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Predicting Interaction Sites from the Energetics of Isolated Proteins: A New
Approach to Epitope Mapping
Guido Scarabelli, Giulia Morra, and Giorgio Colombo*
Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale Delle Ricerche, Milan, Italy
ABSTRACT An increasing number of functional studies of proteins have shown that sequence and structural similarities alone
may not be sufficient for reliable prediction of their interaction properties. This is particularly true for proteins recognizing specific
antibodies, where the prediction of antibody-binding sites, called epitopes, has proven challenging. The antibody-binding prop-
erties of an antigen depend on its structure and related dynamics. Aiming to predict the antibody-binding regions of a protein, we
investigate a new approach based on the integrated analysis of the dynamical and energetic properties of antigens, to identify
nonoptimized, low-intensity energetic interaction networks in the protein structure isolated in solution. The method is based on
the idea that recognition sites may correspond to localized regions with low-intensity energetic couplings with the rest of the
protein, which allows them to undergo conformational changes, to be recognized by a binding partner, and to tolerate mutations
with minimal energetic expense. Upon analyzing the results on isolated proteins and benchmarking against antibody complexes,
it is found that the method successfully identifies binding sites located on the protein surface that are accessible to putative
binding partners. The combination of dynamics and energetics can thus discriminate between epitopes and other substructures
based only on physical properties. We discuss implications for vaccine design.
INTRODUCTION
Understanding protein-protein interactions is a crucial step in

the development of a molecular view of biological processes

and in learning how to manipulate them. The progress of

genomics and proteomics provided a great deal of information

on the sequences, thermodynamics, kinetics, biological func-

tions, and structures of an ever-growing number of protein

complexes. However, these techniques can be expensive

and time-consuming. Consequently, computational methods

have gained increasing importance in the field: the ability to

predict interaction interfaces is in fact a fundamental prereq-

uisite to understand complex formation, particularly for novel

folds with little or no similarity with known molecules.

Protein interaction sites have been analyzed in terms

of sequences, physico-chemical profiles, B-factors, solvent

accessibility, structures, homologies, and similarities, etc.

(1–10). These properties have been combined in different

ways in algorithms for the prediction of protein interfaces

in biomolecular complexes (for a review on methods and

their performances, see (1)).

A particular role in protein-protein interactions is played

by antigen-antibody recognition. The limited number of

available protein-antibody structures has somehow hampered

the development of methods for the prediction of antibody

binding sites, known as epitopes (11,12). However, the

renewed interest in vaccine development gave new impulse

to this field. Vaccination represents one of the most reliable

strategies to fight infections and overcome the onset of drug-

resistance by an ever-growing number of pathogens (13–17).
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One of the main challenges in the discovery of new vaccines

is the discrimination of the components capable of eliciting

a protective immune response from the thousands of differ-

ent (macro)molecules of the pathogen. In this context, the

reverse vaccinology approach (RV) (18–22) has introduced

a new paradigm of candidate selection and vaccine develop-

ment. RV involves the analysis of multiple genomes of related

pathogens, followed by in silico identification and experi-

mental expression of potential surface-exposed proteins.

Vaccine candidates are then produced and tested for their

capacity to induce protective immunity (20,23). This strategy

led to the identification of protective vaccines against Neisse-
ria meningitidis or Group B Streptococcus.

Complementing RV strategies with structural informa-

tion on the antigens may open up a new era of vaccinology

based on the possibility of rationally designing new protein-

vaccines with optimized properties. High-resolution struc-

tural information on relevant antigens in complex with their

respective antibodies or in isolation has indeed begun to

appear (24,25).

A fundamental step toward structural-vaccinology relies on

our ability to predict epitopes for a given protein and elucidate

their physico-chemical properties. The structure, dynamics,

and energetics of a specific site on a protein domain, or of

the protein domain as a whole (24), play a main role in deter-

mining the antigenic properties of specific (fragments of)

protein constructs, the interaction of epitopes with antibodies,

and their relevance for a protective response (26).

An epitope may be either a short linear stretch from the

protein sequence, defined as a continuous or linear epitope,

or a three-dimensional, organized substructure consisting

of different segments that come together in the three-dimen-

sional structure, but are distant in the primary sequence,
doi: 10.1016/j.bpj.2010.01.014
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known as discontinuous or conformational epitope. Most

neutralizing epitopes in antibody-mediated responses are

discontinuous. The fundamental mechanism of action of

most vaccines in clinical use is to present these complex

structures to antibodies that specifically bind them and start

neutralization processes (24,27).

Prediction of linear epitopes can now be reliably achieved

using sequence-dependent methods (12,28). In contrast, the

prediction of conformational epitopes is more challenging

and the knowledge of the three-dimensional structure of

the protein-antigen is a prerequisite. Several correlations

among flexibility, solvent accessibility, geometrical proper-

ties, approximations of protein shape together with clustering

of neighboring residues, and antigenicity, have been proposed

(12,29–33).

Most epitope prediction methods are based on the use of

single structures from x-ray crystallographic studies. Pro-

teins are, however, highly dynamical entities, and their func-

tions are intimately correlated to motions (34–38). All-atom

molecular dynamics (MD) simulations allow the investiga-

tion of these motions on a range of timescales, revealing

interactions, correlations, and conformations that may be

relevant in determining recognition processes. The utility

of MD simulations in functional elucidation, analysis, and

drug design has already been proved (29,35,39–42).

Herein, we report on the application of a novel method

for epitope prediction based on the integrated analysis of
TABLE 1 Performance of the MLCE method in epitope prediction

Antigen Antibody complexes

MD

AUC

MM

AUC Sen

1AO3 1FE8, 2ADF 0.5 0.37 0

1AUQ 1OAK 0.89 0.95 0

1BV1 1FSK 0.64 0.41 0

1CK4 1MHP 0.88 0.71 0

1CMW 1BGX 0.64 0.62 0

1D7P 1IQD 0.82 0.85 0

1GWP 1AFV 0.58 0.55 0

1HCN 1QFW 0.81 0.73 0

1K59 1H0D 0.87 0.87 0

1KDC 1NSN, 2GSI 0.67 0.66 0

1KZQ 1YNT 0.56 0.61 0

1P4P 1RJL 0.98 0.98 1

1PKO 1PKQ 0.84 0.7 0

1POH 2JEL 0.25 0.24 0

1TFH 1AHW 0.69 0.66 0

1UW3 1TPX 0.94 0.91 0

2VPF 1BJ1, 2FJG, 2FJH, 1TZH, 1CZ8 0.49 0.56 0

3LZT 1FDL, 1YQV, 1MLC, 1IC4, 1NDG,

1DQJ, 1NDM, 1P2C, 2ZNW

0.67 0.66 0

7NN9 1NCA, 1NMC 0.72 0.57 0

Mean 0.71 0.66 0

Columns 1 and 2: List of the Protein DataBank (PDB) codes of the isolated prote

their respective antibodies, which were used for benchmarking. Columns 3–9: Ar

energies (MLCE) approach on the structures obtained from extensive molecular d

on the PDB structure; sensitivity; specificity; accuracy; positive predicted value (

calculated from MD simulations.

*Calculated according to Ponomarenko and Bourne (11).
the energetic and structural-dynamical properties of antigens

(43–47). Our approach aims at identifying ab initio antigen

substructures poised to interact with binding partners in

general, and antibodies in particular. The method is based

on the physico-chemical properties of the antigen protein in

isolation (Table 1, and Table S1 in Supporting Material),

without requiring any previous knowledge on antibody

binding of related homologs, or training with a data set of

known sequences, geometric descriptors, antibody-protein

interactions, etc. Reliable physics-based prediction of a

discontinuous epitope may have implication for vaccine

design, allowing the development of mutants or mimics that

favor the specific conformation required for antibody binding

or the optimization of antigen stability without affecting the

epitope site.
MATERIAL AND METHODS

Theoretical justification

Epitopes are parts of the protein that can be recognized by a binding partner.

Their sequences are typically mutation-tolerant (32), suggesting that they are

not involved in the stabilization of the antigen fold. These sites have evolved,

and must continuously evolve, to escape recognition by the host immune

system, without impairing the native structure of the protein necessary for

function in the pathogen (see (24) and references therein). Moreover, epitopes

can be flexible and easily undergo conformational fluctuations (11,29,48–50).

In other words, they are not involved in major intramolecular stabilizing inter-

actions with other residues of the protein important to preserve the fold.
sitivity Specificity Accuracy PPV*

No. of

epitopes

Interface

residues

.12 0.77 0.65 0.1 2 33

.78 0.79 0.79 0.15 1 9

.35 0.78 0.74 0.16 1 17

.92 0.78 0.79 0.22 1 12

.3 0.77 0.76 0.05 1 30

.67 0.80 0.79 0.3 1 18

.3 0.90 0.72 0.58 3 47

.54 0.86 0.81 0.38 2 28

.73 0.85 0.84 0.41 1 15

.41 0.85 0.74 0.45 2 32

.36 0.74 0.70 0.12 1 22

0.89 0.9 0.48 1 13

.56 0.92 0.86 0.53 1 18

0.83 0.62 0 1 21

.3 0.82 0.75 0.21 1 27

.67 0.95 0.92 0.62 1 12

.21 0.89 0.61 0.57 2 40

.2 0.92 0.56 0.72 3 65

.36 0.79 0.76 0.11 1 25

.46 0.84 0.75 0.32 1.42 18.6

ins studied and used for prediction in this article and of the complexes with

ea under the curve (AUC) values calculated with the matrix of local coupling

ynamics (MD) simulations; from molecular mechanics (MM) minimization

PPV); number of epitopes in the protein; number of residues in the epitopes,
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From the conformational and topological standpoints, epitopes are

exposed regions on the protein surface, accessible for antibody binding

(30). Moreover, specifically in the case of discontinuous epitopes, high-reso-

lution x-ray structures of antigen-antibody complexes showed they consist

of residues whose spatial proximity relationships define a (large) patch on

the surface of the antigen (25,51).

Based on these considerations, we have set out to combine an analysis of

protein energetics obtainable from MD simulations with the topological

information obtainable from the contact matrix of the representative struc-

ture of the trajectory (47). We wish to identify contiguous regions in the

three-dimensional conformation of the antigen that are minimally coupled

to the rest of the protein, and are thus likely sites for the dynamic modulation

that would play a role in recognition events.

The analysis of energetics is based on our energy decomposition method,

which allows the detection of residue-residue couplings that are important in

the stabilization of a fold (see details in the next paragraph). The method

provides a simplified view of residue-residue pair interactions, extracting

the major contributions to energetic stability of the native structure from

the results of all-atom MD simulations. For a protein of N residues, the

N�N matrix (Mij) of average nonbonded interactions between pairs of resi-

dues can be built by averaging over the structures visited during an MD

trajectory (43–47). The rather noisy energy matrix is then simplified through

eigenvalue decomposition. Analysis of the N components of the eigenvector

associated with the lowest eigenvalue was shown to identify residues that

behave as strong interaction centers. These interaction centers are them-

selves characterized by components that have an intensity higher than the

threshold value, and which correspond to a flat normalized vector with resi-

dues that would all provide the same contribution. We verified that applying

this analysis to the representative conformation of the most populated struc-

tural cluster from the simulation yields the same results as the averaging over

the equilibrated part of the trajectory (52). As a caveat, it is worth noting that

the latter approximation is valid when the most frequented cluster is signif-

icantly more populated than the others, so as not to neglect significant struc-

tural deviations captured by other clusters. In all the cases studied here this

holds true, as we did not observe any major domain rearrangements, domain

motions, or folding-unfolding events during simulations. The method was

validated against experimental data and a relationship was found between

the topological and energetic properties of a protein and its stability (43–47).

The map of pair energy-couplings filtered with topological information

can be used to identify local couplings characterized by energetic interac-

tions of minimal intensities. Because low-intensity couplings between

distant residues in the structure are a trivial consequence of the distance-

dependence of energy functions, local low-energy couplings identify those

sites in which interaction-networks are not energetically optimized. These

regions may be regarded, therefore, as prone to interact with binding partners

or to otherwise tolerate mutations that would preserve the antigen three-

dimensional structure. Moreover, thanks to the lower intensity constraints

to the rest of the structure, these substructures would be characterized by

dynamic properties that allow them to visit multiple conformations (as

shown in the flexibility graphs in Supporting Material)—a subset of which

can be recognized by the antibody to form a complex. The sites identified are

typically clustered at the protein surface and are easily accessible. These

concepts are somewhat reminiscent of local frustration, in which highly

frustrated regions are often localized near interaction sites on protein

surfaces (53).

Analysis of energetics and topological properties

The energy decomposition method is based on the calculation of the interac-

tion matrix Mij, which is determined by evaluating average, interresidue,

nonbonded (van der Waals and electrostatics) interaction energies between

residue pairs, calculated over the structures visited during an MD trajectory.

For a protein of N residues, this calculation yields an N�N matrix. As stated

above, the same results can be obtained by calculating the interaction matrix

Mij from the representative conformation of the most populated cluster, in

the absence of major conformational changes.
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The aim of our method is to obtain a simplified picture of the most rele-

vant residue-residue interactions in a certain fold. The matrix Mij is thus

diagonalized and reexpressed in terms of eigenvalues and eigenvectors, in

the form

Mij ¼
XN

k¼ 1

lkwk
i wk

j ; (1)

where N is the number of protein amino acids, lk is the kth eigenvalue with k
ranging from 1 to N, and wk

i and wk
j are the ith and jth components of the

associated normalized eigenvector. Eigenvalues are labeled following an

increasing order, so that l1 is the most negative. In the following, we refer

to the first eigenvector as the eigenvector corresponding to eigenvalue l1.

The total nonbonded energy Enb is defined as

Enb ¼
XN

i; j¼ 1

Mij ¼
XN

i; j¼ 1

XN

k¼ 1

lkwk
i wk

j : (2)

We showed in Tiana et al. (43) and Morra and Colombo (47) that each Mij

can be effectively approximated by

Mijz ~Mij ¼ l1w1
i w1

j ; (3)

such that the total nonbonded energy becomes

EnbzEapp
nb ¼

XN

i; j¼ 1

~Mij ¼
XN

i; j¼ 1

l1w1
i w1

j : (4)

(A distribution of the eigenvalues and the percentage of total stabilization

energy accounted for by l1w1
iw

1
j can be found for each protein in Table S2.)

From the physical point of view, this approximation indicates that any two

residues i and j interact with energy l1w1
iw

1
j. The value l1 represents

a coupling parameter: a modulation of its intensity, as a result of mutations,

can be interpreted as a rescaling in the intensity of protein interactions. A

variation in the eigenvector components is related to a reorganization of

native interactions that would modulate the contribution of a certain pair

to the overall stability.

The principal eigenvector (defined as the sequence eigenvector) consti-

tutes a simple vectorial representation of the sequence: it reports on the

contribution of each residue in the stabilization of the fold, which ultimately

depends on the chemical properties of the residue itself. From this we can

recover an approximation to the global stabilization energy, Eapp
nb , which

was shown to correlate with the relative different stabilities of mutants of

several proteins, proving thereby to be a sufficient energetic descriptor to

discriminate among them (47). This method provides information on the

mean coupling energy between two residues in the native state, revealing

the network of most interacting residues through the structure.

The contact map of the representative structure from MD recapitulates

which residue pairs are in contact in the conformation. If the distance

between any two Cb atoms is below a cutoff value, the corresponding matrix

entry is set to 1, otherwise it is set to 0. The distance cutoff is set to 6.5 Å. For

the sake of homogeneity with the energy matrix, contacts between nearest

neighbors i, iþ1 are included as well. Therefore,

Cij ¼
1 rij%6:5
0 rij > 6:5

:

�
(5)

To calculate the contact matrices we consider the representative structure of

the main cluster obtained with the GROMOS method from the MD trajec-

tory of each antigen (cutoff value of 2 Å) (54). Energy decomposition

was carried out both by averaging on structures saved every nanosecond

during the simulations and on the representative protein conformation of

the most populated structural cluster obtained from the trajectory. The result-

ing structures were minimized, and solvation effects were taken into account

using the molecular-mechanics (MM)-Poisson-Boltzmann surface area
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(PBSA) method, with the nonbonded energy term for residues i and j result-

ing (55) in

Enb
ij ¼ Eelect;ij þ EvdW;ij þ Gsolv;ij:

The results of averaging over the trajectory and of considering the most

populated cluster are basically identical. A schematic of the method is

reported in Fig. 1.

Epitope identification

The simplified interaction matrix defined by l1w1
iw

1
j is multiplied by the

residue-contact matrix. This procedure allows us to filter the information

contained in the simplified energy matrix l1w1
iw

1
j in terms of residues

that are close in space, highlighting pairs within the contact cutoff that are

also coupled through nonbonded interactions. This provides a compact

way to highlight which local pair-contacts in the three-dimensional organi-

zation of the protein are coupled through energetic interactions.

The resulting matrix can be viewed as the matrix of local coupling

energies (MLCE). The contact-filtered coupling interactions are ranked in

increasing order according to their respective intensities (from weaker to
FIGURE 1 Pictorial representation of the MLCE method. The contact

map is multiplied by the simplified energy-coupling matrix. The resulting

matrix reports the energetic coupling intensity of two residues in contact

in space, represented as a color scale assigned to each point of the matrix.

The weakest local interactions vanish in the background color: predicted

epitopes are identified with circles.
stronger). Starting from the minimum value (weakest local coupling interac-

tions, defined as ‘‘soft spots’’, in contrast with the ‘‘hot spots’’ characterized

by high coupling intensities), the set of putative interaction sites was defined

by including increasing residue-residue coupling values until the number of

couplings that correspond to the lowest 15% of all contact-filtered pairs was

reached. This then corresponds, in our approximation, to the set of local

interactions, possessing minimal intensities, which may identify antigen-

antibody or protein interaction sites. The corresponding residues define puta-

tive epitope sequences.

Simulation setup

All the starting structures were downloaded from the Protein DataBank

(codes in Table 1) and each was subjected to five explicit water MD simu-

lations of 30 ns as described in the Supporting Material.
RESULTS

Epitope prediction based on energy
decomposition

To evaluate the ability of our method to predict epitopes, we

studied 19 protein antigens for which crystal structures were

available both in isolation and in complex with at least one

specific antibody in the Protein DataBank (PDB). The data-

set was constructed by searching the PDB and initially

discarding all complexes involving antibodies bound with

only short peptide stretches, and focusing only on real

protein-protein complexes. Moreover, we selected antigen

proteins whose structures had been solved in isolation via

x-ray crystallography with a resolution<2.6 Å or via nuclear

magnetic resonance (Table S1). The set of isolated antigens

was chosen to be nonredundant and diverse in terms of

structures and sequences (alignments shown in Supporting

Material). Structural similarities were also minimal, because

the antigens and epitopes were comprised from a diverse

group of possible conformations that ranged from random

loops to ordered secondary structures (Fig. 2).

The predictive analysis was performed based only on MD

simulations starting from the x-ray structure of the antigenic

proteins in isolation. The validity of the epitope prediction

was benchmarked against the corresponding structure of the

antibody-complexed antigen (see Table 1). Our method

does not require the use of any training set of antibody-antigen

complexes, as the determination of the epitope regions is

based solely on structural-dynamical and energetic properties

of uncomplexed antigens in isolation. The sequences for

the predicted epitopes are reported in Table S3. In Fig. 2,

we have reported the projection of the low energy couplings

on the surfaces of the proteins of the test set.

Evaluation of epitope predictions

To assess the predictivity performance of the MLCE tech-

nique, we used the ROC analysis on all antigens analyzed.

This analysis has been exploited previously in the immuno-

informatics field in epitope prediction efforts (11,12,56) and

is based on the calculation of four main parameters: true
Biophysical Journal 98(9) 1966–1975



FIGURE 2 Projection of the low-energy couplings from

MLCE on their respective locations on the three-dimen-

sional structure of all proteins analyzed. Predicted epitopes

are in red, actual epitopes are in blue, and their intersection

is in purple. Color code: see online version for clarity.
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positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN) (57).

The parameters are determined by comparing the predic-

tions with experimental data. For benchmarking, we relied

on published articles on antigen-antibody complexes and

we considered as an epitope the region beginning and ending

with amino acids directly forming interactions with the anti-

body (defined by the crystal data). Our epitope definition also

includes residues directly proximal in sequence with the

previous ones, even though they may not directly contact

the antibody in the complex x-ray structure, as they may

have a relevant role in defining the optimal conformation

required for recognition.

The parameters described above are used to determine the

false-positive rate measure (FPR), defined as

FPR ¼ FP=ðTN þ FPÞ

and the true-positive rate measure (TPR)

TPR ¼ TP=ðTP þ FNÞ:

These are in turn related to the sensitivity, which equals TPR,

or to the specificity, defined as 1-FPR. The dependency of

TPR versus FPR can be plotted in a graph known as the

ROC curve. The area under the ROC curve (also known as

the area under the curve, or AUC) is a good indicator of

the performance of the method, and has been widely used

in the evaluation of other approaches (1,11). ROC curves

are reported in Supporting Material.

We calculated the points in this graph by changing the

cutoff threshold used on the low-energy contact matrix

values to identify the possible epitope residues. To determine

the ROC curve, we considered 19 different cutoff values on

the ordered matrix elements, starting with the set of values

containing the lowest 5% of the filtered contact energy

values and increasing the threshold by 5% per step.

The area under the ROC curve, called AUC, is comprised

between 0 and 1 (with a value of 0.5 for a random classifier)

and it is useful to make comparisons among predictions
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obtained with different methods. We determined the AUC

values to be the sum of the trapezoid areas calculated by

considering the points in the graph. To assess the role of

MD simulations, this analysis was carried out both on the

representative structures obtained from the MD simulations

and on single minimized structures obtained directly from

the PDB. The results are summarized in Table 1.

The MLCE approach provided good performances,

with an average AUC of 0.71. In only one case is the

AUC value < 0.5 (for Histidine-containing phosphocarrier

protein, i.e., HPr, 1poh.pdb). In all other cases, MLCE deter-

mined putative antibody-binding sites with high ranking.

One case of particular interest is lysozyme, where multiple

antibody-binding regions are known (Fig. 3 a). The MLCE

approach proved able to identify these multiple binding sites

(Table 1 and Table S1). The same considerations can be

applied to the cases of the von Willebrand factor A3-domain

protein (vWF-A3, 1ao3.pdb; Fig. 3 b) and human chorionic

gonadotropin (HCG, 1hcn.pdb; Fig. 3 c). Two epitopes have

been mapped on each protein and their location and

sequences were correctly predicted by our approach.

We also evaluated the sensitivity, specificity, and accuracy

of our method, based on the definitions of Ponomarenko and

Bourne (11). Within the chosen threshold, the sensitivity

(the proportion of correctly predicted epitope residues with

respect to the total number of epitope residues) gave an

average value of 0.46, which is slightly better or comparable

to the values reported in the literature (1,11). The results of

specificity (the proportion of correctly predicted nonepitope

residues with respect to the total number of nonepitope

residues) and accuracy (the proportion of correctly predicted

epitope and nonepitope residues with respect to all residues)

provided average values of 0.84 and 0.75, respectively

(Table 1). This confirms the applicability of the approach

to the identification of putative binding-sites on protein

surfaces.

Finally, we evaluated the positive predictive value (PPV)

of MLCE. This value reports on the proportion of correctly

predicted epitope residues with respect to the total number



FIGURE 3 Examples of multiple antibodies binding to the same antigen

(light colored), highlighting the possibility for one protein to possess

multiple epitopes. The PDB code of the antigen is close to the yellow

antigen, and the PDB codes of the complexes are near each respective anti-

body. (a) Lysozyme; (b) the von Willebrand A3 factor; and (c) human cho-

rionic gonadotropin. Color code: see online version for clarity.

MD-Based Epitope Prediction 1971
of predicted epitope residues. The results obtained with

MLCE are in line with the performances of several known

predictors of protein-protein interaction sites and protein-

protein docking programs reported in Ponomarenko and

Bourne (11) and in de Vries and Bonvin (1). Based on the

comparison with other algorithms, at least one-half of our

predictions may be useful to direct protein-protein docking

efforts by reliably focusing on the predicted epitope region.

Considering that antigens are notoriously hard to predict, this

can be considered a positive result of the MLCE approach,

given that it relies only on a general physical hypothesis

for protein-protein interactions and on no previous assump-

tions regarding epitope sequences, shapes, etc.

Structural properties of predicted epitopes

The structural properties of predicted binding-sites were

examined to evaluate the ability of the method to retrieve

epitopes from any secondary structure motif, and to discrim-

inate the antibody-binding properties of loops within the

same structure. The case of the OspB C-terminal fragment

from Borrelia burgdorferi (1p4p.pdb) is particularly inter-

esting (Fig. 2). The antibody-binding region is defined by

a discontinuous (conformational) epitope that consists of

residues that belong to three different loops. The protein

also presents several other loops. The MLCE method is

able to discriminate the three loops making up the epitope
region from the other loops. The epitope-loops are actually

decoupled, in terms of stabilizing interactions, from the

rest of the protein. The remaining loops provide stabilization

energy to the folding core, and thus may not undergo confor-

mational changes, interact with other proteins, or tolerate

mutations without major energetic costs.

Importantly, MLCE could also detect epitopes that are part

of ordered secondary structures. Epitopes with a-helical

structures are predicted for 1auq, 1uw3, and 3lzt. Epitopes

in b-sheet conformations are correctly detected in 1tfh,

1gwp, and 1pko.

In the case of human angiogenin (ANG, 1k59.pdb), MLCE

identifies an additional region of low-energy coupling located

at the opposite face of the molecule from the antibody-binding

site. Indeed, crystal structure determination has shown that

binding of the complementarity determining regions of the

antibody induces a dramatic conformational change precisely

at the region of angiogenin opposite to the epitope (58),

which is used by the protein to bind to cells. Moreover, in

the case of Histidine-containing phosphocarrier protein (HPr,

1poh.pdb), where the calculated AUC value from our calcula-

tion is as low as 0.25, the protein-region of lowest energy

couplings coincides with the substrate-binding site (59,60).

As the epitopes identified with MLCE are minimally

coupled to the rest of the protein, they are also endowed

with higher flexibility, as shown by the root-mean-square

fluctuation graphs reported in Supporting Material. Impor-

tantly, the analysis of flexibility profiles alone is not suffi-

cient to discriminate between epitope and nonepitope

regions. These observations corroborate our hypothesis that

MLCE has the ability to detect sites poised to interact with

other partners.
Impact of MD simulations on predictions

The use of MD simulations improved the results of our func-

tional predictions. Indeed, the performance of the method

appears to deteriorate slightly when applied to the structures

of antigens extracted directly from the PDB, yielding an

average AUC of 0.66 (Table 1).

Finally, we also tested the dependency of MLCE perfor-

mance on the simulation length. To this end, each trajectory

was split into 2-ns intervals and the performance was evalu-

ated on increasing time windows. In general, the performance,

in terms of the resulting AUC value, converges within the first

4–6 ns (data not shown)—showing a possibility that one

might employ shorter simulation times than those proposed

here. In any case, and in view of using the method in a

server-based version, useful predictions can also be obtained

with the use of the simple MM-PBSA approach.
DISCUSSION

Reliable prediction of antibody-binding sites for a specific

protein is a condition necessary to the discovery of new
Biophysical Journal 98(9) 1966–1975
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therapeutic opportunities in immunology. One fundamental

aim of structural vaccinology is the selection of protein

candidates with optimized properties in terms of sequence,

structure, and presentation of the determinants for anti-

body-recognition. In this context, upon being conducted on

new pathogens, high-throughput genomic investigations

(such as those employing RV) may reveal target antigens

that have little sequence similarity to functionally annotated

ones, and which may contain novel folds.

Consequently, it is important to develop computational

methods that can help identify potential epitope regions of

an antigen independently of its sequence and/or shape simi-

larity with other known proteins, and independently of the

knowledge of related structures of antibody complexes.

Starting from these considerations, we set out to develop

a new approach for the identification of possible antibody-

binding sites based uniquely on the structure, dynamics,

and energetics of the protein-antigen in isolation. The corre-

sponding antibody-bound complexes are used for bench-

marking the results.

The approach we propose is based on simple energetic and

conformational concepts. Antigenic proteins must fold to a

well-defined three-dimensional structure to properly carry

out their functions in the pathogen. The stabilization of the

folded state can be achieved through interactions of higher

intensity between specific residues that define the folding

nucleus. Mutations in the folding nucleus have been shown

to impact on protein stability and foldability (43,45–47,61–

63). In contrast, epitopes are typically mutation-prone sites

(24,32): a protein from a pathogen should, in fact, be able

to tolerate mutations that could help it evade the immune

defense system of a host.

The energy decomposition method that we introduced

and tested proved able to single out the residues of the

folding nucleus and flag their contribution to stabilization

energy (43,47). The ability to identify the folding nucleus

complementarily determines the possibility to identify posi-

tions that are more tolerant to mutations. Typically, they

coincide with the residues characterized by low energetic

couplings with the remainder of the protein. Moreover,

low-intensity couplings between proximal residues define

sites whose interaction-networks are not energetically opti-

mized and which are generally located on the surface.

From the dynamic point of view, these substructures may

easily undergo conformational transitions and fluctuations

favoring the docking of potential binding partners through

a conformational selection mechanism (64). Binding of a

specific antibody partner would thus select specific geome-

tries of the antigen, shifting the equilibrium toward thermo-

dynamically stable complexes.

Based on these premises, the positioning of these sites can

be identified in a compact way by multiplying the simplified

energy-coupling matrix by the residue-contact matrix. This

procedure allows us to filter the information contained in

the simplified energy matrix in terms of residues that are
Biophysical Journal 98(9) 1966–1975
close in space, highlighting pairs within the contact cutoff

that are also energy-coupled through nonbonded interactions

in the three-dimensional structure. By concentrating on the

lowest energy-coupled pairs in contact according to the

contact matrix definition, it is possible to identify surface

patches that can be recognized by a putative binding partner.

It is important to underline that we aim at identifying,

specifically, locally organized residues with nonoptimized

interaction energy-networks that are independent of possible

dynamic signatures. Interestingly, analysis of normal modes

or cross-correlation coefficients of residue pairs could not

identify any specific, nonrandom fluctuations involving spa-

tially localized regions with the lowest energetic-couplings.

Epitopes are characterized by (anti)correlated as well as

random motions with the rest of the protein or with other

parts of the conformational epitope. This aspect can be inter-

preted in the light of the weak energy-couplings among

epitope residues, which result in higher flexibility and in

the absence of major conformational constraints to the rest

of the protein.

The surface patches identified through our procedure

define the three-dimensional, structured landscapes associ-

ated with discontinuous epitopes that are recognized by anti-

bodies.

It is worth noting, once more, that the whole procedure for

epitope identification is based on the study of the antigen in

isolation, and the structures of antigen-antibody complexes

are used only as a posteriori validations of the analysis.

The predictivity, specificity, and accuracy of the method

are in line with what has been reported recently in the

literature (1,11).

Interestingly, MLCE proves able to identify multiple

epitope sites encompassing different antigen regions

(Fig. 3). A certain protein surface may in fact contain several

possible antibody-binding sites that may not be represented

in the sets of structures currently available.

Spatially localized sites with low energetic coupling to

the rest of the protein may determine the dynamics required

for specific function and/or recognition of partners other

than just antibodies (65). In the case of angiogenin (ANG,

1k59.pdb), in addition to correctly predicting the epitope,

our method detects the cell-binding region of angiogenin at

the opposite part of the molecule from the combining site

(58). In the case of Histidine-containing phosphocarrier

protein (HPr, 1poh.pdb), the regions of low-coupling energy

include the phosphate-binding site, located in the N-terminal

region.

Nonoptimized interaction networks can be exploited

by the protein to modulate structural plasticity and local

flexibility and provide conformational and functional adapt-

ability to possible binding partners. As is also suggested by

Ferreiro et al. (53), localizing alternate conformational states

or sequence mutations on specific substructures, while mini-

mizing the influence on the three-dimensional stability

required for function, could provide a mechanism of specific
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control of motions by concentrating only on a subregion of

the protein.

The MD-based method we propose is clearly not as effi-

cient, in terms of computational expenses, as are dedicated

bioinformatics tools and servers that build on different ideas

(12,56,66,67). In most cases, the use of MD structures (either

the most representative conformation from cluster analysis or

averaging over the trajectories) gives only slight improve-

ments over direct minimization of the PDB structure of the

antigen. MD-related performance improvements in our

data set are noticed mainly for cases in which an epitope is

shared between a secondary structure element and a loop.

The release of strain determined by the initial crystal packing

and consequent conformational relaxation determined by

MD favor the geometric and energetic organization opti-

mized for the recognition of the binding partner. In this

framework, the role of MD can be most relevant in cases

where major structural rearrangements are involved, e.g.,

in domain motions, large conformational changes, and local

folding-unfolding. These cases were not present in our initial

dataset, but correct epitope predictions have already been

obtained for multidomain amino-acid transporting proteins

from the pathogen Chlamydia (M. Soriani, P. Petit, R. Gri-

fantini, R. Petracca, G. Gancitano, E. Frigimelica, C. Garcia,

S. Spinelli, G. Scarabelli, S. Fiorucci, R. Affentranger,

M. Ferrer-Navarro, M. Zacharias, G. Colombo, L. Vuillard,

X. Daura, and G. Grandi, unpublished).

Given all these caveats, it is, however, important to under-

line that the aim of the study was to introduce a conceptually

different approach. We notice that dramatic improvements in

algorithms and hardware solutions (68–70) might make it

possible to obtain large-scale MD-based predictions more

quickly and on longer timescales.

Despite its limitations, we think that the MLCE method

may be a valid tool to direct epitope-mapping experiments

and possibly identify binding patches to restrict the search

of binding poses in protein-protein docking algorithms.

With regard to epitope mapping, our approach is already

being applied to targets of industrial interest (M. Soriani,

P. Petit, R. Grifantini, R. Petracca, G. Gancitano, E. Frigimel-

ica, C. Garcia, S. Spinelli, G. Scarabelli, S. Fiorucci, R. Affen-

tranger, M. Ferrer-Navarro, M. Zacharias, G. Colombo,

L. Vuillard, X. Daura, and G. Grandi, unpublished). Further

improvement of the predictions may be obtained by inte-

grating MLCE with other predictors that are based on bioin-

formatics analysis.

From the point of view of possible applications, our method

may be relevant for structure-based vaccine design. One

could, in fact, focus antigen mutagenesis on those regions

that are not part of the folding core and, by so doing, preserve

the fold and leave the three-dimensional structure of the

protein and epitope presentation unchanged. Random or

site-directed mutagenesis could thus be concentrated upon

the putative epitope sites, eventually selecting new sequences

with maximum affinity for neutralizing antibodies. An alter-
native strategy would imply the stabilization of the structure

of the antigen by engineering Cys cross-linking mutations,

or by further optimization of the folding core, to obtain a domi-

nant conformation that would stably present the antibody

recognition determinants rather than transiently populate

binding conformations.

Finally, by knowing which parts of the antigens can be

modified and which should be left unchanged to retain effi-

cient neutralizing antibody recognition, protein antigens

could be modified and selected to optimize production and

storage, with an impact on costs and distributions of potential

vaccines.
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