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ABSTRACT Cognitive mapping functions of the hippocampus critically depend on the recurrent network of the CA3 pyramidal
cells. However, it is still not known in detail how network activity patterns emerge, or how they encode information. By using func-
tional multineuron calcium imaging, we simultaneously recorded the activity of >100 neurons in the CA3 region of hippocampal
slice cultures. We utilized a novel computational method to analyze the multichannel spike trains and to depict functional
neuronal assemblies. By means of event synchronization and the correlation matrix analysis method, we found that: 1), the
average functional neuronal cluster consists of 23 neurons, and neurons could be part of multiple assemblies; 2), the clustering
strength, size, and mean distance among cells in neuronal assemblies follow a power-law-like distribution; 3), the clustering
strength and size of neuronal assemblies are not correlated with the total number of neurons and their physical distance;
and 4), the clustering distance of neuronal assemblies is weakly correlated with the total number of neurons and their physical
distance. These findings suggest that the functional organization of the spontaneously firing CA3 hippocampal network is a
scale-free structure in slice culture.
INTRODUCTION
Recent computational and experimental evidence show that

the organization of neuronal networks is nonrandom. The

role of some of these features in network dynamics and infor-

mation processing has been well investigated (1–6). Some

studies imply a small-world structure in cortical networks

(7–9), whereas others have suggested that cortical neuronal

networks are scale-free (5,10). Computational models use

a small-world topology to describe hippocampal networks,

in which the majority of connections between cells are local,

except for a few cells that have long-distance connections

(8). Such architecture of the neuronal network promotes

faster signal propagation and synchronization with a rela-

tively small number of connections. Small-world principles

are found in complex social and biological systems such

as in the nervous system of the nematode Caenorhabditis
elegans (11,12). However, scale-free networks are also

defined such that connection properties of the network

adhere to a power-law distribution (8,13). Such networks

are known to allow for efficient information transfer and

prevent signal jamming (13). Scale-free topology signifies

the existence of superconnected neurons (i.e., hubs). Nodes

with particularly large numbers of connections have been

described in nonneuronal networks (13,14). The existence

of such hubs has only been implicated most recently in

normal cerebral cortex (5) and in epileptic hippocampus (4).

Neuronal ensembles in the hippocampus play a critical

role in map-based spatial navigation (15,16), dead reckoning
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navigation (17,18), and memory processes (19,20). In path-

ological conditions, neuronal activity of a large number

of neurons is hypersynchronized, which leads to seizure

activity. Despite the importance of the hippocampal CA3

network in representation of the spatial field and in the emer-

gence of epileptiform activity, crucial experimental details

regarding the architecture of the neuronal assemblies are still

lacking. Nonrandom features of synaptic connectivity in

the rat visual cortex have recently been investigated by

quadruple whole-cell recording technique in vitro (5), but

the effort required to obtain sufficient amounts of data for

analysis (i.e., several hundred simultaneous recordings) to

reveal differences in connections strength between neurons

is likely to discourage further similar research. Alternatively,

in vitro Ca2þ imaging with a fast sampling rate can provide

information for neuronal network topology and connectivity

pattern analysis.

Action potentials produce unitary Ca2þ transients with a

fast rise and an exponential decay (21). Thus, the activity

of neurons can be reconstructed from the somatic Ca2þ

transients and the identification of neuronal types can be

obtained by spectral separation of Ca2þ signals (22). Based

on this principle, the functional multineuron calcium imag-

ing (fMCI) was developed to record the activity of neuron

populations with single-cell resolution (23,24). The advan-

tage of this novel method is the ability to investigate the

spatial and temporal features of large number of neurons in

the network.

In this study, we introduce a novel method to analyze

the simultaneous spike trains reconstructed from fMCI mea-

surement which enables us to depict functional neuronal
doi: 10.1016/j.bpj.2010.01.013
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assemblies located in a large neuronal network. Measuring

the spontaneous activity of the hippocampal CA3 network,

we quantitatively analyzed the formation, characteristics,

and structure of neuronal assemblies.
MATERIALS AND METHODS

Preparation of the organotypic slice culture

Wistar/ST rats (SLC, Schizuka, Japan) at postnatal day 6–7 were anesthe-

tized, and brains were rapidly removed and cut into 300 mm-thick slices

by using a DTK-1500 microslicer (Dosaka, Kyoto, Japan) in aerated, ice-

cold Gey’s balanced salt solution (Invitrogen, Gaithersburg, MD) supple-

mented with 25 mM glucose. Entorhino-hippocampal stumps were placed

on an OMNIPORE membrane filter (JHWP02500; Millipore, Bedford,

MA) that were laid on O-ring plastic disks (Hazai-Ya, Tokyo, Japan) (25).

Culture medium consisted of 50% minimal essential medium, 25% Hank’s

balanced salt solution (Invitrogen), and 25% horse serum (Cell Culture

Laboratory, Cleveland, OH), supplemented with 33 mM glucose. Slices

were maintained at 37�C in a humidified and CO2-enriched atmosphere.

The details on the slice culture preparations can be found in Koyama

et al. (25). Experiments were conducted in accordance with the National

Institutes of Health guidelines for laboratory animal care and safety.

Recording of neuronal activity

Experiments were performed at 7–11 days in vitro, and the recording of the

neuronal activity was conducted by fMCI. Slices were incubated with dye

solution for 1 h in a humidified incubator at 37�C in 5% CO2 (26). The dye

solution was ACSF (127 mM NaCl, 26 NaHCO3, 3.3 mM KCl, 1.24 mM

KH2PO4, 1.0 mM MgSO4, 1.0 mM CaCl2, and 10 mM glucose) containing

0.0005% OGB-1AM, 0.8% DMSO, 0.01% Pluronic F-127, 0.005% Cremo-

phor EL, and 100 mM sulfinpyrazone. The slice was then transferred to

a recording chamber at the temperature of 30–32�C. Spontaneously emerging

Ca2þ signals of the hippocampal CA3 network were imaged in slices loaded

with Oregon Green 488 BAPTA-1AM at a sampling rate of 100 frames/s.

Images were acquired with a Nipkow disk confocal microscope (CSU-X1;

Yokogawa Electric, Tokyo, Japan), iXon DV897 charge-coupled device

cameras (Andor, Belfast, Northern Ireland, UK), a Nikon FN1 microscope

(Tokyo, Japan), a Nikon water-immersion objective (16�, 0.80 NA), and

Solis software (Andor). Fluorophores were excited at 488-nm with an argon

laser (10 mW, 532-BS-AO4; Omnichrome, Chino, CA) and visualized with

a 507-nm long-pass emission filter. For each neuron, the fluorescence change

DF/F was calculated as (Fi-F0)/F0, where Fi is the fluorescence intensity at

timei and F0 is baseline. Then, a custom-made software (26) was applied to

reconstruct the event onset times from the onsets of individual Ca2þ transients.

Fig. 1 showed that the action potentials could result in the onsets of Ca2þ tran-

sients; in contrast the timing of spike-triggered events could be reconstructed

from the Ca2þ transient signals. Because there is a decay constant for each

Ca2þ transient (see the zoomed spike at the right of Fig. 1), the timing of
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reconstructed spike trains from the Ca2þ transients is not absolutely identical

to one of actual spike trains obtained by intracellular recording.

The details of the experiments and the analysis can be found elsewhere

(26). The fMCI data are available online at www.hippocampus.jp/data/.

Data analysis

The event synchronization

A variety of different measures, such as cost-based metric (27), Euclidean

distance-based metric (28), cross correlation-based metric (29,30), weighted

distance-based metric (31), and interspike interval-distance (32) have been

proposed to calculate the overall degree of synchrony between different

spike trains. The performance of these approaches has been evaluated

from both simulated and real spike trains (32), and showed that all measures

had high correlation (>0.91). After considering the computational cost and

the robustness of the analysis against noise, and the fact that event synchro-

nization is well suited for spike trains due to the transient dynamics of

spikes, in this study the event synchronization was used.

To calculate the correlation between spike trains, event synchronization

analysis was performed (33), followed by the generation of a correlation

matrix from multiple spike trains. To extract the synchronicity of events,

the maximum time lag i was defined that represented the time interval in

which two events were still considered synchronous. Considering two spike

trains x and y, event times tx
i and ty

j (i¼ 1, ., mx; j¼ 1, ., my), the number

of times that an event appears in x shortly after it appears in y (within a delay

t) was denoted by ct (xjy), it is

ctðxjyÞ ¼
Xmx

i¼ 1

Xmy

j¼ 1

Jt
ij

Jt
ij ¼ 1 if 0 < tx

i � ty
j %t

Jt
ij ¼ 1=2 if tx

i ¼ ty
j

Jt
ij ¼ 0 otherwise

:

8>><
>>:

(1)

The event synchronization measure was defined as

Qt ¼ ½ctðyjxÞ þ ctðxjyÞ�= ffiffiffiffiffiffiffiffiffiffiffi
mxmy
p

; (2)

thus,

0%Qt%1;

called the synchronization index in this study.

Spike trains were reconstructed from the Ca2þ transients. A previous study

has indicated that individual spikes that follow each other at>5 Hz are insep-

arable in the Ca2þ traces (33) and the decay constant of hippocampal CA3

pyramidal cells is 484 5 123 ms. Because of the inevitable optical noise

caused by the charge-coupled device camera, the precise determination of

the timing of spikes is difficult. At 100-Hz sampling rate, the detection jitter

could be up to 50 ms. Thus, in this study, 50-ms lag t was selected. In addition,

we ranged the t-value from 10 to 100 ms, which resulted in similar results (not

shown), suggesting that this analysis is robust against varying t-value.
FIGURE 1 Comparison of spike trains obtained by inter-

cellular recordings and Ca2þ transient signals recorded by

fMCI. The timing of the Ca2þ transients are correlated with

the actual neural spike trains indicated below the Ca2þ

signals. The decay of a Ca2þ transient is illustrated.

http://www.hippocampus.jp/data/
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Surrogate

To test the significance of the synchronization index and other estimations,

a surrogate data method (34) was applied in this study. An inhomogeneous

Poisson spike train was generated with a rate equal to the instantaneous

firing rate of the original spike trains; the temporal cross structure between

the surrogate spike trains is random, thereby the correlation of these surro-

gate spike trains (as estimated using event synchronization) approaches

zero. The null hypothesis was then tested by the surrogate method. This

operation is to calculate a surrogate eigenvalue (l
0
k) for Eq. 5.

Correlation matrix analysis

The above calculation resulted in a correlation matrix C for multiple spike

trains. The eigenvalue decomposition of C is given by

Cvi ¼ livi; (3)

where li is the eigenvalue and l1 % l2 % / % lM, and vi is the eigenvector

corresponding to li. The eigenvector describes the internal structure of

synchronized clusters and satisfiesX
i

v2
ik ¼ 1:

In fact, the index v2
ik is the weight with which a channel, i, contributes to

neuronal assembly k. Thus, information about the structure of synchronized

clusters can be described by combining the eigenvalues and eigenvectors to

give a participation index (PI) (35),

PIik ¼ lkv2
ik; (4)

where vik is the i element of eigenvector vk and lk is a corresponding eigen-

value. PIik indicates the contribution of channel i to the neuronal assembly k.

To decrease noise level, neurons with very small PIik (<0.1, P < 0.01,

giving 99% confidence levels) were ignored, whereas the others were

regarded as elements of the neuronal assembly.

Quantification of neuronal assembly

When all spike trains are completely correlated, the elements of C are equal

to 1 and the maximum eigenvalue is equal to the number of neurons M and

the other eigenvalues are zero. Thus, the highest eigenvalue can provide

information about global synchronization. To obtain a normalized value of

global synchrony, we derived a global synchronization index. First, a surro-

gate spike train is generated, using the surrogate correlation matrix R calcu-

lated, from which the highest eigenvalue l0 is determined. This procedure is

repeated 100 times. The mean of the highest eigenvalue calculated across

100 surrogates is denoted as l
0
. Once we obtain the l

0
, the global normalized

synchronization can be computed by

Syn Indx ¼ ðlM � l
0Þ=ðM � l

0Þ; if lM > l
0

0; otherwise
;

�
(5)

where Syn_Index ranges from 0 (no synchrony) to 1 (perfect synchrony).

If the original eigenvalue (lk) is greater than the mean of the averaged

surrogate eigenvalues (l
0
k) and standard deviation (SDk) of K (i.e.,

l
0
k þ K � SDk), it suggests the presence of clusters of synchronization.

The equation to compute the number of clusters is expressed as

NumCluster ¼
X

k

sgnðlk > ðl
0
k þ K � SDkÞÞ; (6)

where sgn is a sign function (i.e., if lk > ðl
0
k þ K � SDkÞ is true, sgn is 1,

otherwise it is 0) and K is a constant (here K ¼ 2, giving 95% confidence

levels). When the participation indices of neurons (PI) in a neuronal

assembly was>0.05, the neuron was defined as the node of a graph network

and the edge of the network was determined by the event synchronization.
Then, the shortest distance of this graph network was calculated and defined

as the distance of neural assembly. Based on the distribution of the PIik, the

contribution of each neuron to neuronal assemblies and the size of the

neuronal cluster were estimated. To reveal the relationship between the PI

and the characteristics of neuronal assemblies, the coefficients of variation

(CVs) and Shannon entropy of PI were calculated,

�
X

f ðPIikÞlog2f ðPIikÞ;

where f is the probability distribution of PIik. As for each neuronal assembly,

the mean physical distance among neurons is defined as the distance of

neuronal assembly.

Statistics

In this study, the data were provided as the means 5 SD. The coefficient of

variation (CV) was defined as the ratio of the standard deviation to the mean,

which is the normalized measure of dispersion of the probability distribu-

tion. The least-square linear regression method was used to calculate the

correlation relationship between two variables. Significance for all analyses

was set at p < 0.05.
RESULTS

Using fMCI approach we simultaneously recorded in each

preparation the activity of >100 neurons located in the

CA3 area of the hippocampus (Fig. 2, A and B). By analyzing

the full extent of the recording (>180 s), we calculated the

event synchronization of multiple spike trains using Eqs. 1

and 2. Correlation matrices were obtained (Fig. 2 C) in which

synchronization value of strongly pair-wised neurons was

close to 1 and the uncorrelated neurons approached 0. The

time delay, when two events were considered synchronous,

was 50 ms. Neurons with similar activity over the full extent

of recording (corresponding to a value in the correlation

matrix close to 1) were considered as part of a given func-

tional neuronal assembly (Fig. 2 D). To reduce the bias

of event synchronization caused by the data length, noise,

and artifacts that might have been introduced during the

recording process or parameter selection, a surrogate tech-

nique was applied to estimate the threshold for Eq. 6 and

to measure the number of neuronal clusters. Using this anal-

ysis, we calculated that an average 6 5 4 (mean 5 SD) neu-

ronal assemblies were present in the CA3 region in each

hippocampal organotypic slice preparation (n ¼ 25 slices).

To determine the spatial distribution of neurons forming

functional cell assemblies, we plotted all cells which pos-

sessed measurable Ca2þ transient and calculated their con-

tribution strength (participation index). A representative

example is shown in Fig. 3, depicting this particular network

to contain four neuronal assemblies with a variable synchro-

nization index. By analyzing the figure it is obvious that

neuronal assemblies are sparse and complex, but impor-

tantly, not locally clustered. Interestingly, only approxi-

mately one-half of the neurons participated in formation of

functional neuronal clusters (41.4 5 29.2%). An average

functional neuronal cluster consists of 23 neurons but a lower

number of neurons is also able to form a neuronal assembly
Biophysical Journal 98(9) 1733–1741



FIGURE 3 Details of the functional organization of neuronal assemblies

depicted in Fig. 1. The bottom plot in each figure shows the elements of

neuronal assembly. (Open circles) Neurons with Ca2þ signal and their phys-

ical positions in the CA3 region of the hippocampus. (Solid circles) Degree

of participation of a given neuron in the neuronal assembly. The diameter of

circles is proportional to the contributions to the neuronal assembly. The top

plot in each figure is the contribution of neurons to neuronal assemblies

(participation index). The participation index is equal to the diameter of solid

circles at the bottom plot. Superconnected hub neurons belonging to more

than one cluster are indicated by arrows (the different direction of arrows

indicates different hub). (A) The participation index and neuronal assembly

of the first cluster. (B) The participation index and neuronal assembly of the

second cluster. (C) The participation index and neuronal assembly of the

third cluster. (D) The participation index and neuronal assembly of the forth

cluster.

FIGURE 2 Illustration of spike train, correlation matrix, and synchroniza-

tion index of the hippocampal neuronal network. (A) Confocal image of

a slice loaded with Oregon Green 488 BAPTA-1. Bright signal indicates

active neurons in the CA3 pyramidal cell layer. Scale: 50 mm. (B) The raster

plot of the spike trains of 127 neurons is reconstructed from the Ca2þ

imaging. (C) Correlation matrix of spontaneous activities using event

synchronization at the maximal time delay of 50 ms. (D) Synchronization

index of four neuronal assemblies based on the random matrix theory and

surrogate techniques.
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(e.g., Fig. 3 D; n < 6). We also found that members of a

given neuronal assembly can be part of another functional

cell cluster at the same time (Fig. 3). These superconnected

neurons are likely the hub cells that form the skeleton of

the neuronal network (5). The statistical analysis of 25 slices

showed that an average 21.4 cells can be part of two, 15.2 of

three, and 6.8 of four clusters. On rare occasions, hub cells

were found connecting five or six different neuronal assem-

blies (3 and 1.5 hub cells per slice culture, respectively).

Organization of neuronal assemblies

In this study, spike trains from 25 slice cultures were

recorded and synchronization analysis of all slices was sepa-

rately performed. All slices were from the same region of

the brain and can therefore be reasonably assumed to possess

the same connectivity statistics. Indeed, each slice contained

4–6 functional assemblies (total 154 neuronal assemblies

were analyzed). Then, we analyzed the organization of the
Biophysical Journal 98(9) 1733–1741
neuronal assemblies pooled from all the slices in detail to

enable us to understand the collective dynamics of cell clus-

ters. The number of neurons in a neuronal assembly was

termed as cluster size, the shortest mean distance as cluster

distance, and the synchronization index as cluster strength.

By taking the logarithm of both sides (log10–log10)

(Fig. 4), the distribution of clustering strength, size, and



FIGURE 4 Power-law relationship among the clustering strength, size,

and distance of neuronal assemblies. (A) Log10–log10 graph of the clustering

strength and the size of neuronal assemblies. Slope: a ¼ 1.433; Pearson’s

correlation coefficient (r): r ¼ 0.813 (confidence interval (CI) 0.746–0.864,

P < 10�4). The variability by regression: VR ¼ 66.1%. (B) Log10–log10

graph of the clustering strength and the distance of neuronal assemblies.

Slope: a ¼ �2.092; r ¼ �0.610 (CI �0.707–0.491, P < 10�4);

VR ¼ 37.2%. (C) Log10–log10 graph of the distance and the size of

neuronal assemblies. Slope: a ¼ �1.173; r ¼ �0.654 (CI �0.742–0.544,

P < 10�4); VR ¼ 42.7%.
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distance of neuronal assemblies demonstrated power-law

(P(k) ~ k�a) distribution characteristics in all analyzed cases.

The clustering strength increased with the increase of cluster

size and decreased with the increase of the distance of

participating neurons (Fig. 4, A and B). The calculated Pear-

son’s correlation coefficients (r) were 0.813 (P < 10�4, 154

pairs) and –0.610 (P < 10�4, 154 pairs). The distance

between the neurons of the assemblies decreased with the

increase of the cluster size in the same manner (Fig. 4 C;

r ¼ 0.813, P < 10�4, 154 pairs). The Pearson’s correlation

coefficient was of high value (r ¼ 0.813), indicating that

the clustering strength of neuronal assemblies was strongly

dependent on the cluster size. The correlation coefficient

calculation also demonstrated that the cluster size was

inversely dependent on the distance of clustered neurons

(Fig. 4 C, r ¼ �0.654).

A similar nonlinear power-law relationship was found

among the participation indices of neurons (PIs) and the clus-

tering strength, cluster size, and cluster distance (Fig. 5). The

clustering strength, cluster size, and distance were decreased

with the increase of the coefficients of variation of PI (Fig. 5,

A–C; r ¼ �0.647, �0.896, and �0.695, P < 10�4, respec-

tively). To assess the degree of randomness that a neuron

contributes to a given cluster, we calculated the probability

distribution of PI values (entropy). The analysis showed a

potential power-law relationship between the various charac-

teristics of neuronal assembles and the entropy of PI. The

uncertainty of PI led to the increase of clustering strength,

size and distance of neuronal assemblies (Fig. 5, D–F;

r ¼ 0.519, 0.860, and 0.619, P < 10�4, respectively).

A closer observation indicated the presence of a knee at

the point 0.35 (log10 CV of PI, Fig. 5, A and B), and 0.55

(log10 entropy of PI, Fig. 5, D and E) of the curves. The clus-

tering strength and size of the cell assemblies were concen-

trated around these knee points. This finding indicates that

two types of scale-free networks might exist in the analyzed

154 networks. Detailed analysis of these two types of

networks is the subject of a separate study.

To analyze pathologic network activity, epileptiform

activity was induced by bath-application of 50 mM picro-

toxin, a GABAA receptor blocker. Almost all cells fired in

synchrony at ~30-s intervals, and thus, the cell assemblies

featured by a power-law relationship were no longer found

(n ¼ 3, data not shown). This validates our analysis, and

also suggests that the power-law regime in spontaneous

activity could serve as a diagnostic marker for pathologic

network operation.
Anatomical structure of neuronal assemblies

Using the fMCI method, we monitored the activity of >100

neurons in each CA3 area (n ¼ 25) and determined their

location in the network. We investigated the relationship

between various clustering parameters and the physical dis-

tribution of the neurons that fired together. The relationship
Biophysical Journal 98(9) 1733–1741



FIGURE 6 Relationships between various connectivity features of neu-

ronal assemblies and the spatial distribution of active neurons. (A and B)

The clustering strength and size of neuronal assemblies show no correlation

with the number of active neurons located in the slices (jrj < 0.02). (C)

The clustering distance is weakly dependent on the number of active neurons

located in the organotypic slice cultures (r ¼ 0.314). (D and E) The clus-

tering strength and size of neuronal assemblies have no correlation with

the distance of active neurons located in the slice (jrj < 0.15). (F)

The distance of neuronal assemblies shows a weak relation to the distance

of individual neurons (r ¼ 0.280).

FIGURE 5 Power-law relationship between various neuronal assembly

properties and the participation indices (PIs) of neurons. The clustering

strength, size, and distance of neuronal assemblies decrease with the coeffi-

cients of variation (CV) of the PI and increase with the entropy of the PI.

(A–C) Log10–log10 graph among the clustering strength, cluster size, and

cluster distances with the CV of PI. (D–F) Log10–log10 graph of clustering

strength, size, and distances with the entropy of PI.
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between the number of neurons or distance among neurons

and clustering strength, cluster size, and distance of neuronal

assemblies were analyzed, and the corresponding Pearson’s

correlation coefficients were plotted (Fig. 6). The results

showed that the clustering strength and the size of neuronal

assemblies were not correlated with the total number of

neurons (Fig. 6, A and B; r ¼ �0.107, �0.006). No correla-

tion between the mean distance of neurons located in the

slice preparation and the clustering strength and cluster

size was found (r ¼ 0.07 and 0.134; Fig. 6, D and E).

However, the clustering distance had a weak linear relation

to the number of neurons (r ¼ 0.314, P ¼ 0.105; Fig. 6 C)

and to the mean distance of neurons located in the slice

preparation (r ¼ 0.280, P ¼ 0.94; Fig. 6 F). These relations

indicate that the clustering strength and size of neuronal

assemblies are not correlated with the total number of
Biophysical Journal 98(9) 1733–1741
neurons and their physical distance. However, the clustering

distance of neuronal assemblies is weakly correlated with the

total number of neurons and the physical distribution of

neurons in the CA3 network.
DISCUSSION

Several methods, including cluster (44), graph theoretical

(45), and mixture-of-Gaussians analysis (46), have been

successfully applied to analyze the synchronization between

multiple neural signals. The cluster analysis method pro-

vides information about the connection architectures (the

tree), but does not describe the strength of clusters. The

graph theoretical analysis method transfers the synchroniza-

tion matrix into binary graphs by a threshold that is hard

to determine. The mixture-of-Gaussians analysis method
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reveals the number of clusters and the elements of each

cluster but fails to describe the strength of clustering. The

correlation matrix analysis method with event synchroniza-

tion that we used in this study can combine all the relevant

information needed to quantify synchronization of multiple

spike trains.

Most current experimental studies rely on random sam-

pling of neurons appropriate for studying the properties of

synaptic connections. Recent work has demonstrated that

strong connections are embedded into the sea of weakly con-

nected networks (5). The superconnected cells (hubs) are

proposed to have large influence on network dynamics

(4,5,24,36), thus it is important to selectively study particu-

larly strong connections. Analysis of the number and distri-

bution of hubs is important in the hippocampal network

because the introduction of such superconnected cells trans-

forms the normal functioning of the network to the epileptic

state (4). Because the highly influential and strong synaptic

connections in the network are few in number (5), it is chal-

lenging to find and characterize them. Because extracellular

recording methods provide characterization of a limited

number of simultaneously recorded neurons, they are unable

to provide the spatial distribution of the cells (37). Quadruple

in vitro whole-cell recoding technique is a powerful tech-

nique, but it is very labor-intensive. Although understanding

normal and pathological brain function is one of the ultimate

goals of neuroscience, many questions cannot be addressed

in the intact brain because available technology does not

allow simultaneous recording from many neurons. To over-

come these limitations, we chose the fMCI technique per-

formed on organotypic slice cultures that enabled us the

simultaneous visualization of large number of neurons’

activity. The slicing procedure significantly alters the con-

nectivity pattern (38): the estimated divergence of a CA3

pyramidal cell is 5000 in vitro (39) and 15,000 in vivo

(40,41). Because very small divergence is necessary to

ensure strong connectivity of the CA3 recurrent network

(42), the basic functional connectivity that characterizes

the in vivo condition is likely to be preserved in organotypic

slices. In addition, during the culturing process, axons

regrow and form synaptic connections with their targets.

Our observation that neurons at close proximity do not pref-

erentially form functional cell clusters suggests that the

recurrent axonal connections targeting distal elements are

efficiently regenerated (43).

Traditionally, networks of complex topology have been

modeled with the random-graph theory (47). It was, how-

ever, recognized that this model is unable to describe real

neuronal networks because of the unrealistically large level

of connectivity required. Efficient wiring of large neuronal

networks can be achieved by small-world architecture,

which is characterized by mainly locally connected neigh-

boring cells with a few number of long-range connections

(8), and by scale-free architecture, with power-law distribu-

tions of connectivity (13).
The random-graph and small-world models assume that

the number of elements (i.e.: neurons) is unchanged. How-

ever, necrosis and apoptosis decrease the number of neuron

whereas neurogenesis increases the hippocampal neuron

number during development and adulthood, and only scale-

invariant, or scale-free, networks are robust against changes

in cell number with time. Another characteristic of a scale-

free network is the existence of a superconnected hubs (13).

To our knowledge, our data is the first to show the existence

of such hubs, which further suggests the scale-free structure

of the CA3 hippocampal network. Such organization pro-

vides functional benefit for memory formation because infor-

mation can reverberate for the longest time among any other

type of network (4). Consistently, oscillatory patterns, funda-

mental for various hippocampal functions, is achieved if

the neurons contact using a power-law distribution (37).

Interestingly, another hippocampal network, the dentate

gyrus, has a fundamentally different organization. Computer

simulation has demonstrated that, although under normal

conditions the dentate gyrus neuronal network is stable,

changing the structure to a scale-free topology greatly

enhances the excitability of the dentate gyrus. Importantly,

the presence of hubs significantly increases the excitability

of the network leading to an epileptic discharge pattern (4).

One could conclude that neuronal hub structure is detri-

mental to network operation. It is likely the case only if

a large number of hubs present rendering the network is

hyperexcitable. Our experiment and analysis, however,

show that hub cells, especially with four or more intercluster

participation, are sparse. Such an arrangement would give

the hub neurons a larger role in the network and represent

a hierarchal organizational scheme of the network structure

(14). The scale-free topology of the hippocampal CA3

network with the existing hub cells is likely the reason

why this subfield is critical for seizure generation and

propagation (48–50).

In our experiment the hippocampal CA3 area was only

partially monitored, therefore it is reasonable to assume

that the cluster size, strength, and the clustering distance

might be larger in vivo. However, the total number of neu-

rons did not influence the cluster size and clustering strength,

thus these parameters are likely to be similar in the intact

brain. Previous in vivo neuroanatomical observations in

the cortex (51,52) and hippocampus (40,41) are indeed in

parallel with this prediction. These and numerous other

studies showed that pyramidal cells are interconnected

by one or very few contacts independent on the distance

between the connected neurons.

Currently hippocampal networks are modeled with small-

world topology (53). Although in vivo experimental work is

necessary to characterize the connectivity of hippocampal

cells in intact brain, our analysis combined with the

described experimental work strongly support that the hippo-

campal CA3 network has the power-law connectivity of

the scale-free network. With the advance of in vivo
Biophysical Journal 98(9) 1733–1741
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multineuronal recording method and the analysis, we foresee

that similar scale-free topology will be discovered in other

cortical regions (10,54,55), while interregional functional

connectivity has small-world topology (i.e., (9,56,57)).
CONCLUSION

Our findings suggest that the functional organization of the

CA3 network in hippocampal slice culture has a scale-free

structure. The analytical method described here can also be

employed to reveal fundamental properties of functional

cell assemblies in other parts of the intact nervous system.
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47. Erd}os, P., and A. Rényi. 1960. The Evolution of Random Graphs. Publ.

Math. Inst. Hung. Acad. Sci. 5:17–61.

48. Walther, H., J. D. Lambert, ., B. Hamon. 1986. Epileptiform activity

in combined slices of the hippocampus, subiculum and entorhinal cor-

tex during perfusion with low magnesium medium. Neurosci. Lett.

69:156–161.
49. Tancredi, V., G. G. Hwa, ., M. Avoli. 1990. Low magnesium epilepto-
genesis in the rat hippocampal slice: electrophysiological and pharma-
cological features. Brain Res. 511:280–290.

50. Derchansky, M., D. Rokni, ., P. L. Carlen. 2006. Bidirectional multi-
site seizure propagation in the intact isolated hippocampus: the multifo-
cality of the seizure ‘‘focus’’. Neurobiol. Dis. 23:312–328.

51. Kisvárday, Z. F., and U. T. Eysel. 1992. Cellular organization of recip-
rocal patchy networks in layer III of cat visual cortex (area 17). Neuro-
science. 46:275–286.

52. Ts’o, D. Y., C. D. Gilbert, and T. N. Wiesel. 1986. Relationships
between horizontal interactions and functional architecture in cat
striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6:
1160–1170.

53. Netoff, T. I., R. Clewley, ., J. A. White. 2004. Epilepsy in small-world
networks. J. Neurosci. 24:8075–8083.

54. Eguı́luz, V. M., D. R. Chialvo, ., A. V. Apkarian. 2005. Scale-free
brain functional networks. Phys. Rev. Lett. 94:018102.

55. Beggs, J. M., and D. Plenz. 2003. Neuronal avalanches in neocortical
circuits. J. Neurosci. 23:11167–11177.

56. Sporns, O., D. R. Chialvo, ., C. C. Hilgetag. 2004. Organization,
development and function of complex brain networks. Trends Cogn.
Sci. 8:418–425.

57. Salvador, R., J. Suckling, ., E. Bullmore. 2005. Undirected graphs of
frequency-dependent functional connectivity in whole brain networks.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:937–946.
Biophysical Journal 98(9) 1733–1741


	Scale-Free Topology of the CA3 Hippocampal Network: A Novel Method to Analyze Functional Neuronal Assemblies
	Introduction
	Materials and Methods
	Preparation of the organotypic slice culture
	Recording of neuronal activity
	Data analysis
	The event synchronization
	Surrogate
	Correlation matrix analysis
	Quantification of neuronal assembly

	Statistics

	Results
	Organization of neuronal assemblies
	Anatomical structure of neuronal assemblies

	Discussion
	Conclusion
	References


