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Sedimentation Patterns of Rapidly Reversible Protein Interactions
Peter Schuck*
Dynamics of Macromolecular Assembly, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and
Bioengineering, National Institutes of Health, Bethesda, Maryland
ABSTRACT The transport behavior of macromolecular mixtures with rapidly reversible complex formation is of great interest in
the study of protein interactions by many different methods. Complicated transport patterns arise even for simple bimolecular
reactions, when all species exhibit different migration velocities. Although partial differential equations are available to describe
the spatial and temporal evolution of the interacting system given particular initial conditions, a general overview of the phase
behavior of the systems in parameter space has not yet been reported. In the case of sedimentation of two-component mixtures,
this study presents simple analytical solutions that solve the underlying equations in the diffusion-free limit previously subject to
Gilbert-Jenkins theory. The new expressions describe, with high precision, the average sedimentation coefficients and compo-
sition of each boundary, which allow the examination of features of the whole parameter space at once, and may be used for
experimental design and robust analysis of experimental boundary patterns to derive the stoichiometry and affinity of the
complex. This study finds previously unrecognized features, including a phase transition between boundary patterns. The model
reveals that the time-average velocities of all components in the reaction mixture must match—a condition that suggests an intu-
itive physical picture of an effective particle of the coupled cosedimentation of an interacting system. Adding to the existing
numerical solutions of the relevant partial differential equations, the effective particle model provides physical insights into the
relationships of the parameters that govern sedimentation patterns.
INTRODUCTION
Nontrivial patterns arise in the transport of rapidly reversible

systems of interacting macromolecules when the lifetime of

the complexes is short relative to a characteristic transport

time of the experiment, such that all species remain locally

in chemical equilibrium despite their spatial migration at

different velocities. This topic is still of great importance,

as dynamically associating and dissociating (multi-) protein

complexes with short lifetimes are a ubiquitous motif of

cellular regulation and biological signal transduction path-

ways, and many biophysical techniques rely on the observa-

tion of the cotransport of bound molecules.

This work focuses on the sedimentation behavior of such

systems arising in two-component mixtures, as observed in

sedimentation velocity (SV) analytical ultracentrifugation.

With the introduction of modern instrumentation and com-

putational methods, SV analytical ultracentrifugation has

reemerged in the last decade as a powerful tool with broad

applications in structural biology, biochemistry, immu-

nology, biotechnology, and nanotechnology. In particular,

there has been a strong increase in interest in using SV

analytical ultracentrifugation to examine interacting systems.
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Because the experimental configuration of SV permits the

hydrodynamic discrimination of boundaries containing

complexes while they stay immersed in the slower-sediment-

ing constituents (Fig. 1, top), SV offers a unique potential for

characterizing reversibly interacting macromolecules with

regard to the number, stoichiometry, and binding constant

of complex formation, as well as the low-resolution confor-

mation of the complex.

So far, the prediction of the temporal and spatial con-

centration profiles that occur in the sedimentation process

has been amenable largely only to numerical solutions of

the coupled reaction and transport equations. In a seminal

work in the 1950s, Gilbert and Jenkins solved (iteratively)

the equations of cotransport of reacting systems in a diffu-

sion-free approximation (1,2). This simplification highlights

the salient features of the process: for rapidly reacting

two-component systems, the Gilbert-Jenkins theory (GJT)

explains the occurrence of a monodisperse undisturbed

boundary and a polydisperse reaction boundary (also

referred to as asymptotic boundary; see Fig. 1, bottom).

It makes provocative predictions for both—among them

that the undisturbed boundary migrates with the velocity of

one of the free species, but it is neither always the one sed-

imenting slower, nor always the component in molar excess.

Another prediction is that the reaction boundary exhibits

a concentration-dependent range of migration velocities in

between that of the faster sedimenting component and the

complex species, but the overall velocity of the reaction

boundary does not necessarily increase with increasing total

concentrations (Fig. 2, bottom).
doi: 10.1016/j.bpj.2009.12.4336
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FIGURE 1 (Top) Concentration profiles calculated from Lamm PDE

solutions for species A (3.5 S, green) reversibly interacting with B (5 S,

blue) to form transient complexes AB (6.5 S, gray), sedimenting at

60,000 rpm. Initially, cAtot(r,t ¼ 0) ¼ cBtot(r,t ¼ 0) ¼ KD, and shown are

ck(r,t) at 5 min (dotted) and t*¼ 100 min (solid lines). (Bottom) Experimen-

tally, from the measured total signal, cAtot(r,t*) þ cBtot(r,t*) could be easily

determined an apparent velocity distribution g*(s*) ~ dc/dr (dotted line), or

the diffusion-deconvoluted sedimentation coefficient distribution c(s) (23)

(dashed line). The asymptotic boundary dbc=ds from GJT is shown as a light

gray bar, and the predictions from EPT are shown as red arrows (scaled to

represent the relative signal amplitudes, assuming equal signal increments).
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The GJT is widely accepted and experimentally con-

firmed, and has remained highly influential to this date.

It has been applied similarly to electrophoresis and size-

exclusion chromatography of interacting systems (3–5) and
FIGURE 2 Sedimentation coefficient distributions c(s) representing the

boundary patterns of the interacting system of Fig. 1 at different total loading

concentrations. The vertical lines indicate the s values of the free and

complex species. (Top) Dilution series with equimolar concentrations at

0.1 KD (blue), 0.3 KD (pink), KD (green), 3 KD (red), and 10 KD (cyan).

The c(s) distributions are normalized relative to the total loading concentra-

tions. (Bottom) Titration series of a constant total concentration cAtot¼ KD of

the smaller species A with increasing concentrations cBtot of 0.1 KD (blue),

0.3 KD (pink), KD (green), 2.366 KD (red), and 10 KD (cyan). Distributions

are not normalized. For both panels, sedimentation and reaction parameters

are as in Fig. 1, with signal coefficients of 40,000 M�1 cm�1 and

60,000 M�1 cm�1 for A and B, respectively.
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its principles were generalized to other physical macromo-

lecular interactions (6). However, due to the complexity of

the approach, very few applications of GJT for data analysis

were published, no systematic study of boundary features

was undertaken (7,8), and no reference to GJT of systems

more complex than bimolecular two-site binding models

can be found in the literature.

With more computational power readily available, subse-

quent developments (9–13) have been directed at solving the

partial-differential equations (PDE) of the coupled reaction-

diffusion-migration process (the Lamm equation for the case

of sedimentation (8,14)). This is more accurate in reflecting

the centrifugal geometry and describing the boundary broad-

ening from diffusion, but does not add fundamentally new

features. In the last decade, it has become possible to

routinely fit Lamm equation solutions of various interacting

systems to experimental data describing the evolution of

macromolecular concentration profiles (12,13,15). Although

highly useful in some cases (16,17), in practice, unfortu-

nately, the PDE approach often leads to an ill-posed data

analysis problem, and the results can be susceptible to exper-

imental imperfections that affect the shape of the sedimenta-

tion boundaries, such as impurities and microheterogeneity

of the macromolecule samples under study (18,19). Thus,

the advantage of the PDE approach over GJT representing

a theoretically more complete description of the sedimenta-

tion boundary shape does, in practice, not necessarily trans-

late to more (or at least reliable) information that could be

extracted from experimental data. In addition, it does not

add to a basic understanding of the phenomenology encoun-

tered in the cosedimentation of reactive systems.

Modern methods to analyze SV analytical ultracentrifuga-

tion data frequently utilize sedimentation coefficient distri-

butions as a basis for further quantitative interpretation

(19–22) (Fig. 1, bottom). Deconvolution techniques to

separate the effect of diffusion and sedimentation of hetero-

geneous mixtures are usually applied (23–25), providing

sedimentation coefficient distributions c(s) with high resolu-

tion and sensitivity, and this approach has been combined

with spectral deconvolution for the analysis of multicompo-

nent mixtures (26). An example for c(s) distributions repre-

senting the boundary systems obtained at a range of loading

concentrations is shown in Fig. 2. In the case of rapidly

reversible complex formation, even though the peak sedi-

mentation coefficients are recognized to represent features

of the reaction boundary from the interacting systems rather

than physical species, the sedimentation coefficient distribu-

tions allow determining average s values, signal amplitudes,

and composition of the complete system of boundaries.

The concentration dependence of these features represents

binding isotherms that condense the experimental data to

their most reliable and precise aspects (19–21). Unfortu-

nately, for rapidly interacting systems more complicated

than two-component two-site binding processes, no practical

and general framework for the quantitative analysis of these
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binding isotherms is currently available, except for the iso-

therms of overall signal-average sedimentation coefficient

(sw) that does not utilize the rich information from the multi-

modal boundary structure.

Perhaps surprisingly, there are still many basic open ques-

tions about the sedimentation boundary patterns exhibited by

rapidly reversible systems—even for simple bimolecular

reactions. Open problems of practical relevance include,

for example, the properties of the transition point where

the undisturbed boundary switches its composition and its

s-value changes from that of one free component to that of

the other free component. Such changes are commonly

experimentally observed and shown in the literature (but

remain un- or even misinterpreted, see below). It would be

useful to know the relationship of the exact transition point

with KD of the reaction, s-values of all species, and/or the

reaction stoichiometry. Similarly unknown are relationships

for the choice of experimental concentrations that lead to

reaction boundaries with composition or s-value close to

that of the complex, which could aid in the design of exper-

iments for characterizing the stoichiometry and hydrody-

namic shape of the macromolecular complex. Finally, for

small molecule interactions with large complexes, it is

a nontrivial question to ask to what extent the slow, undis-

turbed boundary can be taken as an approximate measure

of the free pool of unreacted small molecules. This question

can arise, for example, in fibrillar structures in equilibrium

with free monomers (27,28).

As GJT and PDE are computationally intensive iterative

approaches that make predictions only for given parameter

combinations, the systematic exploration of the parameter

space to answer these questions would be very cumbersome,

and is indeed still missing. Further, no knowledge of general

principles may be gained from this approach. For example,

even if the parameter space would be sufficiently sampled

to determine the exact location by trial and error of the tran-

sition points of the undisturbed boundary, this would not

reveal how sedimentation parameters relate to this point.

It is a fundamental drawback of both the GJT and PDE

approaches that they do not provide satisfactory insight

into the physical principles of reactive cotransport beyond

those establishing the basic partial differential equations.

This is also apparent when considering parameter combina-

tions that produce anomalous, seemingly counterintuitive

transport patterns such as those described above, which

one could argue remained unexplained (even though com-

putationally and experimentally confirmed) since their

discovery in the 1950s. This has impeded progress in this

field.

This article reports new solutions to the transport equa-

tions for rapidly reacting systems, in a diffusion-free picture,

that describe the average sedimentation coefficients and

the composition of all boundaries with simple analytical

expressions. This allows the prediction of the sedimentation

behavior across the entire parameter space, and it leads to
a physically intuitive picture of the reactive comigration in

the form of an effective particle of the sedimenting system.
THEORY

Let us consider components A and B at total loading concen-

trations cAtot and cBtot reversibly forming a complex AB with

local species concentrations cA, cB, and cAB, respectively,

following mass action law cAB¼ KcAcB with the equilibrium

constant K locally and at all times. Without loss of gener-

ality, A and B are designated such that their sedimentation

coefficients obey sA % sB. The complex is assumed to sedi-

ment faster than either free species. Let us also utilize the

knowledge that there are at most two boundaries (a conse-

quence of local mass action law): either A exclusively

supplies the undisturbed boundary and B is entirely engulfed

in the reaction boundary, denoted as B/(A), or, vice versa,

B exclusively supplies the undisturbed boundary and A is

entirely within the reaction boundary, denoted as A/(B).

The sedimentation behavior of an interacting system is

generally described by the multicomponent Lamm equation

(8). In the conventional approximation of rectangular geom-

etry with constant force, the sedimentation coefficients s are

replaced with linear velocities v, and in the limit of vanishing

diffusion (which is equivalent to the classical limiting case of

infinite time (2)), it takes the form

vck

vt
þ vk

vck

vr
¼ qk (1)

(for all species k, with the reaction fluxes qk such that qA ¼
qB¼ �qAB). This system is the subject of Gilbert-Jenkins

theory. The iterative algorithm by Gilbert and Gilbert (29)

calculates the magnitude and ratio of infinitesimal fluxes of

A and B cosedimenting at a given velocity v0, and thereby

describes the polydispersity of the reaction boundary

dbc=dv and the asymptotic boundary shape at infinite time.

It also predicts the undisturbed boundary formed by the

material left behind once one of the binding partners is

exhausted.

Our present goal is to achieve an integral description of the

reaction boundaries that describes the overall mass balance

and arrives at an average velocity of the reaction boundary.

In analogy to the mass balance considerations that lead to

the definition of the weighted-average s value, such an

average velocity is independent of the shape of the reaction

boundary, and invariant in the presence of diffusion. This

motivates an Ansatz using Heaviside step-functions,

ckðr; tÞ ¼ ck;uHðr � vktÞ þ ~ckHðr � vA/BtÞ; (2)

with the first term consisting of the free species in the undis-

turbed boundary with the amplitudes and migration veloci-

ties of either cA,u and vA, or cB,u and vB, respectively, and

the second term reflecting species concentrations ~cA, ~cB,

and cAB comigrating with the reaction boundary at the
Biophysical Journal 98(9) 2005–2013
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velocity vA/B. After insertion into Eq. 1 and executing the

derivatives with the help of Dirac d-functions, the collection

of terms leads to a system of algebraic equations.

For B/(A), when A supplies the undisturbed boundary,

the following identities are obtained

vB/ðAÞ ¼
vA~cA þ vABKcAcB

~cA þ KcAcB

¼ vBcB þ vABKcAcB

cB þ KcAcB

: (3)

In addition to the reaction boundary velocity vB/(A), this

allows us to determine the amount of free A cosedimenting

in the reaction boundary

~cA ¼
KcAcBðvAB � vBÞ

ðvB � vAÞ þ KcAðvAB � vAÞ
: (4)

We note that the fraction of cosedimenting free A increases

with the concentration of free B, and will comprise all of A at

a critical concentration cB*

c�BðcAÞ ¼
KcAðvAB � vAÞ þ ðvB � vAÞ

KðvAB � vBÞ
; (5)

and as a consequence, the case B/(A) that presumes A to

supply the undisturbed boundary ceases to exist when

cB > cB*.

Equations symmetrical to Eqs. 3–5 are obtained for the

case A/(B), leading to the velocity vA/(B) and the concen-
vA/B ¼

�
vAcA þ

PN
i¼ 1

ivAiBKicBci
A

���
cA þ

PN
i¼ 1

iKicBci
A

�
for cB > c�BðcAÞ

�
vBcB þ

PN
i¼ 1

vAiBKib0ai
0

���
cB þ

PN
i¼ 1

KicBci
A

�
else

:

8>>>>><
>>>>>:

(9)
tration of cosedimenting B, ~cB. Further, analogously to Eq. 5,

a critical concentration cA*(cB) is obtained which limits the

possibility for A/(B) to cA < cA*. Importantly, the critical

points where the case B/(A) and the case A/(B) cease

to exist are the same, as can be demonstrated easiest

by showing that cA*(cB*(cA)) ¼ cA. Thus, B will supply

the undisturbed boundary for cB > cB*, A will supply the

undisturbed boundary for cB < cB*, and there will be

no undisturbed boundary at cB ¼ cB*. Outside this point,

the undisturbed boundary is formed by cundist¼ cXtot� ~cX �
KcAcB and vundist¼ vX, with X denoting B for cB > cB*, or A

for cB < cB*.

The velocity of the reaction boundary can be summa-

rized as

vA/B¼
ðcAvAþcAcBKvABÞ=ðcAþcAcBKÞ for cB>c�BðcAÞ

ðcBvB þ cAcBKvABÞ=ðcB þ cAcBKÞ else

:

8<
:

(6)
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We can also readily determine the stoichiometry of total

A:total B in the reaction boundary, which may be measured

in multisignal experiments, as

RA/B ¼
1�ðvB � vAÞ=KcBðvAB � vBÞ for cB > c�BðcAÞ

1� ð1þ KcAðvAB � vAÞ=ðvB � vAÞÞ�1
else

:

8<
:

(7)

The transition point is loosely reminiscent of a first-order

phase transition, exhibiting a continuous transition of the

velocity and the composition of the reaction boundary.

This approach is referred to as effective particle theory

(EPT). It is straightforward to apply EPT to more complex

reactions with higher stoichiometry. For example, for the

case of multiple complexes AB, A2B, ., ANB in rapid equi-

librium linked by equilibrium constants Ki, the phase transi-

tion is at

c�BðcAÞ¼

PN
i¼ 1

Kic
i
AðvAiB � vAÞ þ ðvB � vAÞ

PN
i¼ 1

iKici�1
A ðvAiB�vBÞþ

PN
i;j¼ 1

i
�
vAiB�vAjB

�
KiKjc

iþ j�1
A

;

(8)

and the reaction boundary exhibits an average velocity of
RESULTS

A physical picture of the comigration of interacting mole-

cules can be obtained from the inspection of Eq. 3: it equates

the population average velocity of all components cosedi-

menting in the reaction boundary, which, following ergodic

theory, also corresponds to the time-average velocity of all

molecules. Thus, a sufficient condition for the prediction of

the boundary patterns is that the time-average velocity of

all molecules in the reaction boundary must match. This

leads to a scheme for the association/dissociation events

with interchanging binding partners coupled to migration

as shown in Fig. 3, animated in Movie S1, Movie S2, and

Movie S3 in the Supporting Material. With regard to its sedi-

mentation, one can consider such a coupled system to behave

like an effective particle with velocity sA/B and composition

RA/B predicted by Eqs. 6 and 7, respectively.

This picture naturally explains the occurrence of a single

reaction boundary that sediments at a velocity that is neither

that of free A, free B, or the complex, with molar ratio



FIGURE 3 Cartoon of the effective particle A/B (encircled in red). Indicated is the fractional time that A (green) and B (blue) spend free or in complex

(gray-shaded time intervals). The representation is faithful with regard to relative concentrations, relative velocities, and relative species lifetimes. Component

A spends a smaller fraction of time free than B, resulting in a match of their time-average velocities. An animation is shown in Fig. S4 in the Supporting

Material.
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unequal to the stoichiometry of the reaction. An immediate

consequence is the previously unrecognized rule that all

reaction boundaries must exhibit a composition RA/B less

than unity, consistent with Eq. 7: Because the free state of

A has a lower velocity than free B, the fractional time a mole-

cule A spends in the free state has to be short, in order not to

violate the principle that the average velocities of A and B

must match.

It is instructive to compare the predictions of EPT for the

average s values, boundary composition, and fractional

amplitude of the undisturbed boundary with the values deter-

mined by GJT after numerical integration of the polydisperse

asymptotic boundary. To this end, we comprehensively

sampled the parameter space of loading concentrations

{cAtot, cBtot} along many different trajectories (Fig. 4 and

Fig. S4, Fig. S5, Fig. S6, and Fig. S7 in the Supporting Mate-

rial). Overall, there is excellent qualitative agreement in

describing all the hallmarks of the reacting system. Quantita-

tively, the agreement is close to the usual experimental

precision, for the data shown in Fig. 4 exhibiting root-

mean-square deviations in sA/B of 0.015 S, in RA/B of

2.0%, and in cundist/cXtot of 5.3%. The largest deviations

can be discerned where the dispersion of the GJT boundary

is highest, which occurs close to the phase transition line.

The lower panel of Fig. 4 shows the phase transition line

determined from iteratively sampling GJT (black dotted
lines) and our analytical prediction (solid lines). In addition

to the results for the system of Fig. 1 (red), equivalent data

are presented for systems with more similar-sized binding

partners (sA z sB) in green, and more dissimilar binding

partners (sA � sB) in blue. EPT and GJT agree very

well, again exhibiting the largest deviations in the region

where we found the strongest polydispersity of the GJT

boundary.

Next, we studied in more detail the phase transition line.

Its asymmetry is remarkable. Only in the limit of concen-

trations high above the dissociation equilibrium constant
KD does it coincide with the equimolar line. At low

concentrations of A, the transition approaches a constant

value

c�Btot;min ¼ KDðsB � sAÞ=ðsAB � sBÞ (10)

For small ligands binding to large macromolecules (sB – sA

[ sAB � sB), the critical concentration of B required for the

phase transition is far above KD, whereas for similar-sized

molecules (sA z sB) the threshold is very low. Surprisingly,

at low concentration of A, even a very large molar excess of

B may not be able push A entirely into the reaction

boundary. The reason for this behavior can be sought in

the requirement that sA/B > sB, which follows from Eqs.

5 and 6, as well as from the physical picture of Fig. 3: At

low loading concentrations, the fractional population of

A being ligated is not sufficiently high to elevate the time-

average velocity of all A above that of free B. Therefore,

A must partition into the undisturbed and the fast-moving

reaction boundary, even at very low concentrations. Inspec-

tion of Eq. 7 shows that at the transition point, the stoichi-

ometry A:B approaches zero for very low concentrations of

A. This is possible, because in this limit, sA/B approaches

sB, such that the relative lifetime of the free state of B can

be very long.

An overview of the complete set of boundary properties

for different model systems based on Eqs. 5–7 is shown in

Fig. 5 (and can be produced for any parameter combinations

in the public domain software SEDPHAT). They can be used

as an aid in the design of SV analytical ultracentrifugation

experiments. For example, determining the stoichiometry

of a reaction is a frequent—and often the most impor-

tant—goal of SV analytical ultracentrifugation experiments.

For the system in Fig. 1, when keeping constant cAtot¼ KD at

increasing concentrations of B, the phase transition of the

undisturbed boundary occurs at cBtot ¼ 2.4 KD. If the undis-

turbed boundary is misinterpreted to reflect the molar excess

of the reaction, the presence of 2:1 or 3:1 complexes may be
Biophysical Journal 98(9) 2005–2013



FIGURE 5 Properties of the reaction boundary A/B as a function of the

total loading concentration of A and B, calculated by EPT for the system of

Fig. 1. (Top) Velocity of the reaction boundary sA/B following Eq. 6.

(Center) Composition RA/B of the reaction boundary following Eq. 7.

(Bottom) Fractional signal of the undisturbed boundary, assuming that

both components are globular with equal weight-based extinction coeffi-

cients. In all plots the line for the phase transition cBtot*(cAtot) is shown as

a black dotted line, separating the region of A/(B) in the upper-left quad-

rant from B/(A) elsewhere.

FIGURE 4 Comparison between the predictions from GJT and EPT.

(Top) Weighted-average s-values from GJT by integration of the velocity

distributions dbc=dv (circles) and EPT predictions for sA/B (red line), along

trajectories of KcBtot ¼ 1 (left) or KcAtot ¼ 1 (right), for the same model

system as in Fig. 1. The velocity range of dbc=dv predicted by GJT as a func-

tion of concentration is indicated as the gray area. (Center) Relative ampli-

tude of the undisturbed boundary cundist/cXtot (left ordinate) as predicted

from GJT (black circles) and EPT (red lines), and stoichiometry of the

reaction boundary RA/B (right ordinate) predicted from GJT (blue circles)

and predicted by EPT (blue line). (Bottom) Phase transition line as analyti-

cally predicted from EPT (solid lines) and determined iteratively by

GJT (black dotted lines), shown in red for the same system as in Fig. 1, in

green for a system where the free species are similar in sedimentation coef-

ficient (sA ¼ 4.9 S, sB ¼ 5.0 S, and sAB ¼ 8.5 S), and in blue for a system

where A is a very small compared to B (sA ¼ 0.5 S, sB ¼ 5.0 S, and sAB ¼
5.3 S).
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erroneously deduced. Even with cAtot ¼ 10 KD, the phase

transition requires cBtot ¼ 13.4 KD, which would still not

lead to unambiguous assessment of the correct stoichiom-

etry. Errors grow strongly with more-dissimilar binding

partners (sB � sA [ sAB � sB), and decrease for binding

partners with similar s values.

An alternative approach to determine the complex stoichi-

ometry is the measurement of the composition of the reac-

tion boundary by multisignal SV. Here, it is advantageous

to use high total concentrations of A in combination with

moderate or low total concentrations of B. (Along lines of

constant cAtot, at higher concentration of B closer to the

phase transition line, free A becomes limiting, consequently

leading to lower s values and lower fractional saturation of
Biophysical Journal 98(9) 2005–2013
B in the reaction boundary.) In the system of Fig. 1, for

example, with cAtot ¼ 10 KD, any concentration cBtot < KD

will lead to a reaction boundary composition of z0.95, close

to the correct stoichiometry (Fig. 5, center). Even in the limit

of very small ligands, (sAB�sA)/(sB�sA) z 1, the same

concentration range will always lead to a boundary composi-

tion > 0.90, and this value approaches 1.0 in the limit of

similar-sized A and B, when (sAB�sA)/(sB�sA) / N.
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DISCUSSION

The goal of this article’s work was to develop a simple

physical picture of comigration that occurs for rapidly react-

ing systems in the gravitational field. We also aimed to

obtain physical insights into the relationships of concentra-

tion, sedimentation, and reaction parameters that govern the

sedimentation behavior of the system, since these relation-

ships remain obscure when relying on numerical solutions

of the Lamm PDE.

We found that this can be achieved with generalized func-

tions that can be shown to solve the same set of partial differ-

ential equations subject previously to GJT. In contrast to

GJT, which describes asymptotic shapes of the reaction

boundary in terms of differential velocity distributions,

EPT has a different focus and only aims to describe the over-

all fluxes in the plateau region. This is achieved by limiting

the description of the reaction boundary to the approximation

with a monodisperse step-function, which can be regarded as

an equivalent boundary position moving with a velocity

consistent with the overall mass balance of the reaction

boundary (invariant to the presence of diffusion). In this

way, EPT naturally leads to the time-average sedimentation

coefficients of all cosedimenting molecules in the reaction

region, and the requirement that these time-average sedi-

mentation coefficients must match. Thus, although not

describing realistically the boundary shapes, EPT provides,

for the first time, simple analytical expressions that describe

the overall boundary pattern and phase behavior of the

system. (In a forthcoming work, EPT will be applied to study

the diffusive properties of reaction boundaries (P. Schuck,

unpublished).)

The focus on the average composition and sedimentation

velocity of the undisturbed and reaction boundary is fully

adequate for the information content that can be easily

extracted from experimental reaction boundaries, for exam-

ple, with c(s) or other sedimentation coefficient distribution

analyses. Even under experimental conditions where one

can clearly detect the presence of polydispersity in broad

reaction boundaries close to the phase transition point, within

the typical experimental signal/noise ratio, one can reliably

quantify only the average properties of the reaction bound-

ary. (Also, it should be noted that current differential sedi-

mentation coefficient distributions are typically extracted

from experimental data representing the complete time-

course of sedimentation, and therefore, as shown in (21),

radial dilution at the later stage of the experiments with

sector-shaped geometry has only a trivial impact on the

results, justifying the application of the constant force and

rectangular geometry picture of EPT.)

Conceptually, EPT can clarify features of SV analytical

ultracentrifugation of interacting systems that previously

remained rather mysterious, such as the mechanism of comi-

gration of free species and complex in a single reaction

boundary. It also describes previously unrecognized features
of reaction boundaries, including the discovery of a phase

transition line and its limiting values.

In practice, the overview of the phase behavior can be

useful in the design of experiments. For example, the deter-

mination of the complex stoichiometry of a rapidly reversible

interaction is an important application of SV. A common

assumption is that the undisturbed boundary reflects the

molar excess over the reaction stoichiometry. In this regard,

the location of the phase transition line is a very important

factor. For very dissimilar-sized molecules, unless very

high concentrations can be used (e.g., [ 10 KD(sB�sA)/

(sAB�sB)), misleading transition point stoichiometries may

be obtained, or, unexpectedly, no transition line may be

encountered at all, irrespective of the molar ratio of loading

concentrations. In contrast, EPT predicts that the alternative

approach of using multisignal sedimentation velocity to

probe the composition of the reaction boundary can lead to

results correctly reflecting the complex stoichiometry even

at moderate concentrations, without strong dependence on

relative particle size. Practical examples for the application

of the two approaches and their contrasting results for the

stoichiometry estimates can be found in recent studies on

the pyruvate dehydrogenase complex (30,31).

Similarly, the results from EPT may be used, for a given

set of interacting macromolecules, to design experiments

that will lead to reaction boundary velocities close to that

of the complex, to facilitate hydrodynamic modeling and the

comparison with translational friction coefficients of model

structures (32–34). Interestingly, these conditions do not

completely overlap with those leading to boundary composi-

tions close to the reaction stoichiometry.

It is remarkable that the phase diagram of coupled migra-

tion and rapid reaction exhibits concentration-dependent

features that are much sharper than typical noncooperative

binding isotherms (bottom panel in Fig. 5). Where the undis-

turbed boundary vanishes and its constituent switches,

a distinct, sharp increase in its amplitude occurs along with

a discontinuous change in the s value of the undisturbed

boundary. Conditions close to or at the transition points

may offer unconventional experimental approaches for the

determination of binding affinities at low concentrations.

Further studies will show whether this concentration regime

can be experimentally exploited.

EPT should also be useful for practical data analysis.

It offers the opportunity for a robust analysis of systems

that are experimentally not sufficiently homogeneous and/

or not sufficiently information rich to permit direct fitting

with the Lamm PDE of a system of interacting species. Since

the PDE approach describes each species as being discrete

(though interacting), one could argue that a precondition

for the application of Lamm PDE modeling is that all free

components, when studied individually, can be described

well with a single discrete, noninteracting Lamm equation

solution (e.g., that the quality of fit with c(s) distribution

and with a single noninteracting species model will be
Biophysical Journal 98(9) 2005–2013
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equivalent). In practice, this is rarely the case due to the

exquisite sensitivity of SV analytical ultracentrifugation to

impurities and virtually ubiquitous degradation and aggrega-

tion products. Frequently, however, diffusion-deconvoluted

sedimentation coefficient distributions still allow one to

clearly discern the boundary components of the interacting

system, and determine their composition, amplitudes, and s
values, and the isotherms from the concentration-dependence

of these quantities can be modeled with expressions from

EPT. Although these isotherms can, in principle, also be

modeled with solutions of GJT (as we have shown previously

(19)), the application of GJT to systems with a complexity

higher than two-site binding has never been attempted, to our

knowledge, and seems virtually intractable. EPT, on the other

hand, can readily be applied to n-site binding processes.

These methods were implemented in the software SEDPHAT

for isotherm analysis of experimental data.

Even though we have only developed the theory for two-

component mixtures, which can exhibit, at most, two bound-

aries, it should be possible to apply the same principles

to higher-order mixtures. For example, three-component

mixtures are expected to exhibit three boundaries (one undis-

turbed, one two-component reaction boundary, and one

three-component reaction boundary). These will likely carry

correspondingly more information-rich phase behavior,

potentially providing a unique avenue to gain insight into

rapidly reversible multicomponent mixtures. For such sys-

tems, Lamm PDE approaches seem even more problematic

than for two-component mixtures. Finally, as EPT is neither

implying predictions of the detailed boundary shapes, nor

of the details of transport, it may be applied equally to the

quantitative study of rapidly interacting systems in highly

nonideal solvents, for example, how the interaction of fluo-

rescently labeled molecules in human serum (35,36) leads

to a partitioning into undisturbed and reaction boundaries.
SUPPORTING MATERIAL

Four figures and three movies are available at http://www.biophysj.org/
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