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The Effect of End Constraints on Protein Loop Kinematics
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ABSTRACT Despite the prevalent involvement of loops in function little is known about how the constraining of end groups
influences their kinematics. Using a linear inverse-kinematics approach and assuming fixed bond lengths, bond angles, and
peptide bond torsions, as well as ignoring molecular interactions to assess the effect of the end-constraint only, it is shown
that the constraint creates a closed surface in torsion angle space. For pentapeptides, the constraint gives rise to inaccessible
regions in a Ramachandran plot. This complex and tightly curved surface produces interesting effects that may play a functional
role. For example, a small change in one torsion angle can radically change the behavior of the whole loop. The constraint also
produces long-range correlations, and structures exist where the correlation coefficient is 1.0 or �1.0 between rotations about
bonds separated by >30 Å. Another application allows some torsion angles to be targeted to specified values while others
are constrained. When this application was used on key torsions in lactate dehydrogenase, it was found that the functional
loop first folds forward and then moves sideways. For horse liver alcohol dehydrogenase, it was confirmed that the functional
loop’s Pro-Pro motif creates a rigid arm in an NAD-activated switch for domain closure.
INTRODUCTION
The prevalent role of loops in protein function is due to their

flexibility and location on the surface. Loops bind partner

proteins in protein-protein interactions (1,2), bind DNA in

DNA-binding proteins (3), bind antigens in immunoglobu-

lins (4), and bind ligands in enzymes such as in horse liver

alcohol dehydrogenase (5), lactate dehydrogenase (6), and

serine proteases (7). A loop on the surface of a protein is

characterized by being fixed at both ends where the polypep-

tide emerges from the protein core. This constraint will

greatly influence the dynamical behavior of the loop as

changes in torsion angles at one location will be compen-

sated for by changes in torsion angles at other locations

such that the two end groups remain fixed relative to each

other. It is reasonable to expect, therefore, that the constraint

will cause correlations in torsion angle changes along the

chain. Despite the important role surface loops play in

protein function, the nature of loop dynamics has remained

largely unexplored. However, loops receive considerable

attention from the homology modeling community (8,9),

because for the very same reasons that they typically have

a role in protein function—namely, their flexibility and loca-

tion on the surface—they are found to be variable in compo-

sition and length among homologous proteins. Methods

developed to model loops of specified length that bridge

two disconnected residues have quite a long history and

are related to the method presented in this article. The

problem, referred to as the local deformation problem, was

solved originally using an ab initio method for the case of
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(10). Determination of structures with N torsions that span

two end groups involves the variation of N � 6 torsion

angles, leaving six torsion angles to be found by solving a

set of equations numerically (10). In this way, various struc-

tures with more than six free torsions can be generated. The

method was extended by Bruccoleri and Karplus to allow for

bond angle variation (11). The problem of placing the end of

a loop at a desired location and orientation by rotation about

torsion axes has an analogy in robotics where rotatable joints

move an end effector. The determination of the angles at the

rotatable joints to position the end effector at a desired loca-

tion and orientation is referred to as inverse kinematics,

and techniques used in robotics to solve this problem have

also been applied to the protein loop modeling problem

(12–14). In robotics, the most effective way found to solve

this problem for six rotatable joints results in determination

of the real roots of a polynomial of degree 16 (15), which

means that the maximum number of different solutions is

16. In practice, the number of solutions is case-dependent,

but for proteins the number of solutions seems to be limited

to 10 (13), although for a slightly idealized case, where Ca-C

and N- Ca on the same peptide unit are parallel, it has been

proven that for some orientations and positions of the end

group, there are indeed 16 different solutions (16).

Iterative methods have also been applied to this problem,

most notably the random tweak method (17) and, more

recently, cyclic coordinate descent (18). In the former

method, random conformations are generated that are itera-

tively changed to satisfy the distance constraints imposed

by the requirement that the loop span the start and end group.

In the latter, each torsion angle is changed sequentially along

the chain such that the distances between end-group atoms in
doi: 10.1016/j.bpj.2010.01.017

mailto:sjh@cmp.uea.ac.uk


End Constraints and Loop Kinematics 1977
their current positions and their target positions are reduced.

Cyclic coordinate descent has been applied to model not only

fluctuations within loops but also fluctuations in whole

proteins (19).

The method presented here is also iterative, as it is based

on a linear approximation where the rotation and displace-

ment of the end group of a loop relative to those of the begin-

ning group are expressed as a linear combination of small

torsion angle changes along the loop. In contrast to the

methods described above, which are normally applied to

model possible loop structures in what has been termed the

minifolding problem, our method lends itself more naturally

to understanding the effect of fixing end groups on the

dynamics of a loop of known structure. In our formulation,

given a loop structure, nearby structures can be determined

by simply finding solutions to a homogeneous system of

six linear equations in N unknown torsional displacements.

It is applied iteratively to find structures far from the starting

structure. The method is equivalent to a method from

robotics (20) that has been applied to model loops into elec-

tron density maps from x-ray crystallography (21) and to

determine local deformations after an initial loop structure

has been modeled (22). The method is used to understand

the nature of the constraint surface in torsion angle space,

to investigate the structural dependence of correlations along

the chain, and to generate possible intervening structures on

a functional path between two known structures.
METHODS

Here, we show how to write down a linear approximation for the displace-

ment and rotation of a coordinate system at the end of a loop or segment in

the coordinate system at the beginning of the segment due to torsion angle

variation with fixed bond lengths and angles. Although related methods

have been used in robotics (20), the method presented here is different in

that it is based on a pair of vector equations. The segment considered extends

from the Ca of residue 1 to the Ca of residue Nres, covering Nres � 1 peptide

units. The number of bonds, Nb ¼ 3Nres � 3, and the number of f,j angles,
Nfj ¼ 2ðNres � 1Þ. The case of Nres ¼ 4 for which Nfj ¼ 6 is shown in

Fig. 1. Note that the atoms are numbered from 0 and the bonds (and thus

the bond length index and torsion angle index) are given the number of

the backbone atom on the C-terminal side of the bond (see Fig. 1). Some

previous studies have considered the segment to extend from the N atom

of residue 1 to the C atom of residue Nres which means that for Nres ¼ 3,

there are six f and j angles.

Assuming fixed bond lengths and bond angles, in the linear approxima-

tion, the rotation vector, df (magnitude is the angle of rotation and direction

is along the axis of rotation given by the righthand rule) for the rotation of

the polypeptide on the C-terminal flank of the segment relative to the poly-

peptide on the N-terminal flank, due to torsion angle changes along the Nb

bonds of the segment is

df ¼
XNb

i¼ 1

dtini; (1)

where dti is the change in the ith torsion and ni is the unit vector along the ith
bond from atom i � 1 to i, the torsion axis direction. The linear approxima-

tion for the displacement vector, dd, of the end atom relative to the first is

given as

dd ¼
XNb�1

i¼ 1

dtini �
 XNb

j¼ iþ 1

rjnj

!
¼
XNb�1

i¼ 1

dtiDi; (2)

where Di ¼ ni � ð
PNb

j¼iþ1

rjnjÞ, rj is the length of the jth bond,
PNb

j¼iþ1

rjnj the

displacement vector between atom i and the end atom of the segment, and�
denotes the vector product. Thus, each term in Eq. 2 gives the displacement

of the end atom due to rotation about each bond, i. On each atom there is a

coordinate system as defined by Eyring (23) (see Fig. 1), and in column

vector form in the coordinate system on atom 0, the ni can be written down

in terms of bond angles and torsion angles along the segment using (23,24)

ni ¼
Yi�1

j¼ 1

Aj

0
@ 1

0

0

1
A; (3)

where

Aj ¼

0
@ �cosqj �sinqj 0

sinqjcostj �cosqjcostj �sintj

sinqjsintj �cosqjsintj costj

1
A; (4)
FIGURE 1 The segment with six f,j angles extends

from the Ca of residue 1 to the Ca of residue 4 (Nres ¼ 4),

covering three peptide units. (a) Definition of torsion and

bond angle numbering showing the coordinate system on

atom 0 and atom 9 (atom numbering as defined in b).

Bonds, and consequently bond lengths and torsion angles,

are indexed with the number of the atom on the C-terminal

side of the bond. The torsions shown determine the relative

position and orientation of the coordinate systems and

consequently everything flanking atoms 0 and 9. The x

and y axes of the coordinate systems on the first and last

atoms are shown. (b) Atom numbering and f,j angle

numbering.

Biophysical Journal 98(9) 1976–1985



1978 Hayward and Kitao
and qj and tj are the bond angles and torsion angles, respectively. In

Eq. 3, the unit vector (1 0 0)t, where superscript t denotes the transpose, is

the unit vector along bond i (the torsion axis of bond i) in the coordinate

system on atom i � 1, i.e., it lies directly along the x axis. In Eq. 3, this is

transformed to the coordinate system on atom 0 by use of the matrices Aj ,

j ¼ 1, i � 1.

Equation 3 is used to calculate the ni in column vector form in terms of the

coordinate system situated on atom 0. Substitution into Eqs. 1 and 2 leads to

a set of linear equations in dti for the rotation and displacement at the end of

the segment, which can be written as�
df

dd

�
¼
XNb

i¼ 1

�
ni

Di

�
dti ¼

�
n1 :: nNb�1 nNb

D1 :: DNb�1 0

�
dt

¼ YðtÞdt;

(5)

where DNb
¼ 0 (rotation about the final bond does not displace the end

atom), dt is a column vector of Nb torsion angle changes, dti, t represents

the set of torsion angles,ti, and YðtÞ is a 6� Nb matrix. YðtÞ is a function of

t and is dependent on the structure of the segment. YðtÞ is a Jacobian and is

well known in the field of robotics (20), where df and dd correspond to the

rotation and displacement of an end effector, and dt corresponds to the angle

changes at rotatable joints along the arm of the robot. The method used to

derive the Jacobian in the robotics literature is different from the method

used here, which we believe is more accessible to the structural biology

community. It also has the advantage of giving directly the axis of rotation

of the end group. If one wants to constrain the kth torsion angle, then, as one

can see from the structure of Eq. 5, the kth column of YðtÞ and the kth row of

dt should be deleted. If, as in many previous studies, peptide torsion angles

are fixed, i.e., du ¼ 0, then the corresponding columns in YðtÞ and rows in

dt should be deleted. In such a case, YðtÞ is a 6� Nfj matrix with

dt ¼ ðdj1 df2 dj2 df3 dj3.dfNres�1 djNres�1 dfNres
Þt.

In this article, we are interested in the situation where the end groups are

fixed and its effect on the dynamical behavior of the segment. In this case,

df ¼ 0 and dd ¼ 0. This gives rise to a set of dt0
j , j ¼ 1, Nfj � r, that

satisfies the condition

YðtÞdt0
j ¼ 0 (6a)

or

YðtÞdt0 ¼ 0; (6b)

where dt0 ¼ ðdt0
1 dt0

2 :: dt0
j

:: dt0
Nfj�r Þ and r ¼ rankðYðtÞÞ,

which for NfjR6 has a maximum value of 6. The dt0
j can be found from

the set of right singular vectors of YðtÞ determined by performing

singular-value decomposition of YðtÞ for which the MATLAB function

Null was used. To find solutions to Eq. 6 when a set of f,j angles are con-

strained then, one need only delete the corresponding columns of YðtÞ.
Null-space vectors of the Jacobian have been used in the refinement of

protein structures from x-ray crystallography (21) and in determining local

deformations once an initial seed structure has been modeled (22).

Correlation along the chain

Orthogonal unit vectors spanning the null space of YðtÞ can be used to esti-

mate the correlation of torsion angles changes along the chain. If dt0
lj repre-

sents the lth component of dt0
j and sij are the elements of a covariance matrix

in the null space, i.e., the covariance of the ith and jth null-space modes, then

the correlation coefficient between the kth and lth torsions is given by

corrðdtkdtlÞ ¼

P
ij

dt0
kisijdt0

ljffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij

dt0
kisijdt0

kj

P
ij

dt0
lisijdt0

lj

r : (7)
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Since we are interested in long-range correlation, corr(dt1dtNfj
), the

correlation coefficient between the first and last torsion of the segment is

of interest. As our torsions are f;j torsion angles, the first torsion will be

dj1 and the last torsion will be dfNres
, and so, corr(dt=dtNfj

) will be written

as corr(dj1dfNres
). corr(dj1dfNres

) is a function of the f;j angles and will

depend on the structure of the segment.

In this work, three main algorithms were used: constraint surface explora-

tion; steepest descent and gradient ascent on the constraint surface (performed

to minimize or maximize any function of the torsions, FðtÞ); and torsion

angle targeting. These algorithms are given in the Supporting Material.

Unless otherwise stated, bond lengths, bond angles, and u torsions used

are those given in Table S1 in the Supporting Material.

All calculations were performed using MATLAB version 7.4.0.287

(R2007a).
RESULTS

Exploring conformations on the constraint
surface for short polypeptides

Segments shorter than a pentapeptide

If rankðYðtÞÞ ¼ r, then the dimension of the null space of

YðtÞ is Nfj � r. Only when Nfj � r > 0 can Eq. 6 be satis-

fied beyond the trivial solution, dt0 ¼ 0. If r achieves its

maximum value, which for Nfj > 6 is 6, and for Nfj%6

is Nfj, then the dimension of the null space for the former

is Nfj � 6 and for the latter 0. Using the fact that

Nfj ¼ 2ðNres � 1Þ, means that when Nres%4 and r is

maximum, i.e., Nfj, then the dimension of the null space

is 0. This means that Eq. 6 is only satisfied when dt0 ¼ 0.

For most structures tested, r did achieve the maximum and

therefore for loops comprising four or fewer residues, each

conformation is dynamically trapped, as was pointed out orig-

inally by G�o and Scheraga (10). In the Supporting Material,

structures are found where for Nres ¼ 4 and even Nres ¼ 3,

full rank is not achieved and small movements are allowed.

Pentapeptides

Pentapeptides, with three loop residues flanked by two brace

residues, are very common among loop structures (25). In

the case of a pentapeptide with one constrained f or j angle,

there are seven free torsions, and solving Eq. 6 gives a

single null-space vector. Exploration of this one-dimensional

surface was performed using Algorithm A1 (see Supporting

Material) for the case where f2 is constrained, e.g., the

second residue mimics a proline. These results can be found

in the Supporting Material (see Fig. S1), where it is shown

for various loop structures that the f,j angles of individual

residues cycle around closed loops in the Ramachandran

plot.

For a pentapeptide, there are 2 degrees of freedom under

the fixed-end-group constraint. Thus, in the 8D f,j angle

space the constraint produces a two-dimensional surface.

Exploration of this surface using Algorithm A1 was per-

formed using two systematic methods, as described in the

Supporting Material. Starting from both a-helix and extended

structures (as in a b-strand), the combined f,j traces from
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these two methods for residue 3 (the central residue) are

shown in Ramachandran plots in Fig. 2 a (for residues 2

and 4, see Fig. S2 and Fig. S3, respectively). It is noticeable

that the end-group constraint allows a much greater degree

of flexibility in the extended conformation than in an a-helix

irrespective of any nonbonded interactions. In fact, an inter-

esting finding is that for an a-helix, the end constraints on resi-

dues i and iþ 4 alone constrain the intervening residues in the

a-helix conformation.

Oliva et al. (25) have classified loop structures that

occur between five types of motifs: a-a loops between two

a-helices, a-b loops between an a-helix and a b-strand,

b-a loops between a b-strand and an a-helix, b-b links

between two b-strands, and b-hairpins between neighboring

strands in antiparallel b-sheets. We have randomly selected

a single pentapeptide loop (three loop residues flanked on

either side by a brace residue) from each motif in the data-
base. The selected loop structures have the following Oliva

et al. classification codes: a-a 1.1.5, a-b 1.2.5, b-a 3.1.1,

b-b link 2.1.1 and b-b hairpin 2.3.2. Exploration of the

constraint surface was performed for each loop as described

above for the a-helix and extended structure. The accessible

f,j region for residue 3 (the central residue of the loop) is

shown in a Ramachandran plot in Fig. 2 for each of the

five loop structures (for residues 2 and 4, see Fig. S2 and

Fig. S3, respectively). Fig. 2 also shows the boundaries

between favorable and unfavorable regions. As can be

seen, in most cases the constraint creates forbidden zones

within the Ramachandran plot that have nothing to do with

local or nonlocal interactions. The patterned regions in the

plots show regions that are favorable due to local interactions

but are in fact inaccessible due to the constraint. Also shown

are f,j of the residue concerned in the starting structure

and in related structures as given at the database website
FIGURE 2 Starting from pentapeptide structures, the

two-dimensional null space was explored as explained in

the Supporting Material. The green areas in this Ramachan-

dran plot show the regions visited by f,j angles of residue

3 (for residues 2 and 4, see Fig. S2 and Fig. S3, respec-

tively), the black lines are the boundaries between favor-

able and disfavorable regions, and the patterned regions

show favorable regions that are inaccessible due to the

constraint. Also shown are points indicating the f,j angle

of the residue in the starting structure (solid black circle)

and from other structures in the same class (solid black

squares), as given at the loop database website (http://

www.bmm.icnet.uk/loop/index.html). (a) Starting from

an extended conformation with f,j angles (�123,136) at

all residues, and a pentapeptide a-helix segment with f,j

angles (�57,�47). (b) Starting from loop a-a 1.1.5 (using

the Oliva et al. classification code, PDB code 1ECA,

segment 49–53A) (c) a-b 1.2.5 (PDB code 5P21, segment

137–141A) (d) b-a 3.1.1 (PDB code 2TMD, segment 395–

399A). (e) b-b link 2.1.1 (PDB code 1EFT, segment

248–252A). (f) b-b hairpin 2.3.2 (PDB code 1HOE,

segment 16–20A).
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(http://www.bmm.icnet.uk/loop/index.html). In all cases

except for residue 4 of a-a, the f,j angles are located within

or near the boundaries. For a-a, this is probably explained by

the considerable difference in the locations of the brace resi-

dues in this case. It is noticeable from Fig. 2, Fig. S2, and

Fig. S3 that the motifs involving an a-helix as a bracing

structure have considerably less torsional flexibility (based

on space covered in a Ramachandran plot) than those solely

with b-strand bracing structures (see Discussion).

These results indicate that the constraint surface is

bounded and can be built from one-dimensional closed loops

such as those in Fig. S1. This suggests, in the language of

topology, that the surface of constraint is a closed manifold.

Cusps on the surface

For pentapeptides, it was noticed that when a single f or j

angle is constrained, the resulting cycling trajectories (see

Fig. S1) could sometimes be radically different even for

very small differences in the value of the constrained angle.

Algorithm A1 was used to demonstrate this effect. First, j2

was constrained and conformations were selected from the

trajectory based on the f2 angle. From these conformations,

cycling trajectories, now with f2 constrained, were generated.

Fig. 3 shows the result when the f2 angle was constrained

at 104.6� and 106.3� in a pentapeptide b-a loop (b-a 3.1.1,

PDB code 2TMD, segment 395–399A). The f3;j3, and

f4;j4 trajectories for the f2 ¼ 106.3� case follow the trajec-

tories for the f2 ¼ 104.6� case, but loop out where the 104.6�

trajectory makes an abrupt turn. Similar looping out was

found at other starting conformations, although over large

regions the change in trajectory is commensurate with the
FIGURE 3 Cycling trajectories for a pentapeptide b-a loop (b-a 3.1.1,

PDB code 2TMD, segment 395–399A). f2 is constrained at two slightly

different values, 104.6� (solid lines) and 106.3� (dashed lines), but this small

difference causes radically different trajectories for f3,j3 and f4,j4(in green

and blue, respectively; the f2,j2 trajectory is red). The 106.3� trajectory

follows the 104.6� trajectory but loops out where the 104.6� trajectory

makes a sharp turn.
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change in starting conformation. This effect was also found

with other structures. Thus, a single torsion angle can act as

a sensitive switch for the dynamical behavior of the whole

loop, an effect that may be exploited in protein function. In

terms of the constraint surface, these findings show that there

are cusps separating regions that exhibit radically different

behavior.

Correlation along the chain

Decapeptides

As we are interested in long-range correlation caused by

fixing end groups, we carried out this analysis on a 10-residue

segment. Using Eq. 7, and assuming sij ¼ dij, the Kronecker

d (i.e., assuming homogenous and uncorrelated fluctuations

in the null space), the correlation coefficient between dj1

and df10, corr(dj1df10), was calculated for a-helix and

extended structures. For a decapeptide, there are 18 f or j

angles and the null space spans 12 dimensions. Fig. 4 a shows

the correlation coefficient, as defined in Eq. 7, with sij ¼ dij

between j1 and every f and j angle up to f10 in an a-helix

and extended structure. As one can see, for both structures,

there is an appreciable anticorrelation between j1 and the

f2 angle. This is the well-known peptide-plane rotation,

also known as the crank-shaft motion (26–29). Although

generally the absolute value of the correlation coefficient

decreases the further along the chain the torsion is located,

there are long-range correlations, as exemplified by the corre-

lation between the first and last torsion for the extended

structure, which has a correlation coefficient of 0.29. Using

Algorithm A2 (see Supporting Material) for the function

corr(dj1df10) (i.e., FðtÞ is equal to corr(dj1df10)), it was

possible to find a-helix-like structures with jcorr(dj1df10)j
> 0.9 starting from an a-helix. However, for the extended

structure, jcorr(dj1df10)j< 0.6, even after 100,000 iterations

of gradient ascent or steepest descent.

Our search need not be restricted to those structures where

the end groups are fixed at the starting positions. We can

simply search for any structure that has a large value for

jcorr(dj1df10)j, allowing the end groups to change posi-

tion. This was achieved using a simplex search method imple-

mented in the MATLAB function fminsearch to find a

maximum or a minimum value of corr(dj1df10). As before,

we started from the a-helix and extended structures, and

assumed sij ¼ dij. It is indeed possible to find structures for

which corr(dj1df10) ¼ 51; their f;j angles are given in

Table S2 and the correlation along the segment is shown for

all four structures in Fig. 4, b and c. For the structures that orig-

inated from extended structures, the distance between these

torsion angles is ~30 Å, suggesting that very long-range corre-

lation is possible. Indeed, appreciable correlation over much

longer distances was found in segments of >10 residues.

There is a geometrical interpretation of this result that is

instructive. The null space is an Nfj � 6 dimensional

subspace in a space of Nfj dimensions. Perfect correlation

http://www.bmm.icnet.uk/loop/index.html


FIGURE 4 (a) Correlation coefficient between dj1 and

each subsequent df or dj angle in a 10-residue a-helix

(solid line with solid circles) and 10-residue extended

structure (dashed line with solid squares). (b and c) Corre-

lation coefficient between dj1 angle and each subsequent

df or dj angle in a 10-residue segment in structures that

have a correlation coefficient of 1.0 (solid lines) between

dj1 and df10 and in structures that have a correlation coef-

ficient of -1.0 (dashed lines) between dj1 and df10. Results

are shown for structures where the search started from the

a-helix conformation (b) and those where the search started

from the extended conformation (c). The f,j angles for

these structures are given in Table S2.
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or anticorrelation means that the first row of the matrix dt0

(corresponding to j1) and the last row of dt0 (corresponding

to f10) are collinear, or that the submatrix comprising these

two rows only has rank 1. This can be imagined as the null

space being perpendicular to the two-dimensional space

defined by dj1 and df10. This means that the correlation

between dj1 and df10 is independent of the form of the fluc-

tuations in the null space, and therefore, sij in Eq. 7 can have

any permissible form (i.e., the fluctuations in the null space

need not be homogenous and uncorrelated). Thus, for the

structures in Table S2, the first and last torsion angles will

always be perfectly correlated or anticorrelated. The ratio of

dt0
18i to dt0

1i for i ¼ 1,12 has the same value, which gives

the ratio of df10 to dj1. These ratios are given in Table S2.

Thus, for the structure originating from an extended structure

with corr(dj1df10) ¼ �1, when dj1 rotates 1�, df10 rotates

�3.1�. In fact, using a random search, we have discovered

structures that give considerable amplification of the rotation

of j1 at f10. We have shown, therefore, that for an appropriate

structure, and within the model of fixed end groups, u

torsions, and bond angles, small torsion angle changes can

be transmitted and amplified over large distances.

To demonstrate the fact that fixing end groups can give

rise to long-range correlations, we have considered only

the first and last torsion angles. It is clear that under this

constraint, correlations can exist between any pair of torsion

angles, given the appropriate structure.
Loop modeling using torsion angle targeting

The aim of the modeling procedure is to change selected f

or j torsion angles from initial values to specified target

values under the fixed-end-group constraint. The algorithm

used is Algorithm A3 in the Supporting Material. The basic

requirement is to specify the start and end residue of the

segment from a protein of known structure, the j angles

for targeting and their target values, and the f,j angles

that are to be constrained. If Nconstr is the number

of constrained f,j angles, then for targeting to be possible,

Nfj � Nconstr � 6 > 0 (as r ¼ 6 in most realistic cases). We

have applied this to the enzymes horse liver alcohol dehydro-
genase (LADH) and lactate dehydrogenase (LDHase), both

of which have functional loop movements. It was found

that Ds ¼ 0:1 worked well in both cases, with the end groups

remaining fixed at their starting positions. The bond lengths,

bond angles, and u torsions were fixed at their values in the

starting structure.

Loop movement in LADH

A loop movement accompanies the domain movement in

LADH, which is induced by NADþ binding to the coen-

zyme-binding domain (5). It has been shown that the loop,

residues 290–300, acts as a blocker to domain closure in

the absence of NADþ (30) caused by contacts between

Pro296 on the loop, and residues His51, Thr56, and Leu57 in

the catalytic domain. It was proposed that as the side chain

of Val294 rotates (facilitated by a large change in the f angle

of Gly293) to contact NADþ, it moves the blocking residue

Pro296 out of the way through the region defining the torsions

j294, f295, j295, and f296, acting as a rigid arm (30). The

region 293–296 has the sequence Gly-Val-Pro-Pro and it is

known that a proline will inhibit not only rotation about its

own f torsion axis but also rotation about the j torsion

axis of the preceding residue (31–33). Thus, the suggestion

is that the Pro-Pro motif constrains the torsions j294, f295,

j295, and f296 to create the rigid arm. However, our knowl-

edge is not sufficient to confidently assert that the block

cannot be removed unless these torsions are constrained.

Therefore, if we are able to show that only with constraints

on torsions j294, f295, j295, and f296 is the block removed,

then we have provided further evidence that the Pro-Pro

motif is there to create the rigid arm for the distinct purpose

of linking the binding of NADþ to the removal of the block

to domain closure.

Initially, the segment 290–300 was selected from the open

structure (PDB code 1ADG), the torsions j294, f295, j295,

and f296 were constrained, and the torsions f291, j291, f292,

j292, f293, j293, and f294 were targeted to their values in

the closed structure (PDB code 2OHX). However, target

values could not be achieved exactly with kDTðnÞk ¼ 3:91�

when kdt0ðnÞtDTðnÞk (see Supporting Material) fell below

its 0.001 threshold after 66,890 iterations. Therefore, the
Biophysical Journal 98(9) 1976–1985
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segment was extended to include residue 301. In this case,

target values were achieved after only 2214 iterations. The

final result is shown in Fig. 5 a. It can be seen that residue

Pro296 has moved away from residues 51, 56, and 57 on the

catalytic domain, as in the closed structure. Fig. 5 b shows

the result when torsions j294, f295, j295, and f296 are not con-

strained, mimicking a Pro295nonPro, Pro296nonPro double

mutant. It shows that Pro296 (or whatever residue substitutes

for it) has not moved away from residues 51, 56, and 57,

and the loop’s structure is close to that of the open domain

case, with Pro296 still in contact with His51. In this case, the

loop remains a block to closure.

Would a single proline at 295 or 296 be sufficient to move

Pro296 away from residues 51, 56, and 57? Constraining

torsions j294 and f295 only (so effectively mimicking a Pro296

nonPro mutant) resulted in Pro296 (or whatever the nonPro

residue is) still remaining in contact with residues 51, 56,

and 57, as shown in Fig. 5 c. Constraining torsions j295

and f296 only (so effectively mimicking a Pro295nonPro

mutant) results in a structure where Pro296 has moved slightly

away from residues 51, 56, and 57, but still not as far away as

the wild-type case (see Fig. 5 d). This mutant would be

expected to have a predominantly open structure in the pres-

ence of NADþ, but perhaps one slightly more closed than

the Pro296nonPro mutant or the Pro295nonPro, Pro296nonPro

double-mutant structures.

Movies of the movement of the loop during targeting for

all four cases are available in the Supporting Material.

Thus, for the loop to move to an unblocking position,

torsions j294, f295, j295, and f296 need to be constrained,
were constrained to mimic a Pro295nonPro mutant. The final structure of targeting

has moved away from His51, Thr56, and Leu57, slightly ,but the conformation of the l

of NAD, the domains of a Pro295nonPro mutant would be slightly more closed than

a fully closed structure like the wild-type.
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because without constraints they act to cancel out the effect

of rotations at preceding torsions. Without these constraints,

the block to domain closure cannot be removed. Therefore,

this study provides further supporting evidence that the

Pro-Pro motif is essential for function and is part of the

NADþ activated switch for domain closure.

In the Supporting Material, we show that 51 residue

change in the definition of the loop segment does not alter

our main conclusion.

Loop movement in LDHase

LDHase catalyzes the interconversion of lactate and pyru-

vate and, like LADH, it uses NAD as a coenzyme. LDHase

has a large loop movement that is induced by the binding of

NAD (6). In dogfish M4 LDHase, the loop movement was

analyzed using the DynDom program (34,35) between the

open apoenzyme structure (PDB code 6LDH) and the closed

ternary complex structure with NAD and oxamic acid (PDB

code 1LDM). This analysis shows that the loop is defined by

residues 98–110, with hinging residues at 97 and 98 on one

side of the loop and 110 and 111 on the other side. We would

like to know how many f,j angles we would need to change

in the open loop structure to get close to the closed-loop

structure and to understand the nature of the loop movement.

The segment 95–115 (i.e., extended slightly beyond the

DynDom definition (see the end of this section for further

comments regarding the segment definition)) was selected,

and starting with j95, the apoenzyme structure’s f,j angles

were targeted to those in the ternary structure, progressively

working along the chain (so after j95, j95 and f96 were
FIGURE 5 Starting from the open structure (PDB code

1ADG), torsions f291, j291, f292, j292, f293, j293, and

f294 were targeted to their values in the closed x-ray struc-

ture (PDB code 2OHX), keeping residues 290 and 301 fixed.

Pro296 is indicated in thick-stick model, and His51, Thr56,

and Leu57 are shown in the spacefilling model. Target values

were achieved in all cases. Movies of the movements in a–d

are available in the Supporting Material. (a) Torsions j294,

f295, j295, and f296 constrained to their values in the starting

structure mimicking the Pro-Pro motif. The final structure of

targeting is shown in red contrasted against the closed x-ray

structure in blue. As can be clearly seen, Pro296 has moved

away from His51, Thr56, and Leu57, which would allow

the domains to close. (b) No torsions were constrained

mimicking a Pro295nonPro, Pro296nonPro double mutant.

The final structure of targeting is shown in red in contrast

to the open x-ray structure in blue. As in the open structure,

Pro296 remains in contact with His51, thus inhibiting domain

closure. (c) Torsions j294 and f295 only were constrained

mimicking a Pro296nonPro mutant. The final structure of tar-

geting is shown in red in contrast to the open x-ray structure

in blue. As in the open structure Pro296 (or more correctly its

nonPro substitution) remains in contact with His51, thus

inhibiting domain closure. (d) Torsions j295 and f296 only

is shown in red and contrasted with the open x-ray structure in blue. Pro296

oop is more like that of the open than the closed. It suggests that in the presence

a Pro296nonPro mutant or a Pro295nonPro, Pro296nonPro double mutant but not



FIGURE 6 Targeting trajectory for the loop movement in dogfish M4

lactate dehydrogenase. The open loop 95–115 from the apo structure

(PDB code 6LDH) has been targeted to its closed ternary complex structure

(PDB code 1LDM), keeping residues 95 and 115 fixed. Targeting was per-

formed on all f,j angles between j95 and f101 inclusive, and targets were

achieved. (a) The starting open loop structure is in blue, the target closed

loop structure in red, and the resulting final structure from the targeting

process in green with a thick stick depiction. The structures depicted in green

with thin sticks are intervening structures generated during the targeting

process. (b) View of the tip of the loop (residues 102 and 103).
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targeted; then j95, f96, and j96; and so on, working forward

along the chain). This will be referred to as the N-terminal

process. The equivalent process was carried out from the

opposite end of the segment (targeting f115 only, then f115

and j114, and so on, moving backward along the chain).

This will be referred to as the C-terminal process. Both

processes were continued until the targeted f,j angles failed

to reach their target values. The backbone root-mean-squared

deviation (RMSD) between the loop in the final structure of

each targeting procedure and the loop in the experimental

ternary complex structure was calculated by least-squares

best-fitting on backbone atoms of residues 1–94 and 116–

327. The RMSD between the experimental open and closed

loop structures when fitting was performed in this way was

5.6 Å. It was found that the C-terminal process failed to

achieve an RMSD of <5.6 Å. However, the N-terminal

process, targeting on all f,j between j95 and f101 inclusive,

produced a final structure within an RMSD of 1.5 Å from the

closed-loop structure. This was the optimal result. This is an

interesting result, as less than one-quarter of the f,j angles

in the loop were targeted, and it is this region that interacts

most directly with NAD.

Fig. 6 also shows intervening structures along the trajec-

tory. The movement of the loop is complicated, folding

initially in a direction perpendicular to the approximate

plane of the loop, but finally making a sideways movement

roughly parallel to this plane. These two difference phases

of movement can be seen clearly in Fig. 6 b and in the movie

available in the Supporting Material.

How is our result influenced by the loop segment defini-

tion? We have reduced the loop length from each end and

established that the minimal loop segment is 95–110. That

is, our results are qualitatively the same (the backbone

RMSD was reduced by ~4 Å to within 2 Å of the closed-

loop structure via the same perpendicular, then sideways

movement) for loops segments 95–110, 95–111, 95–112,

95–113, 95–114, and 95–115. This minimal segment defini-

tion makes sense, as there are significant torsion angle differ-

ences at residues 96 and 109 between the x-ray structures.
DISCUSSION

A linear inverse-kinematics technique has been applied to

understand how the fixed-end-group constraint influences

loop kinematics. The method lends itself very naturally for

this purpose. A new result is that the fixed-end-group

constraint creates a closed Nfj � 6 surface in a Nfj torsion

angle space on which the state point moves. For example, for

Nfj ¼ 7, the surface is one-dimensional and the state point

moves on a one-dimensional closed loop. The concept of

the state point moving on a closed surface in torsion angle

space provides us with a new way of thinking about loop

kinematics.

The kinematics of the loop is highly dependent on the

shape of the constraint surface and due to its highly curved
nature (see Fig. S1 and Fig. 3), a steady movement over

the surface can result in rapid switches in the rate of change

of particular torsion angles as the state point moves over

tightly curving regions. We have shown that for a pentapep-

tide, there are regions on the surface where a very small

change in starting conformation can result in a highly diver-

gent trajectory. This result can surely be generalized to

longer polypeptides. One could imagine that these cusp

regions are involved in function, whereby a change in one

or more torsion angles, perhaps as a result of ligand binding,

acts as a switch that allows the loop to access conformations

that it would otherwise be unable to reach.

The simulations on the five loop structures show that

the relationship between loop flexibility and the relative
Biophysical Journal 98(9) 1976–1985
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positions of the end constraints is not a simple one, e.g., the

distance between the a-a loop and the b-b link brace resi-

dues is ~7 Å in both cases, but as can be seen by comparing

Fig. 2, b and e, Fig. S2 b and e, and Fig. S3 b and e, there is

a considerable difference in torsion angle flexibility imposed

by the constraint. Our simulations show that an a-helical

conformation has dramatically less torsional flexibility than

an extended conformation, as found in b-strands. This may

explain why loops with a-helix brace structures have con-

siderably less torsional flexibility than those with solely

b-strand brace structures, as they have conformations closer

to the a-helix conformation. An interesting finding that may

have implications for protein folding is that for an a-helix,

the constraining of residues i and i þ 4 is enough to keep

the intervening residues in the a-helix conformation.

We have shown that within the constraints of the model,

there exist structures that have very long-range correlative

effects in rotations about their f and j angles. It is to be

expected that these correlative effects will be weakened

but not eliminated completely by flexibility in other degrees

of freedom. One can imagine these correlative effects being

exploited for allosteric mechanism.

For LADH, our results have provided further evidence that

the Pro-Pro motif in the loop is crucial for communicating the

rotation of the Val294 side chain upon NADþ binding to Pro296

to remove it as a block to domain closure (30). The structure of

a Gly293Ala, Pro295Thr double mutant in complex with

NADþ and 2,2,2-trifluoroethanol has been reported (36) to

have an open structure. The loop in this structure is different

to those modeled here in that its Val294 side chain has not

rotated. In all three of our mutants and our wild-type, this

side chain has rotated after targeting. Therefore, it would

appear that it is not the Pro295Thr mutation that has caused

the loop to remain in its open conformation, but the Gly293Ala

mutation, where the large change in f in the wild-type is

unable to occur in alanine. Our results suggest that even muta-

tion of either or both of the proline residues at 295 and 296

alone would still result in a largely open structure when bound

to NADþ.

The application of targeting to the loop movement in

LDHase showed good agreement between the final structure

and the true closed structure, even though less than one-

quarter of f,j angles were targeted from the open structure.

The path taken by the loop is not direct, but one that involves

two almost orthogonal movements of the tip of the loop:

a forward movement followed by a sideways movement.

This is obviously due to the shape of the constraint surface

along the path. The process can be regarded as akin to

morphing applied to a subset of the total number of degrees

of freedom. However, our path is quite different from that

calculated by the morph server (37), which shows a direct

route between the open and closed-loop structures. This

difference is not surprising, as in contrast to our procedure,

targeting is done in Cartesian coordinates rather than torsion

angles and involves atoms spanning the whole loop rather
Biophysical Journal 98(9) 1976–1985
than a set of variables limited to one side of the loop. An

interesting finding was that targeting applied to torsion

angles on the other side of the loop failed to move it toward

the closed structure at all.

One possible criticism of our approach is that the model is

oversimplified. However, comparing results from Cartesian

coordinate space and dihedral angle space, normal-mode

analysis has shown that fixing bond lengths and bond angles

only has an effect (10–20% increase) on the total root-mean-

square fluctuation but does not affect the pattern of atomic

displacements in the important low-frequency modes, sug-

gesting that our results will not be qualitatively changed by

this approximation (38,39). Nonbonded forces of interaction

are also excluded, as their inclusion would have obscured the

effect of the constraint on the kinematics. However, future

work will include side chains and molecular interactions to

investigate how the avoidance of high-energy states guides

the state point over the constraint surface.
SUPPORTING MATERIAL

Methods, results, three tables, seven movies, and three figures are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(10)00147-5.
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