular

species to be well-mixed, and use the common nomenclature

of temporal stochastic models (cf. Supporting Material).

There exist delayed or spatially-resolved stochastic tech-

niques, however, and these are indispensable when spatial

information is essential for the correct understanding of a

cellular process (14–16). This is particularly important

when modeling gene expression in eukaryotes due to explicit

and more substantial time delays (17), a topic that lies outside

the scope of this study. Nevertheless, we want to stress that

retorting to spatial/delayed modeling schemes is inevitable

whenever spatial/delay effects deem to affect any considered

cellular process within the studied time frame.
Another important aspect relates to the quantitative char-

acterization of stochastic noise. Except for a few studies

(18–20), gene expression noise has been assessed through

measurements based on the first two moments of the

protein/mRNA distributions. The CV is a measure used

commonly. It is defined as the variance of the observations

divided by their squared mean, CV(X) ¼ s2(X)/m(X)2, allow-

ing for a clean separation of different noise sources if models

are weakly nonlinear (5). However, the CV and similar

measures cannot capture deviant effects, such as nonclassical

behavior or deterministic models being closer to the mode

rather than the average of stochastic dynamics (20). Addi-

tionally, mRNA and protein distributions need not be

symmetric nor unimodal (19); multimodal distributions are

often, but not always, related to the breakdown of the QSS

approximation. Hence, the interpretation of noise varies

significantly depending on the applied methodology.

To systematically study the effect of feedback, we charac-

terize model assumptions and conditions under which noise

in simple negative feedback circuits is bound to increase,

decrease, or remain unchanged when tuning negative feed-

back strength. We then focus on the relationship between

typical noise measurements and emergent properties of the

system due to separation of timescales, such as protein bursts

and multimodal behavior. This shows that noise measure-

ments based on the first two moments of the molecular

species distributions can be dangerously misleading. We

suggest using a combination of techniques to assess noise

sources and scaling (e.g., the CV in conjunction with

time-correlation measures). Alternatively, if noise is to be

assessed within individual expression patterns, we suggest

a modified CV weighted by the frequency/mode of non-

classic behaviors. Our results agree to a certain extent with

recent reports based on separation of timescales

(18,19,21,22), extending the observable ranges and types

of correlation between mRNA transcripts and synthesized

proteins.
METHODS

Parameters for simulations

For each model, we specified the TF steady-state and obtained all involved

kinetic rate constants (Table S1, Table S2, and Table S3), one by one, while

keeping all other kinetic rate constants fixed. The initial conditions consid-

ered were 1, 10, 100, and 1000 molecules of the repressor, TF, in a typical

Escherichia coli volume of 10�15 L. We refer to these as initial TF levels,

corresponding to distinct deterministic steady-states. A state for mRNA

was also calculated when transcription and translation were treated sepa-

rately. The feedback parameter a ¼ k2/k3 is equivalent to the parameter kr

in Becskei and Serrano (6) on a QSS assumption for the bound and unbound

gene states, and it is also the reciprocal of the parameter Kd used in most

references (i.e., Kd ¼ 1/a). Parameter a was varied in a large range

(10�20–1015 M�1; see Stekel and Jenkins (1) and Slutsky and Mirny (32))

given experimental results and previous criticisms on the lack of consider-

ation of strong feedback scenarios. In a few cases, kinetic rate constants

yielded negative parameter values. In such cases, simulations were not run

and we explicitly point out when this happens.
Biophysical Journal 98(9) 1742–1750
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We carried out single cell simulations (Fig. S3) using the SSA. Each indi-

vidual stochastic simulation started from the deterministic steady-state

protein number and ran for a time T such that T ¼ 10�(Ln(k4)/Ln(10 � 1) >

10 � Ln(2)/k4 (T ¼ 105 s when varying k4), the RHS being an expected

time for the system to reach steady-state (13). For each of these single simu-

lations we collected 105 equally spaced time points and computed the CV,

where the mean was calculated from each TF time course. However, even

when considering 105 sample points, noise measurements varied for high

feedback gain. Hence, we decided to analyze our results by obtaining statis-

tics of 100 CVs for each feedback value, for each case (cf. Supporting Mate-

rial). By doing this, we attempt to rule out noise stemming from lower

molecular concentrations.
Matrix formulation of the CME and the FSP

For the purposes of this study, the models are both bounded and finite, so

we restrict our notation to N dimensions. If we define a vector p˛Rn

such that each entry corresponds to the probability P(x;t) for each reachable

state x, we can think of its time evolution as _pðtÞ ¼ ApðtÞ, where the matrix

A ¼ [aij] contains the propensities and ajj ¼ �
P

isj aij, which basically

means that each row of the matrix sums up to zero and the probability is

conserved. Given an initial distribution p(0), the solution at time t is

p(t) ¼ exp(tA)p(0), where the matrix exponential is generally defined

through its Taylor series expansion. If the reachable state space is large it

may come in handy to consider the FSP (28), in which matrix A is replaced

by Ak, a k � k submatrix of the true operator A, the corresponding indexed

systems states form the finite state projection and p(tf) z exp(tfAk)pk(0) is

the approximation to p(t) ¼ exp(tA)p(0) at time tf. An approximation can

be gradually improved by adding reachable states up to a prespecified

tolerance level.
RESULTS

The paradigm of noise attenuation

It is often taken for granted that strong negative feedback

results in less noisy signals. A classical example is the study

by Becskei and Serrano (6), where the model structurally

corresponds to our scheme in Fig. 1 A. In their study, a

noise-mitigating effect of negative feedback was inferred

from the responses of a deterministic model to perturbations

of TF at varying feedback gains. Normalized concentrations

showed clearly that the unregulated system has a broader

distribution of TF molecules than the autoregulated system (6).

This model, however, assumes a QSS, lumping RNA poly-

merase binding, transcription, and translation into a single

first-order reaction. In addition, stochastic trajectories of the

CME do not necessarily resemble solutions of a perturbed

ODE system. Such perturbations are not equivalent to solving

the corresponding SDE system and, even when the noise term

is introduced correctly, an SDE approach would not be

appropriate when dealing with low reactant concentrations.

Here, we only have one gene copy and its state changes

dynamically. Therefore, we obtained independent exact

trajectories of the CME through the SSA (23). Our results

show that, contrary to Becskei and Serrano (6), there is no

noticeable noise mitigation by negative feedback (cf. Sup-

porting Material).

Having this observation at hand, what can be expected

from negative feedback regulation? For a more systematic
Biophysical Journal 98(9) 1742–1750
analysis of the key factors controlling noise in simple feed-

back systems, we will now consider three core modules con-

sisting of RNA polymerase binding to the gene (Fig. 1 A),

separate processes of transcription and translation (Fig. 1 B),

and dimerization of the TF (Fig. 1 C). For simplicity, we will

refer to these as RNAP, TT, and DM modules. The seven

possible module combinations summarize the range of

models used commonly, making the most complete story

the one that comprises them all (Fig. S4). We will analyze

these models first under a QSS assumption, and drop this

assumption later on.
Oversimplified models do not show strong noise
attenuation

We analyzed the three QSS models that lump transcription

and translation into a single first-order process: the RNAP

module, the DM module, and their corresponding combina-

tion. Models were parameterized for given feedback gains

a ¼ k2/k3 and fixed steady-state levels of transcription factor

(see Methods and Supporting Material). For the sake of

transparency we did not use any coarse-graining technique

or approximation (22). Instead, we solely obtained exact

trajectories of the system’s CME through the SSA and,

due to the lack of nonclassical behavior in the observed

protein time courses, we measured noise by the CV solely.

In line with our findings for the model from Becskei and

Serrano (6), none of the systems displayed noise increase

nor, counter intuitively, extreme noise attenuation with

increasing gain of the negative feedback (cf. Supporting

Material). The steepest noise attenuation was achieved

when tuning the RNA polymerase binding/unbinding rates

(k5, k6) followed by the TF degradation rate (k4). Tuning rates

that capture TF dimerization (k9, k10) showed no noticeable

noise variation with respect to increasing feedback (Fig. 2, A
and B). Hence, detailed analyses of parameter spaces are

required for characterizing noise behavior even of simple

gene circuits.

Next, we investigated the influences of circuit topologies

(Fig. S6). Compared to the model based on the RNAP

module, the DM module achieved slightly greater noise

reductions. The system resulting from the combination of

these two modules showed intermediary levels of noise reduc-

tion. Especially for the DM module—that introduces nonlin-

earities and switch-like behavior that could increase noise

(24)—these findings were unexpected, but consistent with

the parametric studies for repressor dimerization (k9, k10)

above. Moreover, such differences cannot be deduced from

a deterministic analysis because the eigenvalues of the system

are strictly negative and real, leading to stable steady-states

(see Supporting Material). Hence, apparent inconsistencies

between earlier studies on the effects of negative feedback

(1,6,11–13) might stem from subtle differences in the analysis

approaches used (e.g., stochastic versus deterministic, exact

model structures, and parameterizations).
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FIGURE 2 (A and B) Feedback-dependent noise

of the RNAP þ DM module. (C–H) Correlation

behavior of the TT module. Initial TF levels were

fixed by tuning the (A) RNA polymerase binding

rate (k5), (B) TF dimerization rate (k9), (C and F)

mRNA degradation rate (k7), (D and G) the protein

translation rate (k8), and (E and H) the protein

degradation rate (k4), respectively. Colors show

the log10(CV) of protein numbers (A–E) and time

correlations between mRNA and TF (F–H). White

crosses indicate cases where all kinetic parameters

are within typical biological ranges.
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Noise increase by separate transcription
and translation

Transcription and translation are distinct biochemical

processes, and models that consider them separately are

closer to reality (25). Most importantly, the time delays

implied in these two sequential steps are well-known sources

of oscillations and other more complicated systems behaviors

(26). Therefore, we will now explore the TT module (equiva-

lent to the system in Thattai and van Oudenaarden (13)),

a minimal system that distinguishes the processes of transcrip-

tion and translation. In combination with the modules dis-

cussed previously, it gave rise to three additional, composite

models: the TT along with RNAP modules, TT along with

DM modules, or the combination of all modules.

As above, we carried out exact stochastic simulations to

measure the CV in these four models under a QSS assump-

tion. The most striking difference to the behavior of the

lumped transcription-translation model was that noise always

increased with increasing feedback gain when tuning the

mRNA degradation constant k7, the translation constant k8

(Fig. 2, C and D) or the protein degradation rate (k4, Fig. 2 E).

Adjusting k7 yielded much less pronounced noise amplifica-

tion than tuning k8. Noticeably, the latter generated high noise

even for high steady-state TF numbers, where stochastic

effects are not necessarily expected. This difference required

further explanation because, when tuning k7, the associated

deterministic systems exhibit complex eigenvalues (spirals)

at steady-state for some feedback values, whereas tuning k8

always yielded negative eigenvalues (stable fixed points).

Hence, the deterministic analysis would result in opposite

predictions on the influences of the parameters.

In addition, the systematic analysis showed substantial

differences between model structures (Fig. S7). Compared

to the noise profile of the TT module alone, incorporating
the RNAP module attenuates noise increase by postponing

it to higher feedback values. Such buffering is not due to un-

reasonably large concentrations of the RNA polymerase as

we considered a concentration of 100 nM, equivalent to

60 mol/cell (6). In contrast, the addition of the DM module

accentuates noise increase, by shifting it to lower feedback

values. This behavior is diametrically opposite to the effects

of TF-TF interactions in the simpler lumped models where

the addition of a DM module resulted in preponed noise

decrease. Finally, for the set of kinetic parameters consid-

ered, the effects of the RNAP and DM modules approxi-

mately balance out.

Two obvious questions arise. Why do QSS lumped models

yield decrease of noise, as opposed to models that distinguish

transcription and translation? And, why do certain rates

accentuate noise increase more than others? To answer these

questions, we analyze the behavior of the system resulting

from tuning mRNA degradation (k7) and protein translation

(k8) in the TT module, separately. Our simulations suggest

that the addition of other modules (Fig. 1, A and C) does not

produce abrupt qualitative changes in the noise profile (data

not shown) and we expect that similar results hold for the

more complex cases.

Stochastic discrete effects

In all models where transcription and translation were treated

as separate processes, our simulations showed behavior that

resembles stochastic focusing—fluctuations that can make

a gradual response mechanism work as a threshold mecha-

nism (27)—while fixing the number of TF molecules and

tuning rate k7 according to increasing feedback (Fig. S8

and Fig. S11). The protein level shifted to a generally higher

state than would be expected from a deterministic analysis

and, in certain parameter ranges, this behavior was tightly
Biophysical Journal 98(9) 1742–1750



FIGURE 3 Protein and mRNA time courses in the TT module, portraying TF (A and B) multimodal behavior and (C and D) bust-like synthesis, using a feed-

back of a¼ 1013 in parameter set 2 and initial TF level of 100 molecules. FSP analysis (E), with fixed feedback a¼ 1010 (solid line) and a¼ 1015 (dotted line).

Probabilities are evaluated for times between 102 and 1015 s, time represented in log scale. Labels refer to the probability of having 0 (cross), 1 (circle), and

2 (dot) molecules of mRNA, respectively.
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correlated with the mRNA concentration (Fig. 3, A and B).

Discrete random changes at the mRNA level lead to a protein

scaling behavior according to the difference between the

integer numbers of mRNA molecules and their deterministic

steady-state. Such protein scaling behavior results from

protein distributions that follow the mRNA distributions

(using the terminology of Iyer-Biswas et al. (18)). Moreover,

the mRNA time courses can be multimodal or they can settle

at the initial condition for very high feedback levels—i.e.,

they gradually relax to the steadiest state, the reason why

high TF levels on the noise profile may display an inverted

U-shape (Fig. 2 C and Fig. S7, A–D).

To explore how and when the mRNA level is able to

switch between stable states in the TT module, we used

the FSP (see Methods and Munsky and Khammash (28)).

Moreover, we focused on the establishment of a dynamic

equilibrium (cf. Supporting Material). Our simulations high-

light the dependency of numbers of mRNA molecules on

both the parameters and feedback level of the system. More-

over, they show how predetermined mRNA distributions can

be constructed through appropriate selection of parameter

sets. The mRNA probability distributions of the TT module

with two different nominal parameter sets (Table S2 and

Table S3) and two feedback strengths (a ¼ 1010 and a ¼
1015) differ significantly (Fig. 3 E). When the feedback

and time range are both increased, the probability of

observing one mRNA molecule is always higher than that

of observing no mRNA. Noticeably, with sufficiently high

feedback one can lower the probability of observing no

mRNA at all times by using a tailored nominal parameter

set (Table S3, Fig. 3 E, and Fig. S13).

Additionally, the sum of state probabilities in the FSP is

always less or equal to one. For high feedback levels, the

sum slightly deviates from one, implying that other states
Biophysical Journal 98(9) 1742–1750
not considered are probable. On comparison with the corre-

sponding SSA time courses, we found that discrete jumps of

more than one mRNA molecule are possible, resembling

transcriptional bursts (21), a recent experimental observa-

tion. Interestingly, for the model we did not allow several

mRNAs to be produced in a single transcription reaction

while the gene is active, as in Raj et al. (21) and Golding

et al. (29). Such jumps can also be obtained by strong regu-

lation solely.

Protein bursts

Protein bursts have been observed experimentally (30) and

cannot be considered mere numerical artifacts. They can be

thought of as special cases of discrete stochastic effects,

but we treated this case separately as the underlying

mRNA profiles are somewhat distinctive. When tuning the

protein degradation or translation rate (k4, k8) in the TT

module, one obtains rather high numbers of mRNA mole-

cules for low feedback levels, and an almost-zero mRNA

level with the exception of a few pulses for high feedback

levels. These pulses induce the sudden burst-like production

of TF (Fig. 3, C and D, and Fig. S12), the bursts being enor-

mous when the initial TF level (and, by consequence, k8) are

highest. In contrast to the discrete stochastic effects, TF

distributions in protein bursts scenarios are no longer multi-

modal nor do they follow those of mRNA, and they are

largely asymmetric (19). Noticeably, the multimodality

observed when tuning k7 can also be replaced by protein

bursts at particularly low TF levels.

Moreover, early studies such as the one by Thattai and van

Oudenaarden (13) have described pulses to occur with an

average frequency that is inversely proportional to the

mRNA transcription rate, inducing a sudden burst-like

production of TF that scales as k8/k7. Although on average
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this scaling seems reasonable, individual time courses can

show protein bursts up to two orders of magnitude below

and above this estimate (data not shown). Hence, the size

of the protein bursts is also distributed.
A matter of separation of timescales

We have observed the CV to increase alongside feedback

strength. While tuning k7, such increase was due to the emer-

gent multimodality in the protein time courses. On the other

hand, tuning k4 and k8 produced protein bursts. Under either

circumstance, the CV does not assess noise behavior

correctly. Interestingly, many prior studies have missed

this fact and have used the linear noise approximation.

Such an approach has several shortcomings, the first of

which is its inability to describe multimodality or antisym-

metric distributions. Furthermore, unless one studies a rela-

tively rare linear system, one has to introduce a bias by

moment-closure approximations of the CME.

One way around this has been the analysis of minimal

gene expression circuits, where a gene is either always active

(two-stage model) or fluctuates between active and inactive

states (three-stage model) in accordance to specified constant

rates (18,19,25). Here, DNA activation/inactivation involves

explicit molecular binding events, the nonlinearity of which

does not allow an exact analytic solution, or a generating

function method without approximation. Nevertheless, we

find it useful to compare our results to previously published

criteria based on separation of timescales between different

reactions.

To explore these perspectives, we computed the average

correlation coefficient of all model combinations of the TT

module. We did not use the Shannon entropy or the Kull-

back-Leibler divergence because we wanted to assess how

TF distributions follow those of mRNA, both in distribution

and in time. This will yield nonzero correlations when TF

follows mRNA, including multimodality. In all other feed-

back values and cases, the correlation is close to zero. This

includes protein burst scenarios because as soon as the TF

levels peak in a burst, relaxation to an inactive gene TF state

begins. This implies that for the same mRNA state there will

be large numbers of possible TF states. By combining

computed CV and correlation values, we can get more infor-

mative descriptions of protein time courses.

In the following, we will compare our results with criteria

published previously for predicting different types of nonclas-

sical behavior. In our simulations, variations in k7 and k4 yield

correlations between the mRNA and TF time courses (Fig. 2,

F and H). This confirms earlier studies showing that TF distri-

butions will follow mRNA distributions when a TF degrades

faster than its parent mRNA (k4> k7) (21) or when the sum of

DNA activation and inactivation rates is<k4, and k4< k7 (18).

However, we observe such behavior at considerably extended

ranges of parameters (Fig. S15) because we consider the

nonlinearity of the binding reaction explicitly. For variations
in k7, the correlation increases with feedback strength,

implying that TF levels are proportional to mRNA levels at

all times. Coincidences with increasing CV indicate when

mRNA and TF exhibit multimodality, extending the ranges

of parameters predicting bimodality whenever gene activa-

tion/inactivation rates are <k7 (18). Significant correlations

obtained while tuning k4 have a different interpretation: the

TF distributions follow the mRNA distributions at low feed-

back values, but not in a multimodal sense as indicated by

the lower CV values. Moreover, almost-zero correlations

for very low TF levels coincide with very high CVs, indi-

cating protein bursts. Quite surprisingly, negative correlations

appear while tuning k8 at low TF levels (Fig. 2 G and

Fig. S15). In those cases, mRNA production immediately

shuts off whenever TF is abundant—the TF distributions still

follow those of mRNA, albeit in a cat and mouse manner. To

our knowledge, such an in silico behavior has never been

noticed before.

In Shahrezaei and Swain (19) and Mehta et al. (22) it has

been shown that whenever k7 >> k4, protein expression

profiles will exhibit bursts. Even though our analyses some-

what agree while varying k4, two important differences

should be noted. First, multimodal behavior is labeled as

bursts when varying k7 while omitting all relevant cases

stemming from variations in k8, and second, that our param-

eter ranges are again much broader. The same holds when

comparing our results with those in Schultz et al. (17), where

the authors explore a lumped transcription-translation model

and predict a bimodal TF distribution whenever the DNA

inactivation rate is slower than k4. Because the bimodality

is achieved through discrete active gene changes, we

compared it to our TT module, where the bimodality corre-

sponds to discrete mRNA changes. Interestingly, all of the

above mentioned criteria overlooked the observed protein

bursts obtained when varying k4 at low TF levels and no

criterion faithfully portrayed the occurrence all types of

nonclassical behavior. For a more visual perspective, we

highlight how treating nonlinearities explicitly in the TT

module can extend the observable ranges of nonclassical

behavior in gene expression (Fig. S14 and Fig. S15).
Noise increase without QSS

At very high feedback levels, namely when the DNA-

repressor complex rarely dissociates, the QSS assumption

of a model breaks down (1,9). Formally, a QSS assumption

implies a hyperbolic term in the reaction propensities that

provides a smooth transition between the bound and unbound

states of the gene. With high feedback, this may yield longer

and more frequent open windows of active gene. As a result,

the model predicts mRNA transcripts that would otherwise

not be observed, making it an inaccurate representation of

the physical phenomena. To study these effects, we removed

the QSS assumption and considered only first- and second-

order elementary reactions in our basic modules.
Biophysical Journal 98(9) 1742–1750



A B C

D E F

FIGURE 4 Feedback-dependent noise (CV) and

correlation behavior of the TT module, without a

QSS assumption. All labels are identical to Fig. 2,

C–H.
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Models without QSS displayed CV increase irrespective

of separating or lumping transcription and translation, the

increase being mild/intermediate for the latter. For instance,

when varying k1 in lumped models, the increase in CV

results from full depletion of TF (increasing variance along-

side decreasing mean) or from small scale protein burst-like

behavior, stemming from pulses of gene activity that are no

longer masked by a hyperbolic function (Fig. S16). Except

for rates k4 and k9 in the lumped transcription-translation

models, no other rate variation displayed significant correla-

tions between TF and active gene time courses. For k9, this

corresponded to a behavior tending toward multimodality

(without sharp transitions) for high TF values, whereas k4 dis-

played moderate protein bursts that, quite interestingly, corre-

sponded to high correlations. In this case, the relaxation to the

inactive gene TF state is not gradual, but simply imitates the

activation/inactivation events.

Tuning rates k7 and k8 in the TT module alone yielded

qualitatively similar noise profiles with or without a QSS

assumption (Fig. 4 and Fig. S17). Up to intermediate values

of the feedback parameter, protein bursts were of equivalent

magnitude and frequency. However, higher feedback values

in systems without QSS still yielded protein bursts, albeit at

much lower frequencies (Fig. S18). Interestingly, the range of

feedback parameters associated with discrete effects resem-

bling stochastic focusing is reduced, most cases being re-

placed by small scale protein bursts. This is consistent with

the shorter and less frequent open windows for the unre-

pressed gene. We observe milder negative correlations while

tuning k8, corresponding to the loss of cat and mouse multimo-

dality. Tuning rate k7 still yielded positive correlations, albeit

lower than those obtained with a QSS, corresponding to the

above mentioned multimodality without sharp transitions.

Our noise pattern criterion needs some modifications once

the QSS assumption is removed. In this case, transcriptional

and translational bursts can be tightly correlated and display
Biophysical Journal 98(9) 1742–1750
a high CV at low TF levels. The CV associated with uncor-

related protein bursts and multimodality is similar, yet lower

than that of correlated bursts. Comparing our results with all

the above cited timescale separation criteria yielded similar

conclusions to those obtained when assuming a QSS

(Fig. S19 and Fig. S20). The combination of the CV and

time-correlations pointed at parameter sets where moderate

protein bursts and multimodality without sharp transitions

can be observed. Also, the ranges of observable nonclassical

behavior in gene expression are, again, larger than previ-

ously expected.

Last, adding the RNAP and DM modules did not yield

apparent clear-cut patterns, unlike models assuming a QSS.

Depending on TF initial conditions, the topology of the

system, and parameterization, both extensions accentuate

and buffer noise changes. For instance, adding the DM

module to the TT module while tuning the transcription

rate k1 resulted in noise buffering for high TF initial number

of molecules (Fig. S16). In this case, high propensities of TF

dimerization and dissociation render new transcription

events rare. Hence, the protein level slowly decreases and,

with it, the computed CV. Unfortunately, acute stiffness of

the systems without QSS assumption prevented us from

studying all cases of the combined modules, especially

when incorporating the DM module.
DISCUSSION

Computational predictions of protein expression patterns

heavily depend on the choice of network topology, model

parameterization, assumption of a QSS or not, and the use

of a stochastic or deterministic approach. Furthermore, noise

interpretation will depend on the adopted metric for its quan-

tification. As a consequence, some particular noise and

protein time course profiles can be constructed from prede-

fined sets of assumptions.



QSSA Modules QSSA

Yes

RNAP k1,k4,k5

No

k1, ((k4)),k5,k6

DM k1,k4 k9,k10 k1, ((k4,k9)),k10

RNAP+DM k1,k4-k6 k9,k10 k1,k5,k6,((k4,k9)),k10

TT k1 (k4,k7),[k8] k1, (k4,k7),[[k8]]

TT+RNAP k1,k5,k6 (k4,k7),[k8] k1, k5,((k6, k7)),(k4,k8)

TT+DM k1 k9,k10 (k4,k7),[k8] S�ff system

TT+RNAP+DM k1,k5,k6 k9,k10 (k4,k7),[k8] S�ff system

α
k1, k5, k8, k10

k4, k6, k7, k9

FIGURE 5 Summary of observed CV behavior

as negative feedback strength is increased. Obser-

vations were classified according to the model and

whether a QSS assumption was included or not.

Tuned kinetic rates are specified in each box;

arrows indicate the form of dependency. Round/

squared brackets show positive/negative time corre-

lation of TF and mRNA time courses, double

brackets portray mild correlations. The lower panel

shows rate parameterization behavior with

increasing feedback.
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In this study, we have aimed at highlighting that a noise

analysis is only complete when considering the underlying

source of variation. The same holds for assessing the emer-

gence of any nonclassical behavior in gene expression

through changes in regulation strength. Two examples of

the latter are multimodality and burst-like protein synthesis,

for which commonly used measures based on the variance

and mean are insufficient. For assessing single nonclassical

cases, we propose a modified CV based on the protein distri-

butions and the frequency of relevant discrete events. For

multimodality, one can separate the data into sets revolving

around the distinct modes and compute a weighted CV, cor-

responding to the frequency with which each mode is visited

in the entire time course. In the case of protein bursts one

could in turn measure variations revolving around the natural

relaxation to the inactive gene state. Such a measure should

be again weighted by the frequency of the events, for which

a combination with a frequency-domain analysis such as that

in Cox et al. (10) could be more suitable. However, when

comparing different types of protein-courses or describing

emergent patterns of strong feedback regulation, one can

benefit from analyzing the regular CV (representing protein

variation and scaling behavior) alongside time-correlations

between protein and mRNA/active gene distributions.

Much remains to be discussed on what can and cannot be

termed noise. For practical purposes, we have referred to

noise as the scale of time course variations, but we note

that noise might be an abuse of terminology in some cases.

Protein bursts provide an obvious example: they indeed

stem from discrete random events, but variations in the

protein time courses contain structure that is not entirely

random.

We focused exclusively on discrete stochastic negative

regulation models that incorporate modules of RNA poly-

merase binding to the gene, repressor dimerization, and

lumped/separate processes of mRNA transcription and

protein translation. We measured noise intensity by means

of the CV and, whenever individual time courses displayed

a nonclassical behavior (e.g., distribution asymmetry or mul-

timodality), we compared our CV measurements with time

correlations between protein and mRNA/active gene time

courses. This simultaneous analysis of the CV and time corre-
lations provides a bigger and more intuitive picture of charac-

teristic behaviors attainable when tuning negative feedback

strength in all these scenarios. A full summary of noise and

protein scaling behavior is presented in Fig. 5.

When including the QSS assumption, models that lump

transcription and translation together showed none to slight

decrease of noise with increasing negative feedback strength.

On the other hand, models that make a clear separation

between these processes showed noticeable noise increase

within typical ranges of biological parameters. This noise

increase is associated with discrete stochastic effects, such

as protein bursts or behavior resembling stochastic focusing.

Moreover, our simulations suggest that the addition of RNA

polymerase binding in a model buffers noise increase or

decrease, whereas the addition of repressor dimerization

accentuates noise variations.

In contrast to all QSS models, describing all module

combinations through elementary reactions resulted in slight

to moderate increase of noise when increasing negative feed-

back strength. This was independent of treating mRNA tran-

scription and repressor translation as lumped or separate

processes, and it was most common for low TF concentra-

tions. Moreover, noise increase was obtained while varying

all possible rates, stemming from unmasked discrete changes

in the active gene state. Unfortunately, we did not find any

clear-cut pattern of noise accentuation or buffering for these

cases and, in many cases, multimodal behavior was replaced

by noisy synthesis or protein bursts.

By comparing noise measurements with analysis focused

on separation of timescales, we extended reported parameter

ranges for the appearance of protein bursts and distribution

correlations (18,19,21,22) due to the explicit treatment of

the binding reactions’ nonlinearity. Moreover, subtle yet

substantial differences in TF profiles arise in accordance to

each tuned rate, irrespective of considering a system at

QSS or not. Namely, the protein can change alongside

mRNA levels without any apparent modality (when tuning

protein degradation) or in a multimodal fashion while

switching states rather infrequently (when tuning protein

translation or mRNA degradation). In the multimodal case,

TF increases proportionally to mRNA while varying

mRNA degradation. However, variations in the protein
Biophysical Journal 98(9) 1742–1750
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translation rate surprisingly yield negative correlations when

assuming a QSS, indicating that the mRNA production shuts

off whenever the protein is abundant, and vice versa. Finally,

further analysis of simple negative feedback systems seems

essential, especially when models with and without QSS

disagree. For this, a sensible distinction between slow and

fast reactions that yield accurate dynamics is necessary

(31). Should the latter be insufficient, new stochastic simula-

tion algorithms may have to be developed, in particular, to

tackle the stiffness of the system.
SUPPORTING MATERIAL

Additional methods, discussion, analytic derivations and notes, three

tables, and 20 figures are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(10)00149-9.
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