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Abstract
A tacit but fundamental assumption of the Theory of Signal Detection (TSD) is that criterion
placement is a noise-free process. This paper challenges that assumption on theoretical and empirical
grounds and presents the Noisy Decision Theory of Signal Detection (ND-TSD). Generalized
equations for the isosensitivity function and for measures of discrimination that incorporate criterion
variability are derived, and the model's relationship with extant models of decision-making in
discrimination tasks is examined. An experiment that evaluates recognition memory for ensembles
of word stimuli reveals that criterion noise is not trivial in magnitude and contributes substantially
to variance in the slope of the isosensitivity function. We discuss how ND-TSD can help explain a
number of current and historical puzzles in recognition memory, including the inconsistent
relationship between manipulations of learning and the slope of the isosensitivity function, the lack
of invariance of the slope with manipulations of bias or payoffs, the effects of aging on the decision-
making process in recognition, and the nature of responding in Remember/Know decision tasks. ND-
TSD poses novel and theoretically meaningful constraints on theories of recognition and decision-
making more generally, and provides a mechanism for rapprochement between theories of decision-
making that employ deterministic response rules and those that postulate probabilistic response rules.
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The Theory of Signal Detection (TSD1; Green & Swets, 1966;Macmillan & Creelman,
2005;Peterson, Birdsall, & Fox, 1954;Tanner & Swets, 1954) is a theory of decision-making
that has been widely applied to psychological tasks involving detection, discrimination,
identification, and choice, as well as to problems in engineering and control systems. Its
historical development follows quite naturally from earlier theories in psychophysics
(Blackwell, 1953;Fechner, 1860;Thurstone, 1927) and advances in statistics (Wald, 1950). The
general framework has proven sufficiently flexible so as to allow substantive cross-fertilization
with related areas in statistics and psychology, including mixture distributions (DeCarlo,
2002), theories of information integration in multidimensional spaces (Banks, 2000;Townsend
& Ashby, 1982), models of group decision-making (Sorkin & Dai, 1994), models of response
timing (Norman & Wickelgren, 1969;Sekuler, 1965;Thomas & Myers, 1972), and
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1More commonly, this theory is referred to as the Signal Detection Theory (e.g., Swets, 1964; Treisman, 1965). Here the alternative
acronym TSD is preferred (see also Atkinson, 1973; Birdsall, 1956; Lockhart & Murdock, 1970; Tanner, 1959) in that it properly
emphasizes the theory's relation to, but not isomorphism with, Statistical Decision Theory (Wald, 1950).
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multiprocess models that combine thresholded and continuous evidence distributions
(Yonelinas, 1999). It also exhibits well-characterized relationships with other prominent
perspectives, such as individual choice theory (Luce, 1959) and threshold-based models
(Krantz, 1969;Swets, 1986a). Indeed, it is arguably the most widely used and successful
theoretical framework in psychology of the last half century.

The theoretical underpinnings of TSD can be summarized in four basic postulates:

1. Events are individual enumerable trials on which a signal is present or not.

2. A strength value characterizes the evidence for the presence of the signal on a given
trial.

3. Random variables characterize the conditional probability distributions of strength
values for signal-present and signal-absent events (for detection) or for signal-A and
signal-B events (for discrimination).

4. A criterion serves to map the continuous strength variable (or its associated likelihood
ratio) onto a binary (or n-ary) decision variable.

As applied to recognition memory experiments (Banks, 1970; Egan, 1958; Lockhart &
Murdock, 1970; Parks, 1966), in which subjects make individual judgments about whether a
test item was previously viewed in a particular delimited study episode, the “signal” is
considered to be the prior study of the item. That study event is thought to confer additional
strength on the item such that studied items generally, but not always, yield greater evidence
for prior study than do unstudied items. Subjects then make a decision about whether they did
or did not study the item by comparing the strength yielded by the current test stimulus to a
decision criterion. Analytically, TSD reparameterizes the obtained experimental statistics as
estimates of discriminability and response criterion or bias. Theoretical conclusions about the
mnemonic aspects of recognition performance are often drawn from the form of the
isosensitivity function2, which is a plot of the theoretical hit rate against the theoretical false-
alarm rate across all possible criterion values. The function is typically estimated from points
derived from a confidence-rating procedure (Egan, 1958; Egan, Schulman, & Greenberg,
1959).

TSD has been successfully applied to recognition because it provides an articulated and
intuitive description of the decision portion of the task without obliging any particular
theoretical account of the relevant memory processes. In fact, theoretical interpretations
derived from the application of TSD to recognition memory have been cited as major
constraints on process models of recognition (e.g., McClelland & Chappell, 1998; Shiffrin &
Steyvers, 1997). Recent evidence reveals, in fact, an increased role of TSD in research on
recognition memory: The number of citations in PsycInfo that appear in response to a joint
query of “recognition memory” and “signal detection” as keywords has increased from 23 in
the 1980s to 39 in the 1990s to 67 in just the first seven years of this decade.

The purpose of this paper is to theoretically and empirically evaluate the postulate of a noise-
free criterion (Assumption [4], above), and to describe an extension of TSD that is sufficiently
flexible to handle criterion variability. The claim is that criteria may vary from trial to trial in
part because of noise inherent to the processes involved with maintaining and updating them.
Although this claim does not seriously violate the theoretical structure of TSD, it does have

2Following the suggestion of Luce (1963), we use the term isosensitivity function instead of the more historically relevant but somewhat
unintuitive label of Receiver (or Relative) Operating Characteristic (ROC). Throughout this paper, no change in terminology is used to
indicate whether the isosensitivity function is plotted in probability or normal-deviate coordinates, other than to the relevant axes in
figures, unless the distinction is relevant to that discussion.
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major implications for how we draw theoretical conclusions about memory, perception, and
decision processes from detection, discrimination, and recognition experiments.

As we review below, concerns about variability in the decision process are apparent in a variety
of literatures, and theoretical tools have been advanced to address the problems that arise from
noisy decision making (Rosner & Kochaniski, 2008). However, theorizing in recognition
memory has mostly advanced independently of such concerns, perhaps in part because of the
difficulty associated with disentangling decision noise from representational noise (see, e.g.,
Ratcliff & Starns, in press). This paper considers the statistical and analytic problems that arise
from its postulation in the context of detection theoretical models, and applies a novel
experimental task—the ensemble recognition paradigm—towards the problem of estimating
criterion variance.

Historical antecedents and contemporary motivation
Considerations similar to the ones forwarded here have been previously raised in the domains
of psychoacoustics and psychophysics (Durlach & Braida, 1969; Gravetter & Lockhead,
1973), but have not been broadly considered in the domain of recognition memory. An
exception is the seminal “strength theory” of Wickelgren (1968; Wickelgren & Norman,
1966; Norman & Wickelgren, 1969), on whose work our initial theoretical rationale is based.
That work was applied predominately to problems in short-term memory and to the question
of how absolute (yes-no) and relative (forced-choice) response tasks differed from one another.
However, general analytic forms for the computation of detection statistics were not provided,
nor was the work applied to the relationship between the isosensitivity function and theories
of recognition memory (which were not prominent at the time).

Contemporary versions of the TSD are best understood by their relation to the general class of
judgment models derived from Thurstone (1927). A taxonomy of those models described by
Torgerson (1958) allows various restrictions on the equality of stimulus variance and of criterial
variance; current applications of TSD to recognition memory vary in whether they permit
stimulus variance to differ across distributions, but they almost unilaterally disallow criterial
variance. This is a restriction that, although not unique to this field, is certainly a surprising
dissimilarity with work in related areas such as detection and discrimination in psychophysical
tasks (Bonnel & Miller, 1994; Durlach & Braida, 1969; Nosofsky, 1983) and classification
(Ashby & Maddox, 1993; Erev, 1998; Kornbrot, 1980). The extension of TSD to ND-TSD is
a relaxation of this restriction: ND-TSD permits nonzero criterial variance.

The recent explosion of work evaluating the exact form of the isosensitivity function in
recognition memory under different conditions (Arndt & Reder, 2002; Glanzer, Kim, Hilford,
& Adams, 1999; Gronlund & Elam, 1994; Kelley & Wixted, 2001; Matzen & Benjamin, in
press; Qin, Raye, Johnson, & Mitchell, 2001; Ratcliff, Sheu, & Gronlund, 1992; Ratcliff,
McKoon, & Tindall, 1994; Slotnick, Klein, Dodson, & Shimamura, 2000; Van Zandt, 2000;
Yonelinas, 1994, 1997, 1999) and in different populations (Healy, Light, & Chung, 2005;
Howard, Bessette-Symons, Zhang, & Hoyer, 2006; Manns, Hopkins, Reed, Kitchener, &
Squire, 2003; Wixted & Squire, 2004a, 2004b; Yonelinas, Kroll, Dobbins, Lazzara, & Knight,
1998; Yonelinas, Kroll, Quamme, Lazzara, Suavé, Widaman, & Knight, 2002; Yonelinas,
Quamme, Widaman, Kroll, Suavé, & Knight, 2004), as well as the prominent role those
functions play in current theoretical development (Dennis & Humphreys, 2001; Glanzer,
Adams, Iverson, & Kim, 1993; McClelland & Chappell, 1998; Wixted, 2007; Shiffrin &
Steyvers, 1997; Yonelinas, 1999), suggests the need for a thorough reappraisal of the
underlying variables that contribute to those functions. Because work in psychophysics
(Krantz, 1969; Nachmias & Steinman, 1963) and, more recently, in recognition memory
(Malmberg, 2002; Malmberg & Xu, 2006; Wixted & Stretch, 2004) has illustrated how aspects
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and suboptimalities of the decision process can influence the shape of the isosensitivity
function, the goals of this article are to provide an organizing framework for the incorporation
of decision noise within TSD, and to help expand the various theoretical discussions within
the field of recognition memory to include a role for decision variability. We suggest that
drawing conclusions about the theoretical components of recognition memory from the form
of the isosensitivity function can be a dangerous enterprise, and show how a number of
historical and current puzzles in the literature may benefit from a consideration of criterion
noise.

Organization of the paper
The first part of this paper provides a short background on the assumptions of traditional TSD
models, as well as evidence bearing on the validity of those assumptions. Appreciating the
nature of the arguments underlying the currently influential unequal-variance version of TSD
is critical to understanding the principle of criterial variance and the proposed analytic
procedure for separately estimating criterial and evidence variance. In the second part of the
paper, we critically evaluate the assertion of a stationary and nonvariable scalar criterion
value3 from a theoretical and empirical perspective, and in the third section, provide basic
derivations for the form of the isosensitivity function in the presence of nonzero criterial
variability. The fourth portion of the paper provides derivations for measures of accuracy in
the presence of criterial noise, and leads to the presentation, in the fifth section, of the “ensemble
recognition” task, which can be used to assess criterial noise. In the sixth part of the paper,
different models of that experimental task are considered and evaluated, and estimates of
criterial variability are provided. In the seventh and final part of the paper, we review the
implications of the findings and review some of the situations in which a consideration of
criterial variability might advance our progress on a number of interesting problems in
recognition memory and beyond.

It is important to note that the successes of TSD have led to many unanswered questions, and
that a reconsideration of basic principles like criterion invariance may provide insight into
those problems. No less of an authority than John Swets—the researcher most responsible for
introducing TSD to psychology—noted that it was “unclear” why, for example, the slope of
isosensitivity line for detection of brain tumors was approximately ½ the slope of the
isosensitivity line for detection of abnormal tissue cells (Swets, 1986b). Within the field of
recognition memory, there is evidence that certain manipulations that lead to increased
accuracy, such as increased study time, are also associated with decreased slope of the
isosensitivity function (Glanzer et al., 1999; Hirshman & Hostetter, 2000), whereas other
manipulations that also lead to superior performance are not (Ratcliff et al., 1994). Although
there are extant theories that account for changes in slope, there is no agreed-upon mechanism
by which they do so, nor is an explanation of such heterogeneous effects forthcoming.

Throughout this paper, we will make reference to the recognition decision problem, but most
of the considerations presented here are relevant to other problems in detection and
discrimination, and we hope that the superficial application to recognition memory will not
deter from the more general message about the need to consider decision-based noise in such
problems (see also Durlach & Braida, 1969; Gravetter & Lockhead, 1973; Nosofsky, 1983;
Wickelgren, 1968).

3Criterion is used throughout to refer to the location of a decision threshold in the units of the evidence dimension (i.e., in terms of the
values on the abscissa in Figure 1, which are typically standard deviations of the noise distribution). Bias—a term sometimes used
interchangeably with criterion—refers specifically to the value of the likelihood ratio at criterion. In the discussion here, the distinction
is often not relevant, in which case we will use the term criterion.
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Assumptions about evidence distributions
The lynchpin theoretical apparatus of TSD is the probabilistic relationship between signal
status and perceived evidence. The historical assumption about this relationship is that the
distributions of the random variables are normal in form (Thurstone, 1927) and of equal
variance, separated by some distance, d’ (Green & Swets, 1966). Whereas the former
assumption has survived inquiry, the latter has been less successful.

The original (Peterson et al., 1954) and most popularly applied version of TSD assumes that
signal and noise distributions are of equal variance. Although many memory researchers tacitly
endorse this assumption by reporting summary measures of discrimination and criterion
placement that derive from the application of the equal-variance model, such as d’ and Cj,
respectively, the empirical evidence does not support the equal-variance assumption. The slope
of the isosensitivity function in recognition memory is often found to be ~0.80 (Ratcliff et al.,
1992), although this value may change with increasing discriminability (Glanzer et al., 1999;
Heathcote, 2003; Hirshman & Hostetter, 2000). This result has been taken to imply that the
evidence distribution for studied items is of greater variance than the distribution for unstudied
items (Green & Swets, 1966). The magnitude of this effect, and not its existence, as well as
whether manipulations that enhance or attenuate it are actually affecting representational
variance, are the issues at stake here.

The remarkable linearity of the isosensitivity function notwithstanding, it is critical for present
purposes to note not only that the mean slope for recognition memory is often less than 1, but
also that it varies considerably over situations and individuals (Green & Swets, 1966). It is
considerably lower than 0.8 for some tasks (i.e., ~0.6 for the detection of brain tumors; Swets,
Pickett, Whitehead, Getty, Schnur, Swets, & Freeman, 1979), higher than 1 for other tasks (like
information retrieval; Swets, 1969), and around 1.0 for yet others (such as odor recognition;
Rabin & Cain, 1984).

Nonunit and variable slopes reveal an inadequacy of the equal-variance model of Peterson et
al. (1954), and of the validity of the measure d’. This failure can be addressed in several ways.
It might be assumed that the distributions of evidence are asymmetric in form, for example, or
that one or the other distribution reflects a mixture of latent distributions (DeCarlo, 2002;
Yonelinas, 1994). The traditional and still predominant explanation, however, is the one
described above—that the variance of the distributions is unequal (Green & Swets, 1966;
Wixted, 2007). Because the slope of the isosensitivity function is equal to the ratio of the
standard deviations of the noise and signal distributions in the unequal-variance TSD model,
the empirical estimates of slope less than 1 have promoted the inference that the signal
distribution is of greater variance than the noise distribution in recognition. However, the
statistical theory of the form of the isosensitivity function that is used to understand nonunit
slopes and slope variability has been only partially unified with the psychological theories that
produce such behavior, via either the interactivity of continuous and thresholding mechanisms
(Yonelinas, 1999) or the averaging process presumed by global matching mechanisms (Gillund
& Shiffrin, 1984; Hintzman, 1986; Humphreys, Pike, Bain, & Tehan, 1989; Murdock, 1982)
None of these prominent theories include a role for criterial variability, nor do they provide a
comprehensive account of the shape of isosensitivity functions and of the effect of
manipulations on that shape. Criterial variability can directly affect the slope of the
isosensitivity function, a datum that opens up novel theoretical possibilities for psychological
models of behavior underlying the isosensitivity function.

The form of the isosensitivity function has been used to test the validity of assumptions built
into TSD about the nature of the evidence distributions, as well as to estimate parameters for
those distributions. In that sense, TSD can be said to have bootstrapped itself into its current
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position of high esteem: Its validity has mostly been established by confirming its implications,
rather than by systematically testing its individual assumptions. This is not intended to be a
point of criticism, but it must be kept in mind that the accuracy of such estimation and testing
depends fundamentally on the joint assumptions that evidence is inherently variable and
criterion location is not. Allowing criterial noise to play a role raises the possibility that previous
explorations of the isosensitivity function in recognition memory have conflated the
contributions of stimulus and criterial noise.

Evidence for criterion variability
As noted earlier, traditional TSD assumes that criterion placement is a noise-free and stationary
process. Although there is some acknowledgment of the processes underlying criterion
inconsistency (see, e.g., Macmillan & Creelman, 2005, p. 46), the apparatus of criterion
placement in TSD stands in stark contrast with the central assumption of stimulus-related
variability (see also Rosner & Kochanski, 2008). There are numerous reasons to doubt the
validity of the idea that criteria are noise-free. First, there is evidence from detection and
discrimination tasks of response autocorrelations, as well as systematic effects of experimental
manipulations on response criteria. Second, maintaining the values of one or multiple criteria
poses a memory burden and should thus be subject to forgetting and memory distortion. Third,
comprehensive models of response time and accuracy in choice tasks suggest the need for
criterial variability. Fourth, there is evidence from basic and well controlled psychophysical
tasks of considerable trial-to-trial variability in the placement of criteria. Fifth, there are small
but apparent differences between forced-choice response tasks and yes-no response tasks that
indicate a violation of one of the most fundamental relationships predicted by TSD: the equality
of the area under the isosensitivity function as estimated by the rating procedure and the
proportion of correct responses in a two-alternative forced-choice task. This section will review
each of these arguments more fully.

In each case, it is important to distinguish between systematic and nonsystematic sources of
variability in criterion placement. This distinction is critical because only nonsystematic
variability violates the actual underlying principle of a nonvariable criterion. Some scenarios
violate the usual use of, but not the underlying principles of, TSD. This section identifies some
sources of systematic variability and outlines the theoretical mechanisms that have been
invoked to handle them. We also review evidence for nonsystematic sources of variability.
Systematic sources of variability can be modeled within TSD by allowing criterion measures
to vary with experimental manipulations (Benjamin, 2001; Benjamin & Bawa, 2004; Brown
& Steyvers, 2005; Brown, Steyvers, & Hemmer, in press), by postulating a time-series criterion
localization process contingent upon feedback (Atkinson, Carterette, & Kinchla, 1964;
Atkinson & Kinchla, 1965; Friedman, Carterette, Nakatani, & Ahumada, 1968) only following
errors (Kac, 1962; Thomas, 1973) or only following correct responses (Model 3 of Dorfman
& Biderman, 1971), or as a combination of a long-term learning process and nonrandom
momentary fluctuations (Treisman, 1987; Treisman & Williams, 1984). Criterial variance can
even be modeled with a probabilistic responding mechanism (Parks, 1966; Thomas, 1975;
White & Wixted, 1999), although the inclusion of such a mechanism violates much of the spirit
of TSD.

1. Nonstationarity
When data are averaged across trials in order to compute TSD parameters, the researcher is
tacitly assuming that the criterion is invariant across those trials. By extension, when
parameters are computed across an entire experiment, measures of discriminability and
criterion are only valid when the criterion is stationary over that entire period. Unfortunately,
there is a abundance of evidence that this condition is rarely, if ever, met.
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Response autocorrelations—Research more than one-half century ago established the
presence of longer runs of responses than would be expected under a response-independence
assumption (Fernberger, 1920; Howarth & Bulmer, 1956; McGill, 1957; Shipley, 1961;
Verplanck, Collier, & Cotton, 1952; Verplanck, Cotton, & Collier, 1953; Wertheimer, 1953).
More recently, response autocorrelations (Gilden & Wilson, 1995; Luce, Nosofsky, Green, &
Smith, 1982; Staddon, King, & Lockhead, 1980) and response time autocorrelations (Gilden,
1997; 2001; Van Orden, Holden, & Turvey, 2003) within choice tasks have been noted and
evaluated in terms of long-range fractal properties (Gilden, 2001; Thornton & Gilden, in
press) or short-range response dependencies (Wagenmakers, Farrell, & Ratcliff, 2004, 2005).
Such dependencies have even been reported in the context of tasks eliciting confidence ratings
(Mueller & Weidemann, 2008). Numerous models were proposed to account for short-range
response dependencies, most of which included a mechanism for the adjustment of the response
criterion on the basis of feedback of one sort or another (e.g., Kac, 1962; Thomas, 1973;
Treisman, 1987; Treisman & Williams, 1984). Because criterion variance was presumed to be
systematically related to aspects of the experiment and the subject's performance, however,
statistical models that incorporated random criterial noise were not applied to such tasks (e.g.
Durlach & Braida, 1969, Gravetter & Lockhead, 1973, Wickelgren, 1968) .

The presence of such response correlations in experiments in which the signal value is
uncorrelated across trials implies shifts in the decision regime, either in terms of signal
reception or transduction, or in terms of criterion location. To illustrate this distinction, consider
a typical subject in a detection experiment whose interest and attention fluctuate with
surrounding conditions (did an attractive research assistant just pass by the door?) and changing
internal states (increasing hunger or boredom). If these distractions cause the subject to attend
less faithfully to the experiment for a period of time, it could lead to systematically biased
evidence values and thus biased responses. Alternatively, if a subject's criterion fluctuates
because such distraction affects their ability to maintain a stable value, it will bias responses
equivalently from the decision-theoretic perspective. More importantly, fluctuating criteria can
lead to response autocorrelations even when the transduction mechanism does not lead to
correlated evidence values. Teasing apart these two sources of variability is the major empirical
difficulty of our current enterprise.

Effects of experimental manipulations—Stronger evidence for the lability of criteria
comes from tasks in which experimental manipulations are shown to induce strategic changes.
Subjects appear to modulate their criterion based on their estimated degree of learning
(Hirshman, 1995) and perceived difficulty of the distractor set in recognition (Benjamin &
Bawa, 2004; Brown et al., in press). Subjects even appear to dynamically shift criteria in
response to item characteristics, such as idiosyncratic familiarity (Brown, Lewis, & Monk,
1977) and word frequency (Benjamin, 2003). In addition, criteria exhibit reliable individual
differences as a function of personality traits (Benjamin, Wee, & Roberts, 2008), thus
suggesting another unmodeled source of variability in detection tasks.

It is important to note, however, that criterion changes do not always appear when expected
(e.g., Stretch & Wixted, 1998; Higham, Perfect, & Bruno, in press; Verde & Rotello, 2007)
and are rarely of an optimal magnitude. It is for this reason that there is some debate over
whether subject-controlled criterion movement underlies all of the effects that it has been
invoked to explain (Criss, 2006), and indeed, more generally, over whether a
reconceptualization of the decision variable itself provides a superior explanation to that of
strategic criterion-setting (for a review in the context of “mirror effects,” see Greene, 2007).
For present purposes, it is worth noting that this inconsistency may well reflect the fact that
criterion maintenance imposes a nontrivial burden on the rememberer, and they may
occasionally forgo strategic shifting in order to minimize the costs of allocating the resources
to do so.
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These many contributors to criterion variability make it likely that every memory experiment
contains a certain amount of systematic but unattributed sources of variance that may affect
interpretations of the isosensitivity function if not explicitly modeled. To be clear, such effects
are the province of the current model only if they are undetected and unincorporated into the
application of TSD to the data. The systematic variability evident in strategic criterion
movement may, depending on the nature of that variability, meet the assumptions of ND-TSD
and thus be accounted for validly, but we will explicitly deal with purely nonsystematic
variability in our statistical model.

2. The memory burden of criterion maintenance
Given the many systematic sources of variance in criterion placement, it is unlikely that
recapitulation of criterion location from trial to trial is a trivial task for the subject. The current
criterion location is determined by some complex function relating past experience, implicit
and explicit payoffs, and experience thus far in the test, and retrieval of the current value is
likely prone to error—a fact that may explain why intervening or unexpected tasks or events
that disrupt the normal pace or rhythm of the test appear to affect criterion placement (Hockley
& Niewiadomski, 2001). Evidence for this memory burden is apparent when comparing the
form of isosensitivity functions estimated from rating procedures with estimates from other
procedures, such as payoff manipulations.

Differences between rating-scale and payoff procedures—The difficulty of criterion
maintenance is exacerbated in experiments in which confidence ratings are gathered because
the subject is forced to maintain multiple criteria, one for each confidence boundary. Although
it is unlikely that these values are maintained as independent entities (Stretch & Wixted,
1998), the burden nonetheless increases with the number of required confidence boundaries.
Variability introduced by the confidence-rating procedure may explain why the isosensitivity
function differs slightly when estimated with that procedure as compared to experiments that
manipulate payoff matrices, and why rating-derived functions change shape slightly but
unexpectedly when the prior odds of signal and noise are varied (Balakrishnan, 1998a;
Markowitz & Swets, 1967; Van Zandt, 2000). These findings have been taken to indicate a
fundamental failing of the basic assumptions of TSD (Balakrishnan, 1998a,b, 1999) but may
simply reflect the contribution of criterion noise (Mueller & Weidemann, 2008).

Deviations of the yes-no decision point on the isosensitivity function—A related
piece of evidence comes from the comparison of isosensitivity functions from rating procedures
with single points derived from a yes-no judgment. As noted by Wickelgren (1968), it is not
uncommon for that yes-no point to lie slightly above the isosensitivity function (Egan,
Greenberg, & Schulman, 1961; Markowitz & Swets, 1967; Schulman & Mitchell, 1966;
Watson, Rilling, & Bourbon, 1964; Wickelgren & Norman, 1966) and for that effect to be
somewhat larger when more confidence categories are employed. This result likely reflects the
fact that the maintenance of criteria becomes more difficult with increasing numbers of
criterion points. In recognition memory, Benjamin, Lee, and Diaz (2008) showed that
discrimination between previously studied and unstudied words was measured to be superior
when subjects made yes-no discrimination judgments than when they used a four-point
response scale, and superior on the four-point response scale when compared to an eight-point
response scale. This result is consistent with the idea that each criterion introduces noise to the
decision process, and that, in the traditional analysis, that noise inappropriately contributes to
estimates of memory for the studied materials.

3. Sampling models of choice tasks
A third argument in favor of criterion variance comes from sequential sampling models that
explicitly account for both response time and accuracy in two-choice decisions. Specifically,
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the diffusion model of Ratcliff (1978, 1988; Ratcliff & Rouder, 1998) serves as a benchmark
in the field of recognition memory (e.g., Ratcliff, Thapar, & McKoon, 2004) in that it
successfully accounts for aspects of data, including response times, that other models do not
explicitly address. It would thus seem that general, heuristic models like TSD have much to
gain from analyzing the nature of the decision process in the diffusion model.

That model only provides a full account of recognition memory when two critical parameters
are allowed to vary (Ratcliff & Rouder, 1998). First is a parameter that corresponds to the
variability in the rate with which evidence accumulates from trial to trial. This value
corresponds naturally to stimulus-based variability and resembles the parameter governing
variability in the evidence distributions in TSD. The second parameter corresponds to trial-to-
trial variability in the starting point for the diffusion process. When this value moves closer to
a decision boundary, less evidence is required prior to a decision—thus, this value is analogous
to variability in criterion placement. A recent extension of the diffusion model to the confidence
rating procedure (Ratcliff & Starns, in press) has a similar mechanism. The fact that the
otherwise quite powerful diffusion model fails to provide a comprehensive account of
recognition memory without possessing explicit variability in criterion suggests that such
variability influences performance in recognition nontrivially.

4. Evidence from psychophysical tasks
Thurstonian-type models with criterial variability have been more widely considered in
psychophysics and psychoacoustics, where they have generally met with considerable success.
Nosofsky (1983) found that range effects in auditory discrimination were due to both increasing
representational and criterial variance with wider ranges. Bonnel and Miller (1994) found
evidence of considerable criterial variance in a same/different line-length judgment task in
which attention to two stimuli was manipulated by instruction. They concluded that criterial
variability was greater than representational variability in their task (see their Experiment 2)
and that focused attention served to decrease that variance.

5. Comparisons of forced-choice and yes-no procedures
One of the outstanding early successes of TSD was the proof by Green (1964; Green & Moses,
1966) that the area under the isosensitivity function as estimated by the rating-scale procedure
should be equal to the proportion of correct responses in a 2-alternative forced-choice task.
This result generalizes across any plausible assumption about the shape of evidence
distributions, as long as they are continuous, and is thus not limited by the assumption of
normality typically imposed on TSD. Empirical verification of this claim would strongly
support the assumptions underlying TSD, including that of a nonvariable criterion, but the
extant work on this topic is quite mixed.

In perceptual tasks, this relationship appears to be approximately correct under some conditions
(Emmerich, 1968; Green & Moses, 1966; Schulman & Mitchell, 1966; Shipley, 1965;
Whitmore, Williams, & Ermey, 1968), but is not as strong or as consistent as one might expect
(Lapsley Miller, Scurfield, Drga, Galvin, & Whitmore, 2002). Even within a generalization of
Green's principle to a wide range of other decision axes and decision variables (Lapsley Miller
et al., 2002), considerable observer inconsistency was noted. Such inconsistency is the province
of our exploration here. In fact, a relaxation of the assumption of nonvariable criteria permits
conditions in which this relationship can be violated. Wickelgren (1968) even noted that it was
“quite amazing” (p. 115) that the relationship appeared to hold even approximately

The empirical evidence regarding the correspondence between forced-choice and yes-no
recognition also suggests an inadequacy in the basic model. Green and Moses (1966) reported
one experiment that conformed well to the prediction (Experiment 2) and one that violated it
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somewhat (Experiment 1). Most recent studies have made this comparison under the equal-
variance assumption reviewed earlier as inadequate for recognition memory (Deffenbacher,
Leu, & Brown, 1981; Khoe, Kroll, Yonelinas, Dobbins, & Knight, 2000; Yonelinas, Hockley,
& Murdock, 1992), but experiments that have relaxed this assumption have yielded mixed
results: some have concluded that TSD-predicted correspondences are adequate (Smith &
Duncan, 2004) and others have concluded in favor of other models (Kroll, Yonelinas, Dobbins,
& Frederick, 2002). However, Smith and Duncan (2004) used rating scales for both forced-
choice and yes/no recognition, making it impossible to establish whether their correspondences
were good because ratings imposed no decision noise or because the criterion variance imposed
by ratings was more or less equivalent on the two tasks. In addition, amnesic patients, who
might be expected to have a great difficulty with the maintenance of criteria, have been shown
to perform relatively more poorly on yes-no than forced-choice recognition (Freed, Corkin, &
Cohen, 1987; see also Aggleton & Shaw, 1996), although this result has not been replicated
(Khoe et al., 2000; Reed, Hamann, Stefanacci, & Squire, 1997). The inconsistency in this
literature may reflect the fact that criterion noise accrues throughout an experiment: Bayley,
Wixted, Hopkins, and Squire (2008) recently showed that, whereas amnesics do not show any
disproportionate impairment on yes-no recognition on early testing trials, their performance
on later trials does indeed drop relative to control subjects.

Although we shall not pursue the comparison of forced-choice and yes-no responding further
in our search for evidence of criterial variability, it is noteworthy that the evidence in support
of the fundamental relationship between the two tasks reported by Green has not been abundant,
and that the introduction of criterial variability allows conditions under which that relationship
is violated.

Recognition memory and the detection formulation with criterial noise
This section outlines the mathematical formulation of the decision task and the basic postulates
of TSD, and extends that formulation by explicitly modeling criterion placement as a random
variable with nonzero variability. To start, let us consider a subject's perspective on the task.
Recognition requires the subject to discriminate between previously studied and unstudied
stimuli. The traditional formulation of recognition presumes that test stimuli yield mnemonic
evidence for studied status and that prior study affords discriminability between studied and
unstudied stimuli by increasing the average amount of evidence provided by studied stimuli,
and likely increasing variance as well. However, inherent variability within both unstudied and
studied groups of stimuli yields overlapping distributions of evidence. This theoretical
formulation is depicted in the top panel of Figure 1, in which normal probability distributions
represent the evidence values (e) that previously unstudied (S0) and previously studied (S1)
stimuli yield at test.4 If these distributions are nonzero over the full range of the evidence
variable, then there is no amount of evidence that is unequivocally indicative of a particular
underlying distribution (studied or unstudied). Equivalently, the likelihood ratio at criterion is
–∞ < β < ∞. The response is made by imposing a decision criterion (c), such that:

4Signal (studied status) and Noise (unstudied status) distributions are referred to by the subscripts 1 and 0 throughout. This notation
ensures more transparent generality to situations involving more than two distributions, and can be thought of either as a dummy variable
or as representing the number of presentations of the stimulus during the study phase.
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The indicated areas in Figure 1 corresponding to hit and false-alarm rates (HR and FAR)
illustrate how the variability of the representational distributions directly implies a particular
level of performance.

Consider, as a hypothetical alternative case, a system without variable stimulus encoding. In
such a system, signal and noise are represented by nonvariable (and consequently
nonoverlapping) distributions of evidence, and the task seems trivial. But there is, in fact, some
burden on the decision-maker in this situation. First, the criterion must be placed judiciously
—were it to fall anywhere outside the two evidence points, performance would be at chance
levels. Thus, as reviewed previously, criterion placement must be a dynamic and feedback-
driven process that takes into account aspects of the evidence distributions and the costs of
different types of errors. Here we explicitly consider the possibility that there is an inherent
noisiness to criterion placement in addition to such systematic effects.

The bottom panel of Figure 1 illustrates this alternative scenario, in which the decision criterion
is a normal random variable with variance greater than 0, and e is a binary variable. Variability
in performance in this scenario derives from variability in criterion placement from trial to
trial, but yields—in the case of this example—the same performance as in the top panel (shown
by the areas corresponding to HR and FAR). This model fails, of course, to conform with our
intuitions and we shall see presently that it is untenable. However, the demonstration that
criterial variability can yield identical outcomes as evidence variability is illustrative of the
predicament we find ourselves in; namely, how to empirically distinguish between these two
components of variability. The next section of this paper outlines the problem explicitly.

Distribution of the decision variable and the isosensitivity function
Let μx and σx indicate the mean and standard deviation of distribution x, and the subscripts e
and c refer to evidence and criterion, respectively. If both evidence and criterial variability are
assumed to be normally distributed (N) and independent of one another, as generally assumed
by Thurstone (1927) and descendant models (Kornbrot, 1980; Peterson et al., 1954; Tanner &
Swets, 1954), the decision variable is distributed as

Equation 1a

Because the variances of the component distributions sum to form the variability of the decision
variable, it is not possible to discriminate between evidence and criterial variability on a purely
theoretical basis (see also Wickelgren & Norman, 1966). This constraint does not preclude an
empirical resolution, however. In addition, reworking the Thurstone model such that criteria
can not violate order contstraints yields a model in which theoretical discrimination between
criterion and evidence noise may be possible (Rosner & Kochanski, 2008).

Performance in a recognition task can be related to the decision variable by defining areas over
the appropriate evidence function and, as is typically done in TSD, assigning the unstudied
(e0) distribution a mean of 0 and unit variance:

Equation 1b

in which “respond S” indicates a signal response, or a “yes” in a typical recognition task. These
values are easiest to work with in normal-deviate coordinates:
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Equation 1c

Substitution and rearrangement yields the general model for the isosensitivity function with
both representational and criterial variability (for related derivations, see McNicol, 1972;
Wickelgren, 1968):

Equation 2

Note that, by this formulation, the slope of the function is not simply the reciprocal of the signal
standard deviation, as it is in unequal-variance TSD. Increasing evidence variance will indeed
decrease the slope of the function. However, the variances of the evidence and the criterion
distribution also have an interactive effect: When the signal variance is greater than 1,
increasing criterion variance will increase the slope. When it is less than 1, increasing criterion
variance will decrease the slope. Equivalently, criterial variance reduces the effect of stimulus
variance and pushes the slope towards 1.

Figure 2 depicts how isosensitivity functions vary as a function of criterial variance, and
confirms the claim of previous theorists (Treisman & Faulkner, 1984;Wickelgren, 1968) and
implication of Equation 2 that criterial variability generally decreases the area under the
isosensitivity function. The slight convexity at the margins of the function that results from
unequal variances is an exception to that generality (see also Thomas and Myers, 1972). The
left panels depict increasing criterial variance for signal variance less than 1, and the right
panels for signal variance greater than 1. The middle panels show that, when signal variance
is equal to noise variance, criterial variance decreases the area under the curve but the slope
does not change. It is worth noting that the prominent attenuating effect of criterial variance
on the area under the function is generalizable across a number of plausible alternative
distributions (including the logistic and gamma distributions; Thomas & Myers, 1972).

When criterial variability is zero, Equation 2 reduces to the familiar form of the unequal-
variance model of TSD:

in which the slope of the function is the reciprocal of the signal variance and the y-intercept is
μ1/σ1. When the distributions are assumed to have equal variance, as shown in the top panel
in Figure 1, the slope of this line is 1.

When stimulus variability is zero and criterion variability is nonzero, as in the bottom example
of the scenario depicted in Figure 1, the isosensitivity function is:
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and when stimulus variability is nonzero but equal for the two distributions, the zROC is:

In both cases, the function has a slope of 1 and is thus identical to the case in which
representational variability is nonzero but does not vary with stimulus type; thus, there is no
principled way of using the isosensitivity function to distinguish between the two hypothetical
cases shown in Figure 1, in which either evidence but not criterial variability or criterial but
not evidence variability is present. Thankfully, given the actual form of the empirical
isosensitivity function—which typically reveals a nonunit slope—we can use the experimental
technique presented later in this paper to disentangle these two bases.

Measures of accuracy with criterion variability
Because empirical isosensitivity functions exhibit nonunit slope, we need to consider measures
of accuracy that generalize to the case when evidence distributions are not of equal variance.
This section provides the rationale and derivations for ND-TSD generalizations of two
commonly used measures, da and de.

There are three basic ways of characterizing accuracy (or, variously, discriminability or
sensitivity) in the detection task. First, accuracy is related to the degree to which the evidence
distributions overlap, and is thus a function of the distance between them, as well as their
variances. Second, accuracy is a function of the distance of the isosensitivity line from an
arbitrary point on the line that represents complete overlap of the distributions (and thus chance
levels of accuracy on the task). Finally, accuracy can be thought of as the amount of area below
an isosensitivity line—an amount that increases to 1 when performance is perfect and drops to
0.5 when performance is at chance. Each of these perspectives has interpretive value: the
distribution-overlap conceptualization is easiest to relate to the types of figures associated with
TSD (like the top part of Figure 1); distance-based measures emphasize the desirable
psychometric qualities of the statistic (e.g., that they are on a ratio scale; Matzen & Benjamin,
in press). Area-based measures bear a direct and transparent relation with forced-choice tasks.
All measures can be intuitively related to the geometry of the isosensitivity space.

To derive measures of accuracy, we shall deal with the distances from the isosensitivity line,
as defined by Equation 2.5 Naturally, there are an infinite number of distances from a point to
a line, so it is necessary to additionally restrict our definition. Here we do so by using the
shortest possible distance from the origin to the line, which yields a simple linear transformation
of da (Schulman & Mitchell, 1966). In Appendix A, we provide an analogous derivation for
de, which is the distance from the origin to the point on the isosensitivity line that intersects
with a line perpendicular to the isosensitivity line. These values also correspond to distances
on the evidence axis scaled by the variance of the underlying evidence distributions: de
corresponds to the distance between the distributions, scaled by the arithmetic average of the
standard deviations, and da corresponds to distance in terms of the root-mean-square average
of the standard deviations (Macmillan & Creelman, 2005). For the remainder of this paper, we
will use da, as it is quite commonly used in the literature (e.g., Banks, 2000; Matzen &
Benjamin, in press), is easily related to area-based measures of accuracy, and provides a
relatively straightforward analytic form.

5For an intuitive and thorough review of the geometry underlying detection parameters, see Wickens (2002)

Benjamin et al. Page 13

Psychol Rev. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The generalized version of da can be derived for by solving for the point at which the
isosensitivity function must intersect with a line of slope (-1/m):

The intersection point of Equation 2 and this equation is

which yields a distance of

from the origin. This value is scaled by √2 in order to determine the length of the hypotenuse
on a triangle with sides of length noisy d*a (Simpson & Fitter, 1973):

Equation 3

The area measure AZ also bears a simple relationship with d*a:

Empirical estimation of sources of variability
Because both criterial and evidence variability affect the slope of the isosensitivity function,
it is difficult to isolate the contributions of each to performance. To do so, we must find
conditions over which we can make a plausible case for criterial and evidential variance being
independently and differentially related to a particular experimental manipulation. We start by
taking a closer look at this question.

Units of variability for stimulus and criterial noise
Over what experimental factor is evidence presumed to vary? Individual study items probably
vary in pre-experimental familiarity and also in the effect of a study experience. In addition,
the waxing and waning of attention over the course of an experiment increases the item-related
variability (see also DeCarlo, 2002).

Do these same factors influence criterial variability? By the arguments presented here, criterial
variability related to item characteristics is mostly systematic in nature (see, e.g., Benjamin,
2003) and is thus independent of the variability modeled by Equation 1. We have specifically
concentrated on nonsystematic variability, and have argued that it is likely a consequence of
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the cognitive burden of criterion maintenance. Thus, the portion of criterial variability with
which we concern ourselves with is trial-to-trial variability on the test. What is needed is a
paradigm in which item variability can be dissociated from trial variability.

Ensemble recognition
In the experiment reported here, we use a variant of a clever paradigm devised by Nosofsky
(1983) to investigate range effects in the absolute identification of auditory signals. In our
experiment, subjects made recognition judgments for ensembles of items that vary in size.
Thus, each test stimulus included a variable number of words (1,2, or 4), all of which were old
or all of which were new. The subjects’ task was to evaluate the ensemble of items and provide
an “old” or “new” judgment on the group.

The size manipulation is presumed to affect stimulus noise—because each ensemble is
composed of heterogeneous stimuli and is thus subject to item-related variance—but not
criterial noise, because the items are evaluated within a single trial, as a group. Naturally, this
assumption might be incorrect: subjects might, in fact, evaluate each item in an ensemble
independently and with heterogeneous criteria. We will examine the data closely for evidence
of a violation of the assumption of criterial invariance within ensembles.

Information integration
In order to use the data from ensemble recognition to separately evaluate criterial and stimulus
variance, we must have a linking model of information integration within an ensemble—that
is, a model of how information from multiple stimuli is evaluated jointly for the recognition
decision. We shall consider two general models. The independent variability model proposes
that the variance of the strength but not the criterial distribution is affected with ensemble size,
as outlined in the previous section. Four submodels are considered. The first two assume that
evidence is averaged across stimulus within an ensemble and differ only in whether criterial
variability is permitted to be nonzero (ND-TSD) or not (TSD). The latter two assume that
evidence is summed across the stimuli within an ensemble and, as before, differ in whether
criterion variability is allowed to be nonzero. These models will be compared to the OR model,
which proposes that subjects respond positively to an ensemble if any member within that set
yields evidence greater than a criterion. This latter model embodies a failure of the assumption
that the stimuli are evaluated as a group, and its success would imply that our technique for
separating criterial and stimulus noise is invalid. Thus, a total of five models of information
intergration are considered.

Criterion placement
For each ensemble size, five criteria had to be estimated to generate performance on a 6-point
rating curve. For all models except the two summation models, a version of the model was fit
in which criteria were free to vary across ensemble size (yielding 15 free parameters, and
henceforth referred to as without restriction) and another version was fit in which the criteria
were constrained (with restriction) to be the same across ensemble sizes (yielding only 5 free
parameters). Because the scale of the mean evidence values varies with ensemble size for the
summation model, only one version was fit in which there were fifteen free parameters (i.e.,
they were free to vary across ensemble size).

Model flexibility
One important concern in comparing models, especially non-nested models like the OR model,
is that a model may benefit from undue flexibility. That is, a model may account for a data
pattern more accurately not because it is a more accurate description of the underlying
generating mechanisms, but rather because its mathematical form affords it greater flexibility
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(Myung & Pitt, 2002). It may thus appear superior to another model by virtue of accounting
for nonsystematic aspects of the data. There are several approaches we have taken to reduce
concerns that ND-TSD may benefit from greater flexibility than its competitors.

First, we have adopted the traditional approach of using an index of model fit that is appropriate
for nonnested models and penalizes models according to the number of their free parameters
(AIC; Akaike, 1973). Second, we use a correction on the generated statistic that is appropriate
for the sample sizes in use here (AICc; Burnham & Anderson, 2004). Third, we additionally
report the Akaike weight metric, which, unlike the AIC or AICc, has a straightforward
interpretation as the probability that a given model is the best among a set of candidate models.
Fourth, in addition to reporting both AICc values and Akaike weights, we also report the
number of subjects best fit by each model, ensuring that no model is either excessively
penalized for failing to account for only a small number of subjects (but dramatically so) or
bolstered by accounting for only a small subset of subjects considerably more effectively than
the other models.

Finally, we report in Appendix C the results of a large series of Monte Carlo simulations
evaluating the degree to which ND-TSD has an advantage over TSD in terms of accounting
for failures of assumptions common to the two models. We consider cases in which the
evidence distributions are of a different form than assumed by TSD, and cases in which the
decision rule is different from what we propose. To summarize the results from that exercise
here, ND-TSD never accrues a higher AIC score or Akaike weight than TSD unless the
generating distribution is ND-TSD itself. These results indicate that a superior fit of ND-TSD
to empirical data is unlikely to reflect undue model flexibility when compared to TSD.

Experiment: Word ensemble recognition
In this experiment, we evaluate the effects of manipulating study time on recognition of word
ensembles of varying sizes. By combining ND-TSD and TSD with a few simple models of
information integration, we will be able to separately estimate the influence of criterial and
evidence variability on recognition across those two study conditions. This experiment pits the
models outlined in the previous section against one another.

Method
Subjects—Nineteen undergraduate students from the University of Illinois participated to
partially fulfill course requirements for an introductory course in psychology.

Design—Word set size (one, two or four words in each set) was manipulated within-subjects
in both experiments. Each subject participated in a single study phase and a single test phase.
Subjects made their recognition responses on a 6-point confidence rating scale, and the raw
frequencies of each response type were fit to the models in order to evaluate performance.

Materials—All words were obtained from the English Lexicon Project (Balota, Cortese,
Hutchison, Neely, Nelson, Simpson, & Treiman, 2002). We drew 909 words with a mean word
length of 5.6 (range: 4 – 8 letters) and mean log HAL frequency of 10.96 (range:5.5 – 14.5).
A random subset of 420 words was selected for the test list, which consisted of 60 single-item
sets, 60 double-item sets, and 60 four-item sets. A random half of the items from each ensemble-
size set was assigned to the study list. All study items were presented singly, while test items
were presented in sets of one, two, or four items. Words presented in a single ensemble were
either all previously studied or all unstudied. This resulted in 210 study item presentations and
180 test item presentations (90 old and 90 new). Again, every test presentation included all old
or all new items; there were no trials on which old and new items were mixed in an ensemble.
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Procedure—Subjects were tested individually in a small, well-lit room. Stimuli were
presented, and subject responses were recorded, on PC-style computers programmed using the
Psychophysical Toolbox for MATLAB (Brainerd, 1997; Pelli, 1997). Prior to the study phase,
subjects read instructions on the computer screen informing them that they were to be presented
with a long series of words that they were to try and remember as well as they could. They
began the study phase by pressing the space bar. During the study phase, words were presented
for 1.5 seconds. There was a 333 ms inter-stimulus interval (ISI) between presentations. At the
conclusion of the study phase, subjects were given instructions for the test phase. Subjects were
informed that test items would be presented in sets of one, two, or four words, and that they
were to determine if the word or words that they were presented had been previously studied
or not. They began the test phase by pressing the space bar. There was no time limit on the
test.

Results
Table 1 shows the frequencies by test condition summed across subjects. Discriminability
(da) was estimated separately for each ensemble size and study time condition by maximum-
likelihood estimation (Ogilvie & Creelman, 1968), and is also displayed in Table 1. All model
fitting reported below was done on the data from individual subjects because of well known
problems with fitting group data (see, e.g., Estes & Maddox, 2005) and particular problems
with recognition data (Heathcote, 2003) None of the subjects or individual trials were omitted
from analysis. Details of the fitting procedure are outlined in Appendix D.

The subject-level response frequencies were used to evaluate the models introduced earlier.
Of particular interest is the independent variability model that we use to derive separate
estimates of criterial and evidence variability. That model's performance is evaluated with
respect to several other models. One is a sub-model (zero criterial variance model) that is
equivalent to the independent variability model but assumes no criterial variance. For both the
model with criterion variability (ND-TSD) and without (TSD), two different decision rules
(averaging versus summation) are tested. Another model (the OR model) assumes that each
stimulus within an ensemble is evaluated independently and that the decision is made on the
basis of combining those independent decisions via an OR rule. Comparison of the independent
variability model with the OR model is used to evaluate the claim that the stimulus is evaluated
as an ensemble, rather than as n individual items. Comparison of the independent variability
model with the nested zero-criterial-variance model is used to test for the presence of criterial
variability.

Independent variability models—The averaging version of this model is based on ND-
TSD and the well known relationship between the sampling distribution of the mean and sample
size, as articulated by the Central Limit Theorem. Other applications of a similar rule in
psychophysical tasks (e.g., Swets & Birdsall, 1967; Swets, Shipley, McKey, & Green, 1959)
have confirmed this assumption of averaging stimuli or samples, but we will evaluate it
carefully here because of the novelty of applying that assumption to recognition memory.

If the probability distribution of stimulus strength has variability σ2 then that probability
distribution for the ensemble of n stimuli drawn from that distribution has variability σ2/n. This
model assumes that the distribution of strength values is affected by n, but that criterial
variability is not. Thus, the isosensitivity function of the criterion-variance ensemble
recognition model is :
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Equation 4

Because we fit the frequencies directly rather than the derived estimates of distance (unlike
previous work: Nosofsky, 1983), there is no need to fix any parameters (such as the distance
between the distributions) a priori. The hypothesized effect of the ensemble size manipulation
is shown in Figure 3, in which the variance of the stimulus distributions decreases with
increasing size. For clarity, the criterion distribution is not shown.

The fit of this model is compared to a simpler model that assumes no criterial variability:

Equation 5

Another possibility is that evidence is summed, rather than averaged within an ensemble. In
this case, the size of the ensemble scales both the signal mean and the stimulus variances, and
the isosensitivity functions assumes the form:

Equation 6

when criterion variance is nonzero and

Equation 7

when criterion variance is zero. Note that Equations 7 and 5 are equivalent, demonstrating that
the summation rule is equivalent to the averaging rule when criterion variability is zero.

We must also consider the possibility that our assumption of criterial invariance within an
ensemble is wrong. If criterial variance is affected by ensemble size in the same purely
statistical manner as is stimulus variance, then both stimulus and criterion variance terms are
affected by n. Under these conditions, the model is:

Equation 8

Two aspects of this model are important. First, it can be seen that it is impossible to separately
estimate the two sources of variability, because they can be combined into a single super-
parameter. Second, as shown in Appendix B, this model reduces to the same form as Equation
5, and thus can fit the data no better than the zero criterial variability model. Consequently, if
the zero criterial variability model is outperformed by the independent variability model, then
we have supported the assumption that criterial variability is invariant across an ensemble.
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OR model—The OR model assumes that each stimulus within an ensemble is evaluated
independently, and that subjects respond positively to a set if any one of those stimuli surpasses
a criterion value (e.g., Macmillan & Creelman, 2005; Wickens, 2002). This is an important
“baseline” against which to evaluate the information integration models because the
interpretation of those models hinges critically on the assumption that the ensemble
manipulation alters representational variability in predictable ways embodied by Equations 4
– 8. The OR model embodies a failure of this assumption: If subjects do not average or sum
evidence across the stimuli in an ensemble, but rather evaluate each stimulus independently,
then this multidimensional extension of the standard TSD model will provide a superior fit to
the data.

The situation is simplified because the stimuli within an ensemble (and, in fact, across the entire
study set) can be thought of as multiple instances of a common random variable. The advantage
of this situation is apparent in Figure 4, which depicts the 2-dimensional TSD representation
of the OR model applied to 2 stimuli. Here the strength distributions are shown jointly as density
contours; the projection of the marginal distributions onto either axis represents the standard
TSD case. Because the stimuli are represented by a common random variable, those projections
are equivalent.

According to the standard TSD view, a subject provides a rating of r to a stimulus if and only
if the evidence value yielded by that stimulus exceeds the criterion associated with that rating,
Cr. Thus, the probability of at least one of n independent and identically distributed instances
of that random variable exceeding that criterion is

Equation 9

The shaded portion of the figure corresponds to the bracketed term in Equation 9. Equivalently,
the region of endorsement for a subject is above or to the right of the shaded area (which extends
leftward and downward to -∞).

Model fitting—Details of the model-fitting procedure are provided in Appendix D.

Model results—The performance of the models is shown in Table 2, which indicates
AICC, Akaike weights, and number of individual subjects best fit by each model. It is clear
that the superior fit was provided by ND-TSD with the restriction of equivalent criteria across
ensemble conditions, and with the averaging rather than the summation process. That model
provided the best fit (lowest AICc score) for more than 80% of the individual subjects, and had
(on average across subjects) a greater than 80% chance of being the best model in the set tested.
This result is consistent with the presence of criterial noise and additionally with the suggestion
that subjects have a very difficult time adjusting criteria across trials (e.g., Ratcliff and
McKoon, 2000).

A depiction of the fit of the winning model is shown in the top panel of Figure 5, in which it
can be seen that ND-TSD provides a quite different conceptualization of the recognition
process than does standard TSD (shown in the bottom panel). In addition to criterial variance,
the variance of the studied population of items is estimated to be much greater relative to the
unstudied population. This suggests that the act of studying words may confer quite substantial
variability, and that criterial variance acts to mask that variability. The implications of this will
be considered in the next major section.
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Psychological implications of criterial variance
When interpreted in the context of TSD, superior performance in one condition versus another,
or as exhibited by one subject over another, is attributable either to a greater distance between
the means of the two probability distributions or to lesser variability of the distributions. In
ND-TSD, superior performance can additionally reflect lower levels of criterial variability. In
this section, we outline several current and historical problems that may benefit from an explicit
consideration of criterial variability. The first two issues we consider underlie current debates
about the relationship between the slope of the isosensitivity function and theoretical models
of recognition and of decision-making. The third section revisits the standoff between
deterministic and probabilistic response models and demonstrates how decision noise can
inform that debate. The fourth, fifth, and sixth issues address the effects of aging, the
consequences of fatigue, and consider the question of how subjects make introspective
remember/know judgments in recognition tasks. These final points are all relevant to current
theoretical and empirical debates in recognition memory.

Effects of recognition criterion variability on the isosensitivity function
Understanding the psychological factors underlying the slope of the isosensitivity function
have proven to be somewhat of a puzzle in psychology in general and in recognition memory
in particular. Different tasks appear to yield different results: for example, recognition of odors
yield functions with slopes ~1 (Rabin & Cain, 1984; Swets, 1986b), whereas recognition of
words typically yields considerably shallower slopes (Ratcliff et al., 1992, 1994). That latter
result is particularly important because it is inconsistent with a number of prominent models
of recognition memory (Eich, 1982; Murdock, 1982; Pike, 1984). The form of the isosensitivity
function has even been used to explore variants of recognition memory, including memory for
associative relations (Kelley & Wixted, 2001; Rotello, Macmillan, & Van Tassel, 2000) and
memory for source (Healy et al., 2005; Hilford et al.. 2002)

One claim about the slope of the isosensitivity function in recognition memory is the constancy-
of-slopes generalization, and owes to the pioneering work of Ratcliff and his colleagues
(Ratcliff et al., 1992, 1994), who found that slopes were not only consistently less than unity,
but also relatively invariant with manipulations of learning. Later work showed, however, that
this may not be the case (Glanzer et al., 1999; Heathcote, 2003; Hirshman & Hostetter,
2000). In most cases, it appears as though variables that increase performance decrease the
slope of the isosensitivity function (for a review, see Glanzer et al., 1999). This relation holds
for manipulations of normative word frequency (Glanzer & Adams, 1990; Glanzer et al.,
1999; Ratcliff et al., 1994), concreteness (Glanzer & Adams, 1990), list length (Elam, 1991,
as reported in Glanzer et al., 1999; Gronlund & Elam, 1994; Ratcliff et al., 1994; Yonelinas,
1994), retention interval (Wais, Wixted, Hopkins, & Squire, 2006), and study time (Glanzer
et al., 1999; Hirshman & Hostetter, 2000; Ratcliff et al., 1992, 1994).

These two findings—slopes of less than 1 and decreasing slopes with increasing performance
—go very much hand in hand from a measurement perspective. Consider the limiting case, in
which learning has been so weak and memory thus so poor, that discrimination between the
old and new items on a recognition test is nil. The isosensitivity function must have a slope of
1 in both probability and normal-deviate coordinates in that case, because any change in
criterion changes the HR and FAR by the same amount. As that limiting case is approached,
it is thus not surprising that slopes move towards 1. The larger question in play here is whether
the decrease in performance that elicits that effect owes specifically to shifting evidence
distributions, or whether criterial variance might also play a role. We tackle this question below
by carefully examining the circumstances in which a manipulation of learning affects the slope
and the circumstances in which it does not.
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The next problem we consider is why isosensitivity functions estimated from the rating task
differ from those estimated by other means and whether such differences are substantive and
revealing of fundamental problems with TSD. In doing so, we consider what role decision
noise might play in promoting such differences, and also whether reports of the demise of TSD
(Balakrishnan, 1998a) may be premature.

Inconsistent effects of memory strength on slope—The first puzzle we will consider
concerns the conflicting reports on the effects of manipulations of learning on the slope of the
isosensitivity function. Some studies have revealed that the slope does not change with
manipulations of learning (Ratcliff et al., 1992, 1994), whereas others have supported the idea
that the slope decreases with additional learning or memory strength. While some models of
recognition memory predict changes in slope (Gillund & Shiffrin, 1984; Hintzman, 1986) with
increasing memory strength, others either predict unit slope (Murdock, 1982) or invariant slope
with memory strength. This puzzle is exacerbated by the lack of entrenched theoretical
mechanisms that offer a reason why the effect should sometimes obtain and sometimes not.

To understand the way in which criterion noise might underlie this inconsistency, it is important
to note the conditions under which changes in slope are robust and the conditions under which
they are not. Glanzer et al. (1999) reviewed these data and their results provide an important
clue. Of the four variables for which a reasonable number of data were available (≥5
independent conditions), list length and word frequency manipulations clearly demonstrated
the effect of learning on slope: shorter list lengths and lower word frequency led to higher
accuracy and also exhibited a lower slope (in 94% of their comparisons). In contrast, greater
study time and more repetitions led to higher accuracy but revealed the effect on slope less
consistently (on only 68% of the comparisons).

To explore this discrepancy, we will consider the criterion-setting strategies that subjects bring
to bear in recognition, and how different manipulations of memory might interact with those
strategies. There are two details about the process of criterion setting and adjustment that are
informative. First, the control processes that adjust criteria are informed by an ongoing
assessment of the properties of the testing regimen. This may include information based on
direct feedback (Dorfman & Biderman, 1971; Kac, 1962; Thomas, 1973, 1975) or derived from
a limited memory store of recent experiences (Treisman, 1987; Treisman & Williams, 1984).
In either case, criterion placement is likely to be a somewhat noisy endeavor until a steady state
is reached, if it ever is. From the perspective of these models, it is not surprising that support
has been found for the hypothesis that subjects set a criterion as a function of the range of
experienced values (Parducci, 1984), even in recognition memory (Hirshman, 1995). These
theories have at their core the idea that recognizers hone in on optimal criterion placement by
assessing, explicitly or otherwise, the properties of quantiles of the underlying distributions.
Because this process is subject to a considerable amount of irreducible noise—for example,
from the particular order in which early test stimuli are received—decision variability is a
natural consequence. To the degree that criterion variability is a function of the range of
sampled evidence values (cf. Nosofsky, 1983), criterion noise will be greater when that range
is larger.

The second relevant aspect of the criterion-setting process is that it takes advantage of the
information conveyed by the individual test stimuli. A stimulus may reveal something about
the degree of learning a prior exposure would have afforded it, and subjects appear to use this
information in generating an appropriate criterion (Brown et al., 1977). Such a mechanism has
been proposed as a basis for the mirror effect (Benjamin, 2003; Benjamin, Bjork, & Hirshman,
1998; Hirshman, 1995), and, according to such an interpretation, reveals the ability of subjects
to adjust criteria on an item-by-item basis in response to idiosyncratic stimulus characteristics.
It is noteworthy that within-list mirror effects are commonplace for stimulus variables, such
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as word frequency, meaningfulness, and word concreteness (Glanzer & Adams, 1985; 1990),
but typically absent for experimental manipulations of memory strength, such as repetition
(Higham et al., in press; Stretch & Wixted, 1998) or study time (Verde & Rotello, 2007). This
difference has been taken to imply that recognizers are not generally willing or able to adjust
criteria within a test list based on an item's perceived strength class.

In fact, the few examples of within-list mirror effects arising in response to a manipulation of
strength are all ones in which the manipulation provided for a relatively straightforward
assignment to strength class, including variable study-test delay (Singer, Gagnon, & Richards,
2002; Singer & Wixted, 2006) and the use of stimuli that were associatively categorized
(Benjamin, 2001; Starns, Hicks, & Marsh, 2006). Similar within-list manipulations of strength
tied to color (Stretch & Wixted, 1998) or list half at test (Verde & Rotello, 2007) were
unsuccessful, supporting the view that the relationship between the strength manipulation and
the stimulus must be extremely transparent in order to support explicit differentiation by the
subject.

What does this imply for the placement and maintenance of criteria across conditions that vary
in discriminability? When the burden of assigning a test stimulus to a subclass falls on the
recognizer, they will often forgo that decision. In that case, they will accumulate information
on a single class of “old” items as they sample from the test stimuli. However, when the task
relieves the subject of this burden, either by dividing up the discriminability classes between
subjects or between test lists, or by using stimuli that carry with them inherent evidence as to
their appropriate class and likely discriminability, then the subject may treat as separate the
estimation of range for the different classes.

The effects of these strategic differences can be seen in Figures 6 and 7. As shown in Figure
6, if increases in discriminability lead to increased stimulus variance and criterion noise is
constant, the slope of the isosensitivity function should always decrease when conditions afford
superior memory discrimination. This is shown in Boxes B and C. However, as criterion
variance increases, the effect of stimulus variance becomes less pronounced (as can be seen
by comparing the two boxes). Consider the effect of a manipulation of memory on the slope:

in which the subscripts 1 and 2 denote the two levels of the manipulated variable, with level 2
being the condition with superior performance and greater stimulus variability. Under these
conditions, it is easy to see that the value of this effect must be either 0 or positive. That is, if
stimulus variance increases with discriminability, then the condition with greater
discriminability must have a lower slope. The inconsistency in the literature must then come
from the effect of those variables on criterion variability, which can attenuate the magnitude
of the difference. When test stimuli are not successfully subclassified, then criterion variance
reflects the full range of the old stimuli, rather than the ranges of the individual classes.

Figure 7 illustrates the decision milieu that yields these differential effects. When the set of
old items is heterogeneous with respect to discriminability, but subjects do not discriminate
between the strength classes, then the sampled range of criterion values reflect the full range
of this mixture distribution, and the variability of the criterion will be great (shown in the
bottom panel as the root-mean-square average of the criterion distributions in the top panel).
When subjects do discriminate between the strength classes and sampled values from each
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class inform a unique criterion distribution (as shown in the top panel), then those two
distributions will both be of lesser variability.

In both cases, criterion variance is constant across stimulus classes, and the net effect is a
decrease in slope. This occurs because increasing stimulus variability is offset by a constant
amount of criterion variance. However, criterion variance serves to effectively augment or
retard the magnitude of the decrease. In the top panel, in which each item class specifies a
unique criterion distribution, the lesser variability that accompanies the stimulus classes
translates into a lesser amount of criterial variability. In this case, that lesser variability
increases the degree to which stimulus variability yields an effect on slope.

By this explanation, memory enhancing conditions that afford subclassification of the test
stimuli with respect to discriminability should be more likely to yield an effect on slope than
variables that are opaque with respect to discriminability. Now we are in a position to reconsider
the empirically studied variables enumerated earlier. Variables that are manipulated between-
subjects or between-lists require no subclassification within a test list, and should thus provide
for relatively easy assignment at test. Of the four variables mentioned earlier, only list length
is always studied between list (by definition). In addition, variables for which the
discriminability class is inherent to the stimulus itself should also afford subclassification.
Word frequency is the only member of this category from that list.

The other two variables, repetition and study time, are the paradigmatic examples of
manipulations that do not routinely afford such subclassification. An encounter with a single
test word reveals nothing about whether it was probably repeated or if it probably studied for
a long duration—other than through the evidence it yields for having been studied at all. And,
consistent with the explanation laid out here, these are the very variables for which the effects
of discriminability on slope are less consistently observed.

To summarize, manipulations that encourage easy allotment of test items into discriminability
classes are likely to promote lesser criterion variability, and are this less likely to mask the
underlying decrease in the slope of the isosensitivity function generated by increasing stimulus
variability.

Slope invariance with manipulations of bias—Another recent important result that is
somewhat vexing from the standpoint of TSD is the lack of invariance in the shape of the
isosensitivity function when estimated under different biasing or payoff conditions
(Balakrishnan, 1998a; Van Zandt, 2000). This failure has led theorists to question some of the
basic tenets of TSD, such as the assumption that confidence ratings are scaled from the evidence
axis (Van Zandt, 2000) or, even more drastically, that stimulus distributions are not invariant
with manipulations of bias (Balakrishnan, 1998b, 1999). Both suggestions do serious violence
to the application of TSD to psychological tasks, and rating tasks in particular, but several
theorists have defended the honor of the venerable theory (Rotello & Macmillan, 2008;
Treisman, 2002). Of particular interest here, a recent report by Mueller and Weidemann
(2008) postulates criterial noise as a source of the failed invariance. Mueller and Weidemann
demonstrated that criterial noise can account for the lack of invariance under a bias
manipulation using their Decision Noise Model, which is similar in spirit to (but quite different
in application from) ND-TSD.

ND-TSD can also explain such effects quite simply. Figure 6 shows the joint effects of stimulus
and criterial variability on the slope of the isosensitivity function. A manipulation of bias is
presumed not to affect either the location or shape of the evidence distributions (cf.
Balakrishnan, 1999), and should consequently have no effect on slope. The predictions of TSD
are indicated by the darkest (bottom) line; any point on that line is a potential slope value, and
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it should not change with a manipulation of bias. However, if criterion variability changes with
bias, then the slope of the function can vary along a contour of constant stimulus variance, such
as shown by Box A. Such an interpretation presumes that criterial variance itself varies with
the bias manipulation; why might this be?

First, criterion variance might increase with increasing distance from an unbiased criterion.
This could be true because placing criteria in such locations is uncommon or unfamiliar, or
simply because the location value is represented as a distance from the intersection of the
distributions. A magnitude representation of distance would exhibit scalar variability and thus
imply greater criterion variance with more biased criterion locations. The model of Mueller
and Weidemann achieves this effect by imposing greater variability on peripheral confidence
criteria than on the central yes/no criterion; such a mechanism is neither included in nor
precluded by ND-TSD. Similarly, criteria may exhibit scalar variability with increasing
distance from the mean of the noise distribution. This assumption is supported somewhat by
results that indicate that criterion noise increases with stimulus range in absolute identification
tasks (Nosofsky, 1983).

In sum, if the variance of criteria scales with the magnitude of those criteria, manipulations of
bias may be incorrectly interpreted as reflecting changes in the stimulus distributions. This
does not reflect a fundamental failing of TSD, but rather reveals conditions in which ND-TSD
is necessary to explain the effects of decision noise on estimated isosensitivity functions.

Deterministic versus probabilistic response criteria
In earlier flashpoints over decision rules in choice tasks, some theorists suggested that the rule
may be probabilistic, rather than deterministic in form (e.g., Luce, 1959; Nachmias & Kocher,
1970; Parks, 1966; Thomas & Legge, 1970). From the perspective of TSD, the evidence value
is compared to a criterion value and a decision is made based on their ordering. This strategy
leads to optimal performance, either in terms of payoff maximization or maximal number of
correct responses, when that criterion is based on the likelihood ratio (Green & Swets, 1966).
Regardless of how the criterion is placed, and whether it is optimal or not, this is a
deterministic response rule, and differs from a probabilistic response rule, by which the value
of the likelihood ratio or a transformation thereof, is continuously related to the probability of
a particular response.

There was a tremendous amount of research devoted to the resolution of this question in the
1960s and 1970s, in part because TSD made such a forceful claim that the rule was
deterministic. A convincing answer was not apparent, however: The strong implications of
static criteria were rejected by the data reviewed above, including sequential dependencies and
changes in the slope of the isosensitivity function. Improvements in sensitivity over the course
of individual tasks (e.g., Gundy, 1961; Zwislocki, Marie, Feldman, & Rubin, 1958) also
suggested the possibility of increasingly optimal or perhaps decreasingly variable criteria. In
some tasks, the prediction of a binary cutoff in response probability that followed from
deterministic theories was confirmed (Kubovy, Rapaport, & Tversky, 1971) and in other tasks
that prediction was disconfirmed (Lee & Janke, 1965; Lee & Zentall, 1966). In still others,
data fell in a range that was not naturally predicted by either a binary cutoff or one of the
probabilistic viewpoints reviewed below (Lee & Janke, 1964). Cutoffs appeared to be steeper
when discriminability was greater (Lee & Zentall, 1966), suggesting that subjects may employ
cutoffs within a range of evidence and use alternate strategies when the evidence less clearly
favors one choice or the other (Parducci & Sandusky, 1965; Sandusky, 1971; Ward, 1973;
Ward & Lockhead, 1971).

The evidence in favor of probabilistic models was mixed as well. The most general prediction
of probabilistic models of decision-making is that the probability of an endorsement varies
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with the evidence in favor of the presence of the to-be-endorsed stimulus. Whereas it is optimal
to respond “old” to a recognition test stimulus when the evidence in favor of that stimulus
actually having been studied outweighs the evidence that it was not (assuming equal priors and
payoffs), probabilistic models suggest that the weight of that evidence determines the
probability of an “old” response. Evidence from individual response functions in tasks that
minimized sources of variability revealed sharp cutoffs (Kubovy et al., 1971). Simple
probabilistic models failed to account for that result, but accounted well for performance in
other tasks (Schoeffler, 1965), including recognition memory (Parks, 1966) and a wide variety
of higher-level categorization tasks (Erev, 1998).

A partial reconciliation of these views came in the form of deterministic dynamic-criterion
models (Biderman, Dorfman, & Simpson, 1975; Dorfman, 1973; Dorfman & Biderman,
1971; Kac, 1962, 1969), in which the criterion varied systematically from trial to trial based
on the stimulus, response, and outcome. These models outperformed models with static criteria
(Larkin, 1971; Dorfman & Biderman, 1971) but did not account for a relatively large amount
of apparently nonsystematic variability (Dorfman, Saslow, & Simpson, 1975). Similar models
were proposed with probabilistic responding (Larkin, 1971; Thomas, 1973), but were never
tested against dynamic-criterion models with deterministic responding.

Probability matching and base-rate manipulations—Many of the dynamic-criterion
models made the prediction that responding would exhibit probability matching (or
micromatching; Lee, 1963); that is, that the probability of a positive response would
asymptotically equal the a priori probability of a to-be-endorsed stimulus being presented
(Creelman & Donaldson, 1968; Parks, 1966; Thomas & Legge, 1970). Such theories also met
with mixed results: although there were situations in which probability matching appeared to
hold (e.g., Lee, 1971; Parks, 1966), time-series analysis revealed overly conservative response
frequencies (to be reviewed in greater detail below) and poor fits to individual subjects (Dusoir,
1974; Norman, 1971). Kubovy and Healy (1977) even concluded that dynamic-criterion
models that employed error correction were mostly doomed to fail because, empirically,
subjects appeared to shift criteria after both correct and incorrect responses, an effect that was
inconsistent with the majority of models. They also claimed that models of the “additive-
operator” type—in which the direction of criterion change following a correct response
combination was predicted to be constant—were wrong, because subjects appeared to be
willing to shift their criterion in either direction, depending on the exact circumstances. Here
we have explicitly avoided theorizing about the nature of systematic changes in criterion so as
to be able to more fully examine the role of nonsystematic noise on the response function and
thus on recognition performance. Yet it can be shown that criterial noise naturally and simply
leads to conservative shifts of criteria in response to manipulations of base rates of signal and
noise events.

Conservatism—An important result in tasks in which base rates are manipulated is the
excessively conservative response of criteria to manipulations of the base rates of events.6
Overall, experiments have revealed mixed effects of base rate manipulations: although, in some
tasks, subjects appear acutely sensitive to prior probabilities (Kubovy & Healy, 1977;Swets,
Tanner, & Birdsall, 1961), even in recognition memory (Healy & Kubovy, 1978), those shifts
typically are lesser in magnitude than predicted either under an optimal deterministic decision
rule (Green & Swets, 1966) or under the more conservative prediction of probability matching
(Thomas, 1975). Other data suggested that subjects in recognition memory experiments did

6Note that conservative in this context refers to a suboptimal magnitude of criterion shift with respect to changing base rates, not to a
conservative (as opposed to liberal) criterion placement.
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not modulate their criteria at all when the base rates were shifted across blocks (Healy & Jones,
1975;Healy & Kubovy, 1977).

The general conservatism of criterion placement has been attributed to, variously,
unwillingness to abandon sensory (or mnemonic) evidence in favor of base rates (Green &
Swets, 1966), failure to appreciate the proper form of the evidence distributions (Kubovy,
1977), inaccurate estimation of prior probabilities (Galanter, 1974; Ulehla, 1966), or to
probability matching (although this latter view was eventually rejected by the data discussed
in the previous section). In this next subsection, we show that either probability matching or
optimality perspectives can predict conservatism when criterial variability is explicitly
accounted for. Likewise, we shall see that criterial variability can mimic probabilistic response
selection.

Response functions , conservatism, and manipulations of base rates—The most
fundamental effect of the addition of criterial noise is to change the shape of the response
function—that is, the function relating evidence to response. Here we consider the form of
response functions in the presence of criterial variability and evaluate the exact effect of that
variability on the specific predictions of optimality views (Green & Swets, 1966) and
probability matching (Parks, 1966). We show that (a) probabilistic response functions are not
to be distinguished from deterministic functions with criterial variability, and that (b)
conservatism in criterion shifts in response to manipulations of base rates is a natural
consequence of criterial variability (for more general arguments about mimicry between
deterministic and probabilistic response functions, see Marley, 1992; Townsend & Landon,
1982). The goal of these claims is to show how criterial variability can increase the range of
results that fall within the explanatory purview of TSD, and to demonstrate why previously
evaluated benchmarks for the rejection of deterministic models may be inappropriate.
Specifically, ND-TSD naturally accounts for (apparently) suboptimal response probabilities
in response to manipulations of base rate. It does so successfully because, as shown below, a
deterministic response rule in the presence of criterial noise can perfectly mimic a probabilistic
rule (for similar demonstrations, see Ashby & Maddox, 1993; Marley, 1992; Townsend &
Landon, 1982).

The deterministic response rule is to endorse a stimulus as “old” if the subjective evidence
value (E) surpasses a criterion value c:

Treating c as an instance of the previously defined random variable for criterion, the response
function conditional upon E is

Equation 10

Example response functions are shown in the left panel of Figure 8, in which increasingly
bright lines indicate increasingly variable criteria. The function is, of course, simply the
cumulative normal distribution of which the step function that is the traditional implication of
TSD (shown in black) is the asymptotic form as σ2

c → 0. This result is not surprising, but it is
revealing, especially in comparison with the right panel of Figure 8, which depicts response
functions for two purely probabilistic response rules. The first (darker) depicts Schoeffler's
(1965) response rule, which is:
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and the second (lighter) line depicts an even simpler rule relating the height of the signal
distribution at E to the sum of the heights of the two distributions at E, or:

in which ϕ indicates the normal probability density function. In each of these cases, the resultant
response function is also a cumulative normal distribution, thus showing that criterial
variability can make a deterministic response rule perfectly mimic a probabilistic one. To be
fair, the rules chosen here are simple ones and simplifying assumptions have been made with
respect to the evidence distributions (with the latter rule, the evidence distributions have been
set to be of equal variance). It is not our claim that there are not probabilistic rules that may be
differentiated from deterministic rules with criterial noise, nor that there are no circumstances
under which even these rules can be differentiated from one another. Rather, it is to demonstrate
that a parameter governing criterial variability can produce a range of response functions,
including ones that perfectly replicate the predictions of probabilistic rules. This result provides
a new perspective on the phenomenon of conservatism seen in criterion-setting, as we will
review below.

Conservatism in response to base rate manipulations—The conservatism seen in
responses to manipulations of base rate has been hypothesized to reflect either suboptimal
criterion placement or a failure to accurately estimate the parameters of the decision regime,
including the probability distributions or the actual base rates themselves. Here we show that
conservatism is a natural consequence of criterial variability and arises with both optimal
criterion placement and probability matching strategies.

Optimal criteria for base rate manipulations—Green and Swets (1966) showed that the
optimal bias can be defined purely in terms of the stimulus base rates:

When the evidence distributions are not of equal variance, an optimal bias leads to two criteria.
This fact is reflected in the nonmonotonicity at the margins of the isosensitivity function, or,
equivalently, by the nonmonotonic relationship between evidence and the likelihood ratio
throughout the scale. In any case, this issue falls outside the purview of our current discussion
and need not concern us here. The effect of criterial variability can be amply demonstrated
under the equal-variance assumption.

In the equal-variance case, the optimal criterion placement is a function of the optimal bias and
the distance between the distributions:
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in which d’ represents the distance between the evidence distributions scaled by their common
standard deviation.

Imagine that subjects place their criterion optimally according to this analysis, but fail to
account for the presence and consequence of criterial noise. To evaluate that effect, we must
consider first how criterial variability affects d’. To do so, remember that d’ = zHR – zFAR.
Substituting terms from Equation 1b and setting σ2

1= σ2
0 =1,

Equation 11

where d’noisy indicates d’ under conditions of criterial variability.

This relationship indicates that d’ will be overestimated in computing optimal criterion
placement, and that this overestimation will worsen with increasing criterial noise. What effect
does this have on the overall rate of positive responding? That relationship is shown in the left
panel of Figure 9, which plots the deviation of overall “yes” rate from the predicted rate of a
“semi-ideal” decision-maker—that is, one that is ideal except insofar as it fails to appreciate
its own criterial noise. These values were computed by assessing the rate of positive responding
(for to-be-endorsed and to-be-rejected stimuli) at the semi-ideal criterion for varying base rates
(for d’ = 1), and then comparing that value to the rate of responding with added criterial noise.
As noted by Thomas and Legge (1970), the effect of criterial variability is to lead to the
appearance of nonoptimal criterion placement. The employed criterion is optimal from the
perspective of the information available in the task, but nonoptimal in that it fails to account
for its own variability. The net effect is that low signal probabilities lead to a nonoptimally
high rate of responding, and high signal probabilities lead to a nonoptimally low rate of
responding. This result is the hallmark of conservatism.

Probability matching and criterial noise—According to the probability matching view,
subjects aim to respond positively at the same rate as the positive signal is presented. Probability
matching often predicts more conservative response behavior than does the optimality view
presented above (Thomas & Legge, 1970). Let P1 be the proportion of signal trials and thus
also the desired rate of positive responding (R1). Then,

Equation 12

 Thomas and Legge (1970) pointed out that this function is not an isosensitivity function, but
rather an isocriterion function: It describes the relationship between HR and FAR and that
relationship's invariance with R1 as sensitivity varies. Thus, like the case above, we must
assume a particular level of sensitivity in order to derive values for the HR and FAR. In addition,
the relationship between R1 and μC is complex because of the integral over the normal
distribution. In the simulation that follows, we selected the value for μC that minimized the
deviation of the right-hand portion of Equation 11 from P1, assuming values of 1 for μ1 and
σ1. Deviation from this model was estimated by simulating 1 million trials for each signal base
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rate from 0.1 to 0.9 (by steps of 0.1) and adding a variable amount of criterial noise on each
trial. The results, shown on the right-hand side of Figure 9, indicate an effect similar to what
was seen in the previous case: increasing criterial noise leads to increased conservatism.

Criterion noise within a deterministic decision framework (TSD) can thus account for results
that have been proposed to reveal probabilistic responding. These demonstrations in and of
themselves do not reveal the superiority of deterministic theories, but they do suggest that such
data are not decisive for either viewpoint and, in doing so, call attention to the large additional
body of evidence in support of deterministic decision theories.

The effects of aging on recognition
Many of the current battles over the nature of the information that subserves recognition
decisions are waged using data that compare age groups. For example, it has been proposed
that elderly subjects specifically lack recollective ability (Jacoby, 1991; Mandler, 1980) but
enjoy normal levels of familiarity. Evidence for this two-component theory of recognition
comes from age-related dissociations in performance as well as differences between younger
and older subjects in the shape of the isosensitivity function (Howard et al., 2007; Yonelinas,
2002). However, the role of criterial variability has never been considered.

Two general sources of differences between age groups in criterial maintenance are possible.
First, those mechanisms and strategies that govern the evolution of criterion placement over
time may differ between young and older subjects, perhaps leading to differences in variability
of that placement over the course of the experiment. Such a finding would be fascinating in
that it would provide an example of how higher-level cognitive strategic differences play out
in terms of performance on very basic tests of memory (cf. Benjamin & Ross, 2008).
Alternatively, it might be the case that maintenance of criterion is simply a noisier process in
the elderly—perhaps attributable to one of very problems in the elderly it can be confused with,
namely memory (Kester, Benjamin, Castel, & Craik, 2002)—and that recognition suffers as a
result.

Empirically, the results are as one might expect if older adults exhibit greater criterion
variability. The slope of the isosensitivity function is greater for older than younger subjects
on tasks of word recognition (Kapucu, Rotello, Ready, & Seidl, in press), picture recognition
(Howard et al., 2006), and associative recognition (Healy et al., 2005). The wide variety of
materials across which this age-related effect obtains is suggestive of a quite general effect of
aging on criterion maintenance, rather than a strategic difference between the age groups. These
studies have not attempted to separate the effects of criterion and stimulus variability, and these
results are consistent with but not uniquely supportive of greater decision noise in the elderly.
Future work is necessary to isolate these effects within older subjects.

Changes in sensitivity with time
TSD is often used to evaluate whether fatigue affects performance on a detection task over
time (Galinsky, Rosa, Warm, & Dember, 1993; cf. Dobbins, Tiedmann, & Skordahl, 1961),
or, conversely, whether improvements in sensitivity are evident with increasing practice
(Gundy, 1961, Trehub, Schneider, Thorpe, & Judge, 1991; Zwislocki et al., 1958). Traditional
interpretations of such effects attribute fatigue-related decrements to increasing stimulus noise
and practice-related improvement to increasing criterion optimization, but such dramatically
differing interpretations of these related effects are not compelled by the data. They reflect a
tacit but intuitive belief that maintenance of criteria is not demanding and thus not subject to
fatigue. The purely perceptual part of detection tasks is assumed to be similarly undemanding
and thus not likely to show much improvement with practice.
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Consideration of criterial variability provides an alternate theoretical rationale that can unite
these findings: decrements arise with time when fatigue increases the difficulty of criterial
maintenance, and improvements arise when practice decreases the effects of noise on criterion
localization. Such a statement should not be confused with an articulated psychological theory
of such effects, but it is an alternative theoretical mechanism that such theories might profitably
take advantage of in substantively addressing these and related results.

The slope of the isosensitivity function for remember/know tasks—There is
currently a vigorous debate over judgments that subjects provide about the phenomenological
nature of their recognition judgments and whether those judgments validly represent different
sources of evidence (Gardiner & Gregg, 1997; Gardiner, Richardson-Klavehn, & Ramponi,
1998) or two criteria applied to a single continuous evidence dimension (Benjamin, 2005;
Donaldson, 1996; Dunn, 2004; Hirshman & Master, 1997; Wixted & Stretch, 2004). The latter
view is consistent with the received version of unidimensional TSD with multiple criteria, just
as in the ratings task discussed previously at length, whereas the former view specifies
additional sources of evidence beyond those captured in a single evidence dimension. Which
view is correct is a major theoretical debate for theorists of recognition memory and whether
these phenomenological judgments of “remember” and “know” status indicate multiple states
or multiple criteria has become a major front in that battle. That debate is peripheral to the
present work and will not be reviewed here. We do consider how criterial variability might
influence interpretation of data relevant to that debate, however.

Some authors have cited differences in the slope of the isosensitivity function estimated from
remember/know judgments from the slope estimated from confidence ratings as evidence
against the unidimensional view of remember/know judgments (Rotello, Macmillan, & Reeder,
2004), whereas others have disputed this claim (Wixted & Stretch, 2004). In a large meta-
analysis, Rotello et al. (2004) examined slopes for isosensitivity functions relating remember
responses to overall rates of positive responses, and found a greater slope for such R-O
isosensitivity functions. Wixted and Stretch (2004) explained this result thusly:

“...the evidence suggests that the location of the remember criterion exhibits item-to-
item variability with respect to the confidence criteria...if the remember criterion
varies from item to item, the slope of the [isosensitivity function] would increase
accordingly.” (p. 627)

Although not described in the same framework that we provide here, the astute reader will
recognize a claim of criterial variability analogous to our earlier discussion. If the judgments
in the remember/know paradigm are subject to greater variability than the judgments in a
confidence rating procedure, then the slope of the isosensitivity function will be closer to 1 for
the remember/know function than for the confidence function. If the slope of the confidence
function is less than 1, as it typically is, then the additional criterial variability associated with
remember/know judgments will increase the slope of the function. This is exactly the result
reported by Rotello et al. (2004).

This interpretation is further borne out by recent studies that empirically assessed the variability
in the location of the remember/know criterion. Recent studies that compared models of
remember/know judgments with and without an allowance for criterion variability for the
criterion lying between “know” and “remember” judgments revealed superior performance by
the models with nonzero criterion variability (Dougal & Rotello, 2007; Kapucu et al., in
press). The heady controversy underlying the use of the R/K procedure may thus reflect the
consequences of unconsidered noise in the decision process.
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Detection theory and criterial noise
This paper has questioned a very basic assumption of the Theory of Signal Detection—that the
criterion value is a stable, stationary value. We have forwarded theoretical arguments based
on the psychological burden of maintaining criteria and reviewed empirical evidence that
suggests the presence of criterial noise, including comparisons of different procedures for
estimating isosensitivity functions and systematic effects of experimental manipulations on
criteria, and a long-standing debate over whether the response rule is probabilistic or
deterministic. Criterial noise makes these two candidates indistinguishable, and naturally
accounts for the conservatism in response shifts that is ubiquitous in experiments that
manipulate signal base rates. In addition, we have argued that the isosensitivity function can
only be used to test theories of recognition if criterial variability is presumed to be negligible.

In the second half of the paper, we used the task of ensemble recognition to tease apart the
effects of criterial and stimulus noise across a manipulation of learning, and shown that criterial
noise can be quite substantial. Given the empirical variability in estimates of slopes of
isosensitivity functions across conditions (Swets, 1986b), and the lack of a strong theory that
naturally accounts for such inconsistency, it may be useful to consider criterion noise as a
meaningful contributor to the shape of the isosensitivity function, and to detection,
discrimination, and recognition more generally.

We have considered at some length the psychological implications of this claim. The effects
of learning on detection, discrimination, and recognition tasks have always been interpreted in
terms of shifting evidence distributions. Primarily, distributions are thought to overlap less
under conditions of superior memory, but hypotheses regarding the relationship of their shape
to performance have also recently been discussed (DeCarlo, 2002; Hilford et al., 2002). The
specifics of that shape have even been used to test the assumptions of competing models of the
nature of recognition judgments (Heathcote, 2003; Yonelinas, 1999). Here we have argued that
learning may also influence the variability of criteria, and that superior performance may in
part reflect greater criterion stability. This explanation does not deemphasize the role of
encoding and retention of stimuli as a basis for recognition performance, but allows for task-
relevant expertise over the course of the test to play an additional role.

Finally, we reviewed a set of problems that the postulate of criterion noise might help provide
new solutions for, including the inconsistency of manipulations of learning on the slope of the
isosensitivity function, discrepancies between procedures used to estimate such functions, the
effects of prior odds on shifts in response policy, the nature of remember/know judgments in
recognition, the effects of fatigue on judgment tasks of vigilance, and the effects of aging on
recognition. This is a small subset of areas in which decision noise is relevant, but illustrates
the dilemma: accurate separation of the mnemonic aspects of recognition from the decision
components of recognition relies on valid assumptions about the reliability, as well as the
general nature, of the decision process. We have provided evidence that variability in this
process is important, is apparent, and undermines attempts to use TSD as a general means of
evaluating models of recognition. ND-TSD reconciles the powerful theoretical machinery of
TSD with realistic assumptions about the fallibility of the decision process.
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Appendix A: Derivation of de in ND-TSD
The value of de can be derived from the geometry of the isosensitivity space, analogously to
how da is derived in the body of the paper. We consider the point at which the isosensitivity
function must intersect with a line of inverse slope through the origin:

De is the point at which Equation 2 and this line meet, which is

The distance from the origin to this point is:

This value is again scaled by √2 (see text for details):

Appendix B: Demonstration that a model in which criterion variability affects
ensemble size reduces to the zero criterial variance model

The two models are represented in Equations 5 and 6 in the body of the paper. We start with
Equation 6 and perform a little algebraic manipulation and rearrangement:

This is equivalent to Equation 5, thus showing that the two models are equivalent in form.
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Appendix C: Monte Carlo simulations and assessment of model flexibility
In this section, we report the results of a series of simulations of the ensemble recognition task
intended to assess the degree to which ND-TSD spuriously captures variability that reflects
failures of basic assumptions of TSD, rather than criterion variability itself. Seven simulations
are reported in which data were generated assuming a failure of distribution shape assumptions
(Simulations 1 – 4), a failure of decision rule assumptions (Simulation 5) or no such failures
(Simulations 6 – 7). With the exception of Simulations 5 and 7 (as described in greater detail
below), criterion variability was 0. Each simulation employed 30 old (signal) stimuli and 30
new (noise) stimuli per ensemble size (just as in the experiment) and 50 sim-subjects.

Failures of distributional assumptions
It has long been known that quite substantive departures from the assumption of normal
distributions still lead to roughly linear isosensitivity functions in normal-deviate coordinates
(Lockhart & Murdock, 1970). Such a finding leads to concern that the parameters yielded by
a model may not accurately capture the underlying generating process, and that TSD may
appear to be a good explanation of the underlying decision-making process when it is not. Here
we ask whether failures of such distributional assumptions benefit ND-TSD, with the
implication that the validity of ND-TSD would be undermined by providing a superior fit to
data generated under alternative assumptions.

The first two models consider the possibility that the generating distributions are exponential
in form. In Simulation 1, only the noise distribution is assumed to be exponential, and in
Simulation 2, both distributions are assumed to be exponential. For both simulations, the rate
parameter for the exponential noise distribution (λ) was set to 1. The signal distribution in
Simulation 1 was normal with mean 1 and unit variance, and the signal in Simulation 2 was
exponential with λ = 2. Criteria were set to reside at a constant proportion of the average of
the distributions means (.25, .50, .75, 1, and 1.25). Performance in conditions with ensembles
of 2 and 4 was generated using the averaging rule.

Simulations 3 and 4 used mixture distributions for the signal distributions (DeCarlo, 2002). In
both cases, the mixing parameter was 0.5. The simulations differed in the placement of the
distributions; in Simulation 3 the signals were 2.5 d’ units apart from one another (d’1 = 0.5
and d’2 = 3.0), and in Simulation 4 they were 0.5 d’ units apart from one another (d’1 = 0.25
and d’2 = 0.75). The criteria were again set to a constant proportion of the average d’ values (.
28, .48, .7, .91, and 1.21). Again, ensemble performance was generated using the averaging
rule.

Failures of assumptions about the ensemble decision rule
Simulation 5 investigates a case in which an alternative ensemble decision rule was used to
generate the data. When criterion variance is 0, the summation rule reduces to the averaging
rule, as can be seen be comparing Equations 5 and 7. Thus, for this simulation, σC was set to
0.8. The noise distribution was set to the standard normal distribution, and the signal
distribution was set to be normal with a mean of 1 and a standard deviation of 1.4. Criteria
were set at -0.28, 0.21, 0.7, 1.19, and 1.533 and multiplied by the relevant ensemble size for
the multiple-item conditions.

Standard assumptions of TSD
In the final two simulations, the ability of TSD and ND-TSD to accurately account for data
generated under their own assumptions was tested. In both, the noise distribution was the
standard normal distribution. In Simulation 6, the signal distribution was normal with a mean
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of 1 and standard deviation of 1.25, and there was no criterion variability. In Simulation 7, the
signal distribution standard deviation was 1.4, and the criterion standard deviation was 0.8.
Combining the two sources of noise in this simulation yields approximately the same total
amount of variance as in Simulation 6. In both cases, the criteria were set to -1.2, -0.5, 0.5, 1.5,
and 2.2.

Candidate models and model fitting
Here we consider the performance of a number of models in fitting the data generated in the
simulations described above. These are roughly the same models used to fit the actual data
generated in the experiment in this paper. There are eight models that represent the full
combination of three factors. Each model either had a criterion variance parameter (ND-TSD)
or it did not (TSD). With the exception of Simulation 5, each model had either a full set of 15
criteria, five for each of the three ensemble conditions, or only 5 criteria (restricted set of
criteria). Finally, each model used either the averaging or the summation decision rule. Details
of the actual model-fitting are presented in Appendix D.

Simulation results
The results of the simulations are summarized in Table C.1. Across all four simulations in
which distributional assumptions of TSD were violated (Simulations 1 – 4), TSD was much
more likely than ND-TSD to achieve a superior fit. In addition, the models using an averaging
rule and a restricted set of criteria outperformed their counterparts (as is appropriate, given the
generating models). The lesson of these simulations is that the extra parameter provided by
ND-TSD does not benefit that model in accounting for variability that derives from
distributional failures of TSD.

In Simulation 5, we considered whether ND-TSD would benefit from an incorrect specification
of the decision rule. Because the summation process leads to a major rescaling across ensemble
sizes, it did not make sense to have equivalent criteria across ensembles. Instead, criteria were
used that were a multiplicative constant across ensemble size. Thus, two additional models
were fit (in the rightmost columns for Simulation 5) in which there were only five free
parameters for criteria (like the restricted criteria models) but were multiplied by the ensemble
size (leading to 15 different criterion values). This was the generating model, and, as expected,
it did outperform the other models (note that the two proportional criteria models together
achieve an Akaike weight of 0.59). However, it is important to note that the simulation did not
effectively recover the relatively small amount of criterion variance in the simulation (the ND-
TSD version of the proportional model was outperformed by the TSD version). This result
suggests that, to the degree that there is any biasing of model performance, it is towards the
models without criterion variance.

The final two simulations conformed to the assumptions of TSD and ND-TSD respectively
(under the assumptions of averaging and restricted criteria). As can be seen, the model fitting
successfully recovered the original model with quite high Akaike weight scores.
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Table C.1

Akaike weights for the simulations described in Appendix C. Bold values indicate the winning
model. These simulations reveal that ND-TSD does not benefit from excessive flexibility.

Full set of criteria Restricted set of criteria Proportional criteria

Averaging rule Summation rule Averaging rule Summation rule

ND-TSD TSD ND-TSD TSD ND-TSD TSD ND-TSD TSD ND-TSD TSD

Simulation 1 0.01 0.00 0.00 0.00 0.18 0.80 0.00 0.00

Simulation 2 0.00 0.00 0.00 0.00 0.18 0.82 0.00 0.00

Simulation 3 0.00 0.00 0.00 0.00 0.27 0.67 0.02 0.04

Simulation 4 0.00 0.00 0.00 0.00 0.22 0.67 0.04 0.08

Simulation 5 0.00 0.00 0.00 0.00 0.08 0.33 0.00 0.00 0.25 0.34

Simulation 6 0.00 0.00 0.00 0.00 0.22 0.78 0.00 0.00

Simulation 7 0.00 0.00 0.00 0.00 0.85 0.15 0.00 0.00

Appendix D: Model-fitting procedures
All models were fit simultaneously to the response frequencies of individual subjects for all
three ensemble sizes. Parameters were determined using maximum-likelihood estimation, as
detailed below.

Criterion variance model and general technique
The model predicts that the proportion of responses above the jth criterion, cj, for old items in
ensemble size n is

Equation C1.1

and for new items is:

Equation C1.2

where etotal is the total amount of evidence yielded by the ensemble, μ1 is mean of the signal
distribution, σ1

2 is the signal variance, σc
2 is the criterial variance, and n is the ensemble size.

From this formula, we can derive the predicted proportion of each rating, θj, on the confidence
scale for each item type:

Equation C2.1
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Equation C2.2

where θ1j is the proportion of the jth rating response for old items and θ0j is the proportion of
the jth rating response for novel items, for j = 1...r where r is the number of ratings and c0 = -
∞ and cr = +∞. The likelihood function for a set of parameters, μ1, σ1

2, σc
2, and cj for all j,

given the data, xij for all i and j, is:

where i=0,1 indicates the new and old ensembles, respectively, Ni is the total number of the
ith type of item, and xij is the frequency of the jth response to the ith item type. The parameter
values were found that maximized the likelihood function for all three ensemble sizes jointly.
Specifically, the joint likelihood function is the product of each of the three individual
likelihood functions:

where Ljoint is the joint likelihood function and Ln is the likelihood of the parameters given the
data from ensemble size n. Two different sets of parameters were fit for the criterial variance
model. The first had a single set of criteria, cj where j=1,...,r, that was constrained to be the
same for all three ensemble sizes. The second set of parameters had 3r criteria, cjn for
j=1,...,r and n=[1,2,4], such that corresponding criteria in different ensemble sizes were free to
differ. The optimal parameters were found using the mle function in Matlab, which implements
a version of the Simplex algorithm.

Zero criterial-variance model
The zero criterial variance model was fit by constraining σc

2 to be zero and maximizing the
same likelihood function.

Summation model
A version of the criterion variance model was fit in which it was assumed that information was
summed, rather than averaged across an ensemble. In this model, Equations C1.1 and C1.2 are
replaced with:

Equation C3.1

and
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Equation C3.2

All other equations remain the same.

OR model
The OR model suggests participants perform a criterion comparison individually on each item
in the ensemble and then endorse the ensemble if ANY of the items surpass the criterion. The
model implies that the probability of endorsing an ensemble is the logical OR of the
probabilities of endorsing each word. Complementarily, the probability of not endorsing an
ensemble is the logical AND of not endorsing the individual words. Assuming all the words
in an ensemble have the same mean and variance, on average, the logical AND of the misses
(or of the correct rejections) would be probability of a miss (or correct rejection) raised to the
ensemble size power. More formally, the probability of endorsing an ensemble size at a given
rating level is equal to one minus the probability of none of the individual items meeting or
surpassing the criterion below that rating:

Equation C4.1

Equation C4.2

Using these probabilities, the predicted proportion of each rating, θij, for the OR model can be
computed by plugging these probabilities into equations C1.1 and C1.2. The likelihood
equations C2.1 and C2.2 can then be used to find the maximum likelihood estimators for this
model. Like the criterial variance and zero criterial variance models, the OR model was also
fit both using the same set of criteria across ensemble sizes and using a unique set of criteria
for each ensemble size.
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Figure 1.
Top panel: Traditional TSD representation of the recognition problem, including variable
evidence distributions and a scalar criterion. Bottom panel: An alternative formulation with
scalar evidence values and a variable criterion. Both depictions lead to equivalent performance.
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Figure 2.
Isosensitivity functions in probability coordinates (top row) and normal-deviate coordinates
(bottom row) for increasing levels of criterial noise (indicated by increasingly light contours).
Left panels illustrate the case when the variability of the signal (old item) distribution is less
than that of the noise distribution (which has unit variance), middle panels for when they are
equal in variance, and right panels for the (typical) case when the signal distribution is more
variable than the noise distribution.
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Figure 3.
Predictions of the variability models of information integration for the relationship between
ensemble size (n) and the shapes of the evidence distributions.
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Figure 4.
The multidimensional formulation of the OR model for information integration. Distributions
are shown from above. Given a criterion value and performance on a single stimulus, the shaded
area is equal to the complement of predicted performance on the joint stimulus.
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Figure 5.
Depiction of the results from the winning ND-TSD model (top panel) and traditional TSD
(bottom panel). Dark lines are evidence distributions and lighter lines represent criteria.
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Figure 6.
Slope of the isosensitivity curve as a function of stimulus (ranging from 1 to 2.5) and criterion
variance (ranging from 0 to 3).
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Figure 7.
A demonstration of how a manipulation of learning can lead to a difference in slope between
conditions when subjects can successfully subclassify test stimuli (top panel) than when they
can not (bottom panel).
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Figure 8.
Response functions for deterministic response rules (left panel) and probabilistic response rules
(right panel). In the left panel, increasingly light lines indicate increasing criterial noise. Note
that it is a step function when the criterion is nonvariable. In the right panel, the two functions
represent two different response rules (see text for details). In all cases, the criterion is set at
0.
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Figure 9.
A demonstration of conservatism as a function of base rate manipulations. The left panel shows
deviation from optimal responding; the right panel shows deviation from probability matching.
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Table 2

Corrected AIC values (AICc), Akaike weights, and number of subjects best fit by each model. With and without
restriction refer to models in which criteria were allowed to vary across ensemble size (without restriction) or
were not (with restriction).

Model and parameter Without restriction With restriction

ND-TSD Averaging model

        Mean AICc 154 116

        Mean Akaike weight 0.00 0.82

        Number of subjects 0 16

TSD Averaging model

        Mean AICc 146 128

        Mean Akaike weight 0.00 0.13

        Number of subjects 0 3

ND-TSD Summation model

        Mean AICc 152

        Mean Akaike weight 0.00

        Number of subjects 0

TSD Summation model

        Mean AICc 150

        Mean Akaike weight 0.05

        Number of subjects 1

OR model

        Mean AICc 146 159

        Mean Akaike weight 0.00 0.00

        Number of subjects 0 0
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