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Perugia, Italy
ABSTRACT In this article, we propose a microstructure-based continuum model to describe the material behavior of spider
silks. We suppose that the material is composed of a soft fraction with entropic elasticity and a hard, damageable fraction.
The hard fraction models the presence of stiffer, crystal-rich, oriented regions and accounts for the effect of softening induced
by the breaking of hydrogen bonds. To describe the observed presence of crystals with different size, composition, and orien-
tation, this hard fraction is modeled as a distribution of materials with variable properties. The soft fraction describes the remain-
ing regions of amorphous material and is here modeled as a wormlike chain. During stretching, we consider the effect of bond-
breaking as a transition from the hard- to the soft-material phase. As we demonstrate, a crucial effect of bond-breaking that
accompanies the softening of the material is an increase in contour length associated with chains unraveling. The model
describes also the self-healing properties of the material by assuming partial bond reconnection upon unloading. Despite its
simplicity, the proposed mechanical system reproduces the main experimental effects observed in cyclic loading of spider silks.
Moreover, our approach is amenable to two- or three-dimensional extensions and may prove to be a useful tool in the field of
microstructure optimization for bioinspired materials.
INTRODUCTION
Spider silk has attracted the attention of many scientists due

to its extraordinary mechanical properties, combining a very

high initial stiffness, comparable in some cases to steel and

even Kevlar (e.g., dragline silks), with a high ductility

accompanied by a surprising capacity for undergoing large

recoverable strains and for dissipating energy. A less studied,

very interesting property of spider silk that will be consid-

ered in this article is the self-healing capacity of spider silk

due to bond reconnection upon unloading (1–3).

The analysis and modeling of these properties, although

interesting from a biological point of view in describing

the web’s capacity to capture different insect species, is

now, from an engineering perspective, considered crucial

to the design of new, bioinspired materials. In particular,

the deduction of predictive models that connect the meso-

scale properties of the material with the macroscopic material

response can deliver crucial information for the design of

materials produced by genetic engineering (4,5).

From a theoretical point of view, several compelling tasks

are accomplished by this material, ranging from the descrip-

tion of the roles of hysteresis and recovery in the material

efficiency (1,3), to the influence of humidity and spinning

force (3,6) as a possible control mechanism to obtain the

different silks each spider can produce (7), to the main role

of supercontraction (i.e., the moisture-induced shrinkage of

spider web threads (8)).

Schematically, spider silk can be viewed as a semicrystal-

line material constituted by amorphous flexible chains rein-
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forced by strong and stiff crystals, thus having interesting

analogies to polymer nanocomposites and semicrystalline

polymers. Although the mechanics of molecular assembly

and the detailed microstructure of spider silk remain unclear,

important insights into the structure of the silk filaments have

been recorded. First, it is now clear that the reinforcing

crystals are made by hydrophobic polyalanine sequences

arranged in b-sheets. Moreover, microscale studies have

clarified the mechanical role of the different material compo-

nents (see, e.g., (9–11)).

An important molecular model of spider dragline elasticity

was proposed by Termonia (12). In that work, the author

described a regular lattice of nodes connected by end-to-

end vectors of chain strands that could be either crystalline

or amorphous. The former case involved a linear stress-strain

relationship, whereas the latter involved a nonlinear relation-

ship based on the inverse Langevin function (see, e.g.,

Treloar (13)). The resulting numerical simulations give

important insights into the percentage, shape, and dimen-

sions of the crystalline fraction, which creates inside the

amorphous regions stiffer layers that are crucial for the

high initial macroscopic stiffness and the energy dissipation

properties due to strain-induced link breaks and unbinding

processes of the protein assemblies.

Beyond the Termonia model, several other approaches

have been proposed in the literature to explain the mechan-

ical properties of spider silk. For example, hierarchical chain

models were proposed by Becker et al. (2) and Zhou and

Zhang (14). These approaches consider spider silk as

composed of many bricks organized in a hierarchy that at

its deepest level has b-crystallites. In these models, the origin

of the elasticity of the polymer is entropic and the overall

macroscopic response is the result of the energy exchanges
doi: 10.1016/j.bpj.2010.01.021
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of the different involved scales. Moreover, Porter et al. (15)

propose a mean-field theory model for polymers in terms of

chemical composition and degree of order in the polymer

structure using group interaction modeling procedures

(www.gimprops.com).

All these computational models have become important

instruments for describing the material behavior at the

different scales underlying the exceptional properties of

spider silks. However, the main mechanisms correlating

the micro- and mesostructural properties with the macroscale

response are still not understood. Such an understanding

requires the deduction of analytical models—crucial also

for the optimization of bioinspired dissipative materials

(4)—that deliver simple stress-strain relationships, for

a general loading history, as a function of the material

composition.

The importance of such analytical models is particularly

evident in the high variability of the material response

(16). Indeed, experiments on spider silks show that the

mechanism of energetic competition between the hard

crystal fraction and the amorphous entropic fraction of the

material is the basis of the capacity of spiders to produce

silks with very different macroscopic material properties.

Actually, the experiments suggest that these arthropods

have the ability to control the properties of both the amor-

phous and the crystalline fractions through the spinning

process and the chemical composition (see (1,6,7,16) and

references therein). We describe in this article, for example,

the significantly different behaviors of the stiffer silks,

produced in the major ampullate gland and constituting radii

and frame threads characterized by a higher degree of crys-

tallization, and the more compliant silks, produced in the

flagelliform glands, which are characterized by a lower

degree of crystallization.

Finally, it is important to remark that an effective model

must include such a description for loading, unloading, and

reloading. In particular, it has to describe the energy dissipa-

tion effect associated with hydrogen bonds breaking, the

energy returned upon unloading, which is important in deter-

ring the escape of an insect, and the behavior upon reloading

by accounting for the recovery properties induced by the re-

cross-linking effect (1).

In this article, we deduce a simple analytical model to

describe the mechanical behavior of silk threads. More

specifically, starting from the basic idea of the Termonia

model, we propose a miscrostructure-based continuum

model of spider silk relying on two basic building blocks:

an amorphous network and an ordered network rich in b-

sheets. Our model is a natural extension of the model

proposed by De Tommasi et al. (17,18) to analyze the

damage-induced softening behavior of rubberlike materials.

The key feature of this approach is the assumption of a mate-

rial configuration evolving at the microstructure scale. The

role of this point of view in modeling polymeric materials

is discussed by De Tommasi et al. (17,18). A second crucial
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assumption of our model is the introduction at each material

point of a distribution of materials with variable properties,

reproducing the amorphous character of the hard fraction

that is constituted by different-sized and differently oriented

crystal sheets (19).

Our simple model allows us to include all the main exper-

imental effects previously described. Specifically, we obtain

the two different behaviors observed in major ampullate and

capture silk by varying the crystal fraction. We describe the

ability to control chain alignment in the amorphous phase

by a corresponding modification of the constitutive assump-

tion in this phase only, and we show that in this way the model

can reproduce the observed mechanical variations. In partic-

ular, we show that one of the main differences observed in

the stress-strain behavior of spider silk, i.e., the presence of

a stress plateau or continuous hardening (i.e., S-shaped versus

J-shaped stress-strain curves) can be addressed by a competi-

tion between the (entropic) hardening effect of the amorphous

fraction and the (damage-induced) softening of the hard frac-

tion. The experimental comparison is significant not only for

loading, but also for unloading and reloading.

We note that our model is amenable to three-dimensional

extension (17,20), which is essential for application to the

analysis of other biomaterials and bio-inspired materials.

Moreover, it is important to underline that in our model,

as in the model proposed by De Tommasi et al. (17), one

can deduce the constitutive properties and the probability

distribution functions by simple extension cyclic tests.

Several generalizations of the model can be considered to

describe important effects that are neglected here, such as

viscoelastic behavior and permanent strains, or explicit

deduction of the evolution laws for breaking and re-cross-

linking of hydrogen bonds—here introduced phenomenolog-

ically—from the energy landscape at the microstructure scale.

To understand the relevance of this kind of model for

spider silk, we describe here the schematic behavior of silk

and numerous other biomacromolecules (21–23) (Fig. 1).

The chain is represented as an alternating sequence of unrav-

eled (soft-phase) and folded (hard-phase) segments that

under chemical or mechanical loading can undergo micro-

structural modification. At a given microstructure configura-

tion (fixed folded fraction), the behavior of the protein can be

considered elastic and its mechanics can be well described by

the theory of entropic elasticity. In this framework, the force-

extension behavior is determined by the molecular chain

extension and the related configurational entropy. As the

force is increased, some of the weak links, e.g., H-bonds,

in the hard phase may eventually break and a percentage

of the linked fraction switches to the unfolded state, with

two main effects: part of the material undergoes a transition

from the hard phase to the soft phase, and the contour length

changes (Fig. 1 B) as a consequence of the chain unraveling

associated with bonds breaking. A corresponding increase in

configurational entropy and a drop in force, f, is then

observed.

http://www.gimprops.com
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FIGURE 1 Schematic behavior of a single protein macromolecule. (A)

Scheme of a typical force-displacement diagram (bold lines) under a WLC

assumption, using different equilibrium branches with different contour

lengths (a–e). (B) Schematic of the microstructure configuration of the equi-

librium branches in A.
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As an explicit example, we show the transition of the

chain between different equilibrium force-displacement

branches—corresponding to different folded fractions—

under the hypothesis of a wormlike chain (WLC) law (24)

(Fig. 1 A, bold lines). Our approach takes into account the

microstructural changes by considering the variations of

two internal variables: phase percentage and contour length.

If we then consider unloading, single-molecule experi-

ments show that some of the previously broken links can

reform (1,21,23). This effect is reflected in the observation

of force discontinuities also upon reloading similar to those

observed during the primary loading. In the framework of

our model, this corresponds to the reverse transition, upon

unloading, of part of the soft phase to the hard phase and a

corresponding decrease in the contour length. This im-

portant effect leads to a definition of spider silk, as well as

other protein-constituted materials (1,2,21), as self-healing

materials.

Note that the mesoscopic structure we wish to model is

complex, because spider silks are constituted by a full distri-

bution of b-sheet crystals with variable strength and orienta-

tion (19) inside a matrix of amorphous material. Therefore,

in our model, we assume that at each point there exists

a mixture of hard and soft phases. As the strain is increased,

the hard fraction can undergo a transition to the soft phase,

and it is assigned a probability distribution of materials with

variable activation and transition thresholds. Based on

previous considerations (see also Oroudjev et al. (23)), we

describe the corresponding microstructure modification
through a simple phenomenological assumption of the depen-

dence of a macroscopic contour length on the percentage of

soft (unraveled) fraction.

Finally, because our focus is on a description of rate-inde-

pendent dissipative effects, we assume that the activation and

transition thresholds and the variation of the contour length

depend only on the deformation of the thread, and we thus

neglect inertia and rate effects (see Puglisi and Truskinovsky

(25) for a related theoretical discussion in a different

context).
THE MODEL

Consider a homogeneous one-dimensional body with refer-

ence length L, constituted at each point x ˛ (0, L) by a distri-

bution of different materials. A fraction a (soft fraction) of

such mixture describes the amorphous percentage of macro-

molecules. This fraction is here modeled as a WLC, with

a stress-strain law that, according to the approximate form

proposed in Marko and Siggia (24), can be written as

ss ¼ ŝsð3; 3cÞ ¼ Es

�
1

4

�
1� 3

3c

��2

�1

4
þ 3

3c

�
: (1)

Here, ss is the stress in the soft fraction, 3 is the strain, 3c

plays the role of a contour length and assigns a limit strain,

as in Termonia (12), whereas Es is the elastic modulus of

the soft fraction (dependent on the persistent length and

temperature in the original model; see, e.g., Marko et al.

(24,26) and references therein). It is important to note that

the architecture of our model does not depend on the explicit

choice of ŝs: it is possible to consider other stress-strain

constitutive equations that describe the high-strain entropic

hardening effect, such as equations based on the inverse Lan-

gevin function or other phenomenological relations (27).

The remaining fraction of the mixture (hard fraction)

describes the stiffer percentage of material in the crystalline

state, covering the possibility of strain-induced damage. For

simplicity, similar to De Tommasi et al. (17,18), we consider

here a linear elastic behavior in the hard phase, i.e.,

shð3Þ ¼
0; if 3%3a;
Ehð3� 3aÞ; if 3a < 3 < 3t;
ssð3; 3cÞ; if 3R3t;

8<
: (2)

where Eh is the elastic modulus of the hard fraction, 3a repre-

sents the activation threshold, and 3t represents the transition

threshold (see Fig. 2 A). Thus, the material is activated at 3¼
3a and at 3 ¼ 3t it undergoes a transition to the soft phase due

to the process of strain-induced hydrogen debonding.

To take care of the irregular and strongly variable structure

of the crystallites, depending on the processing characteris-

tics (19), we assign this fraction as a distribution of materials

with variable activation and transition thresholds. More

specifically, we assume for simplicity that although both 3a

and 3t may change, the strain domain of each hard material,
Biophysical Journal 98(9) 1941–1948
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3t � 3a ¼ d; (3)

is fixed, so that each protein chain undergoes a transition to

the soft phase after a fixed strain increment from activation.

As a consequence, the distribution of the hard material can

be represented by a single-parameter probability function,

p¼ p(3t). For the sake of definiteness, we consider a Gaussian

type distribution:

pð3tÞ ¼ xe�bð3t�gÞ2 : (4)

The parameter x accounts for the normalization conditionRN
0

pð3tÞ d3t ¼ 1.

We point out that to ensure that all activation thresholds

are nonnegative (i.e., 3a R 0), we restrict Eq. 3 to the links

with 3t > d, whereas for all other links, with 3t % d, we

assume that 3a ¼ 0. This assumption ensures also that at

3 ¼ 0, the finite fraction of links
R d

0
pð3tÞ d3t is contempo-

rarily activated, with a nonzero initial stiffness of the system.

We remark also that although important information on the

various constitutive functions may be deduced from single-

molecule force spectroscopy (23) and solid-state NMR

measurements (11), in the spirit of De Tommasi et al. (17),

it is possible to deduce such information by simple cyclic

force-displacement experiments on the spider silk threads.

Finally, in accordance with the previous discussion, to

show that the contour length of the protein chains grows

with the percentage of unfolded material, we assume that

3c ¼ 3̂cðaÞ; (5)

where 3̂c is an increasing function.

To describe the behavior of the introduced damageable

amorphous material, we consider separately the responses
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of the system upon loading, unloading, and reloading. In

all three cases, we show that it is possible to quantitatively

reproduce the experimental curves. We remark, however,

that due to the small reproducibility of the experimental

behavior of spider silks (see, e.g., Guinea et al. (6)), the

main aim of comparison with the experiments relies on the

ability of our model to relate different classes of experi-

mental curves to different microstructural distributions.

Primary loading

Consider first a primary loading path, starting from an initial

configuration characterized by a fraction a0 of material in the

soft phase. At the given 3, according to Eq. 2, all the hard

material for which 3a ¼ 3t – d < 3 is activated. Within this

fraction, the material for which 3t > 3 is still in the hard

phase, whereas the material for which 3t < 3 has changed

state to the soft phase (see Fig. 2, A and B). Thus, during

the primary loading path, the fraction of soft material is given

by

a ¼ alð3Þ ¼ a0 þ
Z 3

0

pð3tÞ d3t: (6)

As shown in Fig. 2 B, the fraction of hard material,RN
3þd

pð3tÞ d3t, is still unstressed, i.e., nonactive, whereas

the fraction of active hard material is
R 3þd

3
pð3tÞ d3t. As

a result, under an additive assumption of the stress of the

hard and the soft phase, and under the hypothesis in Eq. 5,

we can deduce the overall stress-strain relation during

loading:

s ¼ slð3Þ ¼ alð3Þŝs

�
3; 3̂c

�
alð3Þ

��
þ Eh

�Z d

3

3 pð3tÞ d3t

þ
Z 3þ d

maxð3;dÞ
ð3� ð3t � dÞÞpð3tÞ d3t

!
:

(7)

(Note that here and in the text below, for the sake of
simplicity, we assume that the integrals are null if the upper

integration limit is lower than the lower limit). In Eq. 7, in

accordance with the previous discussion, the first integral

represents the hard material with 3t < d for which we

assumed 3a ¼ 0, and the second integral represents the

hard material with 3t > d and 3a ¼ 3t – d.

The stress-strain behavior obtained when the soft fraction

varies is shown in Fig. 3 A. As noted above, the markedly

different experimental response of the silks of different

spider species or of different glands of the same spider

should be considered a result of an ability to control

(through spinning speed, water content, and chemical

composition) the properties of both the amorphous and the

crystalline fraction (1,7,8,28). A first example of this ability

is the dependence of the stress-strain response on the
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constitutive properties of the amorphous phase (Fig. 3 A). In

particular, curves a–c are characterized by an increasingly

stiffer amorphous fraction, whereas the hard phase remains

the same. Observe that for curve c the system shows a hard-

ening behavior up to breaking, whereas for a and b the

system is characterized by a significant softening in anticipa-

tion of the hardening of the amorphous phase. This is qual-

itatively in accordance with experimental effects described

by others (6,8,28) in studies of the effect of increased stiff-

ness controlled by spinning forces or spinning speed (Fig. 3

B). The same experiments also show that when the stiffness

of the soft phase is increased, the ultimate stress grows,

whereas the ultimate strain decreases, and this was repro-
duced by our model (Fig. 3 A). The theoretical curves well

describe the experimental curves in Fig. 3 B corresponding

to different prestrains performed on the threads before the

loading experiments. Prestrain induces chain alignment in

the amorphous fraction, with corresponding increasing stiff-

ness from a to c.

The effect of variation of the percentage of crystal fraction

is described in Fig. 4. The ability of spiders to vary the degree

of crystallization, thus delivering different stiffness and

toughness to differently aimed silks, is well documented

(1,7). In particular, the experiments show (see also Fig. 4 B)

that the frame silk, with higher crystallization, is characterized

by an S-shaped force displacement curve. On the contrary, the

viscid silk, with lower crystallization, is characterized by an

always increasing hardening, i.e., a J-shaped curve. This

behavior is shown in Fig. 4 A, where two materials with

different crystal fractions are considered. Similar consider-

ations can be extended to the important influence of humidity

on the mechanical response of spider silk. Indeed, as the

humidity increases, the degree of crystallization decreases

(12).
Biophysical Journal 98(9) 1941–1948
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Unloading

Consider now the case of unloading. For the given strain, the

stress upon unloading is lower than during loading, because

of the evolution of the reference configuration and because of

the lower hard fraction due to previous hard-soft transition.

Specifically, if we consider an unloading path, 3 : 3M/0,

we find that all the material with 3t < 3M changed state to

the soft phase (Fig. 2 C):

a ¼ auð3MÞ ¼ a0 þ
Z 3M

0

pð3tÞ d3t: (8)

Thus, the contribution of the hard fraction is the result of

the mechanical response of the amount of hard material

that did not undergo a phase transition (i.e., 3t < 3M) that

has 3a ¼ 3t – d < 3. As a result, the stress-strain relation

upon unloading is given by the following law:

s ¼ suð3; 3MÞ ¼ auð3MÞŝs

�
3; 3̂cðauð3MÞÞ

�
þ Eh

Z 3þ d

3M

ð3� ð3t � dÞÞpð3tÞd3t

(9)

To describe the behavior of our system upon unloading, in

Fig. 5 we show the cyclic force-displacement curves for

the same materials described in Fig. 4. The results well repro-

duce the experimental behavior observed by, e.g., Gosline

et al. (7). Observe in particular the transition from an S shape

for loading to a J-shaped curve upon unloading. Also, these

results show the possibility of regulating both the dissipated

and the returned energy upon unloading by varying the frac-

tion of crystallized material. This ability is crucial to the

production of differently used silks. We remark that,

although we ignore this in the interests of compactness,
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FIGURE 5 Unloading behavior. The system is unloaded at 3M ¼ 0.18.

The constitutive parameters are listed below the figure.
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our model can deliver, in the spirit of De Tommasi et al.

(17), a complete energetic analysis with an analytic decom-

position of the external work into stored and dissipated

energy.

Reloading

One of the most interesting properties of spider silks is the

possibility of recovering upon simple rest after unloading

(1,3). This crucial effect is due to the possibility of healing

some or all of the previously broken hydrogen bonds.

To introduce this effect in the model here considered, in the

spirit of D’Ambrosio et al. (29), one should describe the

evolution law regulating the process of reforming links.

Here again, we consider a simple phenomenological approach

and assume that part of the material that changed phase during

loading—i.e., the material with 3t< 3M, where again 3M is the

maximum value of the previously attained strain—can

undergo the reverse transition, soft / hard (Fig. 2 D), in

the unloading, 3 : 3M/0. Specifically, we assume that a frac-

tion c of the material with 3t ˛ (z3M, 3M) undergoes this tran-

sition. Both the parameter c ˛ (0, 1) and z ˛ (0, 1) should be

considered as temperature-dependent and are macroscopic

counterparts of the complex reconnecting processes at the

microscale.

Under these assumptions, if we consider a reloading path

3 : 0/3M, the fraction of soft material during reloading is

given by

a ¼ arð3;3MÞ ¼ a0 þ
Z maxð3;z3MÞ

0

pð3tÞ d3t

þ ð1� cÞ
Z 3m

maxð3;z3MÞ
pð3tÞ d3t:

(10)

The stress due to the hard fraction is related to the contribu-

tions of the healed fraction c and the hard fraction that never

changed phase (Fig. 2 D). Thus, we find that upon reloading,

the stress-strain law is given by

s ¼ srð3; 3MÞ ¼ arð3; 3MÞŝs

�
3;3̂cðarð3; 3MÞÞ

�
þ c Eh

Z minð3þ d;3MÞ

maxð3;z3MÞ
ð3� ð3t � dÞÞpð3tÞ d3t

þ Eh

Z 3þ d

3M

ð3� ð3t � dÞÞpð3tÞ d3t:

(11)

Fig. 6 shows the behavior under reloading of the same

system considered in Fig. 5. In this case also, our simple

model reproduces the main experimental effects (see, e.g.,

(1,3)). In particular, we observe that the system describes

an hysteretic behavior and an S-shaped force-displacement

behavior for both loading and reloading. Moreover, when re-

loaded, the system reconnects at 3 ¼ 3M to the primary

loading path, and if the strain is increased even more, it

follows the same path as primary loading. For a fixed

maximum strain, in successive cycles, 3M/0/3M, the
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FIGURE 6 Cyclic loading. The system is unloaded at 3M ¼ 0.18. The

constitutive parameters are listed below the figure.
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system follows the same hysteresis loops. These effects are

described explicitly in the experiments by Vehoff et al. (3).

We also remark that the experiments of Denny (1) show

that by increasing the temperature, T, the material can

undergo a complete recovery. This effect can be described

in our model by simply considering temperature-dependent

recovery parameters: z ¼ ẑðTÞ and c ¼ ĉðTÞ.
FIGURE 7 Cyclic loading for frame and viscid silks. (Upper) Model

behavior. For the frame silk, we unloaded at 3M ¼ 0.18, whereas for the

viscid silk we unloaded at 3M ¼ 1. The constitutive parameters are listed

below the figure. (Lower) Experimental behavior of frame and viscid silk,

reproduced from Denny (1).
CONCLUSIONS

As a concluding comparison with experiments, we show in

Fig. 7 that our model can describe quantitatively the behavior

experimentally observed by Denny (1) in cyclic loading of

frame and viscid silks. The possibility of reproducing accu-

rately the main experimental effects observed in spider silks

relies on the ability of the model to reproduce the principal

mechanisms underlying the amazing properties of these

materials, i.e., the mechanisms of entropy release associated

with chain unraveling during bond breaking and the amor-

phous character at the microstructure scale, with distributed

processes of breaking and reforming of H-bonds.

It is important to remark that our model is amenable to

three-dimensional extension (17,20,30), and this is essential

for the analysis and design of bioinspired materials. More-

over, we underline that although in all comparisons with

experiments we chose the constitutive functions to reproduce

the macroscale experiments, important information on these

functions may be deduced from single-molecule force spec-

troscopy (23) and solid-state NMR measurements (11).

Finally, we remark that using the approach in De Tommasi

et al. (17), it is possible to experimentally deduce the consti-
tutive parameters and the distribution function p by simple

cyclic extension tests on the material.

Thus, our microstructure-based continuum model may

provide an instrument that can describe how the macroscale

material properties vary with the microstructure and it thus

constitutes, in our opinion, an important tool in the field of

design of new dissipative materials. Moreover, the approach

here proposed can be extended to other biomaterials charac-

terized by similar mechanisms of dissipation at the micro-

scale (22,31).
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