
Spherical Demons: Fast Diffeomorphic Landmark-Free Surface
Registration

B.T. Thomas Yeo*,
Computer Science and Artificial Intelligence Laboratory, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, USA

Mert R. Sabuncu*,
Computer Science and Artificial Intelligence Laboratory, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, USA

Tom Vercauteren,
Mauna Kea Technologies, Paris, France

Nicholas Ayache,
Asclepios Group, INRIA, Sophia Antipolis, France

Bruce Fischl, and
Computer Science and Artificial Intelligence Laboratory, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, USA; Department of
Radiology, Harvard Medical School, Charlestown, USA and the Divison of Health Sciences and
Technology, Massachusetts Institute of Technology, Cambridge, USA

Polina Golland
Computer Science and Artificial Intelligence Laboratory, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, USA
B.T. Thomas Yeo: ythomas@csail.mit.edu; Mert R. Sabuncu: msabuncu@csail.mit.edu; Tom Vercauteren:
tom.vercauteren@maunakeatech.com; Nicholas Ayache: nicholas.ayache@sophia.inria.fr; Bruce Fischl:
fischl@nmr.mgh.harvard.edu; Polina Golland: polina@csail.mit.edu

Abstract
We present the Spherical Demons algorithm for registering two spherical images. By exploiting
spherical vector spline interpolation theory, we show that a large class of regularizors for the
modified Demons objective function can be efficiently approximated on the sphere using iterative
smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is
diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given
spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm
corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh
to an atlas mesh, both with more than 160k nodes requires less than 5 minutes when warping the
atlas and less than 3 minutes when warping the subject on a Xeon 3.2GHz single processor
machine. This is comparable to the fastest non-diffeomorphic landmark-free surface registration
algorithms. Furthermore, the accuracy of our method compares favorably to the popular
FreeSurfer registration algorithm. We validate the technique in two different applications that use
registration to transfer segmentation labels onto a new image: (1) parcellation of in-vivo cortical
surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces.
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Index Terms
Surface Registration; Spherical Registration; Cortical Registration; Vector Field Interpolation;
Demons; Diffeomorphism

I. Introduction
Motivated by many successful applications of the spherical representation of the cerebral
cortex, this paper addresses the problem of registering two spherical images. Cortical
folding patterns have been shown to correlate with both cytoarchitectural [25], [68] and
functional regions [64], [27]. In group studies of cortical structure and function, determining
corresponding folds across subjects is therefore important. There has been much effort
focused on registering cortical surfaces in 3D [22], [23], [30], [58]. Since cortical areas –
both structure and function – are arranged in a mosaic across the cortical surface, an
alternative approach is to model the surface as a 2D closed manifold in 3D and to warp the
underlying spherical coordinate system [27], [50], [59], [60], [64], [67]. Warping the
spherical coordinate system establishes correspondences across the surfaces without actually
deforming the surfaces in 3D.

Deformation Model
There is frequently a need for invertible deformations that preserve the topology of
structural or functional regions across subjects. Unfortunately, this causes many spherical
warping algorithms to be computationally expensive. Previously demonstrated methods for
cortical registration [27], [60], [67] rely on soft regularization constraints to encourage
invertibility. These require unfolding the mesh triangles, or limit the size of optimization
steps to achieve invertibility [27], [67]. Elegant regularization penalties that guarantee
invertibility exist [5], [46] but they explicitly rely on special properties of the Euclidean
image space that do not hold for the sphere.

An alternative approach to achieving invertibility is to work in the group of
diffeomorphisms [4], [7], [9], [22], [31], [43], [66]. In this case, the underlying theory of
flows of vector fields can be extended to manifolds [11], [44], [47]. The Large Deformation
Diffeomorphic Metric Mapping (LDDMM) [7], [9], [22], [31], [43] is a popular framework
that seeks a time-varying velocity field representation of a diffeomorphism. Because
LDDMM optimizes over the entire path of the diffeomorphism, the resulting method is slow
and memory intensive. By contrast, Ashburner [4] and Hernandez et al. [33] consider
diffeomorphic transformations parameterized by a single stationary velocity field. While
restricting the space of solutions reduces the memory needs relative to LDDMM, these
algorithms still have to consider the entire trajectory of the deformation induced by the
velocity field when computing the gradients of the objective function, leading to a long run
time. We note that recent algorithmic advances [34], [43] promise to improve the speed and
relieve the memory requirements of both LDDMM and the stationary velocity approach.

In this work, we adopt the approach of the Diffeomorphic Demons algorithm [66],
demonstrated in the Euclidean image space, which constructs the deformation space that
contains compositions of diffeomorphisms, each of which is parameterized by a stationary
velocity field. Unlike the Euclidean Diffeomorphic Demons, the Spherical Demons
algorithm utilizes velocity vectors tangent to the sphere and not arbitrary 3D vectors. This
constraint need not be taken care of explicitly in our algorithm since we directly work with
the tangent spaces. In each iteration, the method greedily seeks the locally optimal
diffeomorphism to be composed with the current transformation. As a result, the approach is
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much faster than LDDMM [7], [9], [22], [31] and its simplifications [4], [33]. A drawback is
that the path of deformation is no longer a geodesic in the group of diffeomorphisms.

Image Similarity vs. Regularization Tradeoffs
Another challenge in registration is the tradeoff between the image similarity measure and
the regularization in the objective function. Since most types of regularization favor smooth
deformations, the gradient computation is complicated by the need to take into account the
deformation in neighboring regions. For Euclidean images, the popular Demons algorithm
[57] can be interpreted as optimizing an objective function with two regularization terms
[14], [66]. The special form of the objective function facilitates a fast two-step optimization
where the second step handles the warp regularization via a single convolution with a
smoothing filter.

Using spherical vector spline interpolation theory [31] and other differential geometric tools,
we show that the two-stage optimization procedure of Demons can be efficiently
approximated on the sphere. We note that the problem is not trivial since tangent vectors at
different points on the sphere are not directly comparable. We also emphasize that this
decoupling of the image similarity and the warp regularization could also be accomplished
with a different space of admissible warps, e.g., spherical thin plate splines [72].

Interpolation
Yet another reason why spherical image registration is slow is because of the difficulty in
performing interpolation on a spherical grid, unlike a regular Euclidean grid. In this paper,
we use existing methods for interpolation, requiring about one second to interpolate data
from a spherical mesh of 160k vertices onto another spherical mesh of 160k vertices. Recent
work on using different coordinate charts of the sphere [63] promises to further speed up our
implementation of the Spherical Demons algorithm.

While most discussion in this paper concentrates on pairwise registration of spherical
images, the proposed Spherical Demons algorithm can be modified to incorporate a
probabilistic atlas. We derive and implement two variants of the algorithm for registration to
an atlas corresponding to whether we warp the atlas or the subject. On a Xeon 3.2GHz
single processor machine, registration of a cortical surface mesh to an atlas mesh, both with
more than 160k nodes, requires less than 5 minutes when warping the atlas and less than 3
minutes when warping the subject. Note that the registration runtime reported includes
registration components dealing with rotation, which takes up one quarter of the total
runtime. The total runtime is comparable to other nonlinear landmark-free cortical surface
registration algorithms whose runtime ranges from minutes [23], [60] to more than an hour
[27], [67]. However, the other fast algorithms suffer from folding spherical triangles [60]
and intersecting triangles in 3D [23] since only soft constraints are used. No runtime
comparison can be made with spherical registration algorithm of the LDDMM type because
to the best of our knowledge, no landmark-free LDDMM spherical registration algorithm
that handles cortical surfaces has been developed yet.

Unlike landmark-based methods for surface registration [8], [22], [31], [50], [58], [64], we
do not assume the existence of corresponding landmarks. Landmark-free methods have the
advantage of allowing for a fully automatic processing and analysis of medical images.
Unfortunately, landmark-free registration is also more challenging, because no information
about correspondences are provided. The difficulty is exacerbated for the cerebral cortex
since different sulci and gyri appear locally similar. Nevertheless, we demonstrate that our
algorithm is accurate in both cortical parcellation and cytoarchitectonic localization
applications.
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The Spherical Demons algorithm for registering cortical surfaces presented here does not
take into account the metric properties of the original cortical surface. FreeSurfer [27] uses a
regularization that penalizes deformation of the spherical coordinate system based on the
distortion computed on the original cortical surface. Thompson et al. [59] suggest the use of
Christoffel symbols [39] to correct for the metric distortion of the initial spherical coordinate
system during the registration process. However, it is unclear whether correcting for the
metric properties of the cortex is important in practice, since we demonstrate that the
accuracy of the Spherical Demons algorithm compares favorably to that of FreeSurfer. A
possible reason is that we initialize the registration with a spherical parametrization that
minimizes metric distortion between the spherical representation and the original cortical
surface [27].

This paper is organized as follows. In the next section, we discuss the classical Demons
algorithm [57] and its diffeomorphic variant [66]. In Section III, we present the extension of
the Diffeomorphic Demons algorithm to the sphere. We conclude with experiments in
Section IV and further discussion in Section V. The appendices provide technical and
implementation details of the Spherical Demons algorithm and the extension to probabilistic
atlases. This paper extends a previously presented conference article [69] and contains
detailed derivations and discussions that were left out in the conference version. We note
that our Spherical Demons code is freely available1. To summarize,

1. We demonstrate that the Demons algorithm can be efficiently extended to the
sphere.

2. We demonstrate that the use of a limited class of diffeomorphisms combined with
the Demons algorithm yields a speed gain of more than an order of magnitude
compared with other landmark-free invertible spherical registration methods, such
as [27], [67].

3. We validate our algorithm by demonstrating an accuracy comparable to that of the
popular FreeSurfer algorithm [27] in two different applications.

II. Background - Demons Algorithm
We choose to work with the modified Demons objective function [14], [66]. Let F be the
fixed image, M be the moving image and Γ be the desired transformation that deforms the
moving image M to match the fixed image F. Throughout this paper, we assume that F and
M are scalar images, even though it is easy to extend the results to vector images [70]. We
introduce a hidden transformation ϒ and seek

Algorithm 1

Demons Algorithm

Data: A fixed image F and moving image M.

Result: Transformation Γ so that M ∘ Γ is “close” to F.

Set ϒ0 = identity transformation (or some a-priori transformation, e.g., from a previous registration)

repeat

 Step 1. Given ϒ(t),

  Minimize the first two terms of Eq. (3)

1There are two versions of the code (matlab and ITK) available at http://sites.google.com/site/yeoyeo02/software/
sphericaldemonsrelease. The matlab code is used in the experiments of this paper. The preliminary ITK code [35], [36], [37] can also
be found at http://hdl.handle.net/10380/3117.

Yeo et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://sites.google.com/site/yeoyeo02/software/sphericaldemonsrelease
http://sites.google.com/site/yeoyeo02/software/sphericaldemonsrelease
http://hdl.handle.net/10380/3117


u (t) = argmin
u

∑−1 (F − M ∘{ϒ(t) ∘u}) 2
+

1

σx
2

dist(ϒ(t) , {ϒ(t) ∘u}), (1)

  where u is any admissible transformation. Compute Γ(t) = ϒ(t) ∘ u(t).

 Step 2. Given Γ(t),

  Minimize the last two terms of Eq. (3):

ϒ(t+1) = argmin
ϒ

1

σx
2

dist( ϒ , Γ(t) ) +
1

σT
2

Reg( ϒ ). (2)

until convergence;

(3)

In this case, the fixed image F and warped moving image M ∘ Γ are treated as N × 1 vectors.
Typically, dist(ϒ, Γ) = ‖ϒ − Γ‖2, encouraging the resulting transformation Γ to be close to
the hidden transformation ϒ and Reg(ϒ) = ‖ ∇(ϒ − Id)‖2, i.e., the regularization penalizes the
gradient magnitude of the displacement field ϒ − Id of the hidden transformation ϒ. σx and
σt provide a tradeoff among the different terms of the objective function. Σ is typically a
diagonal matrix that models the variability of a feature at a particular voxel. It can be set
manually or estimated during the construction of an atlas.

This formulation facilitates a two-step optimization procedure that alternately optimizes the
first two (first and second) and last two (second and third) terms of Eq. (3). Starting from an
initial displacement field ϒ0, the Demons algorithm iteratively seeks an update
transformation to be composed with the current estimate, as summarized in Algorithm 1.

In the original Demons algorithm [57], the space of admissible warps includes all 3D
displacement fields, and the composition operator ∘ corresponds to the addition of
displacement fields. The resulting transformation might therefore be not invertible. In the
Diffeormorphic Demons algorithm [66], the update u is a diffeormorphism from ℝ3 to ℝ3

parameterized by a stationary velocity field υ⃗. Note that υ⃗ is a function that associates a
tangent vector with each point in ℝ3. Under certain mild smoothness conditions, a stationary
velocity field υ⃗ is related to a diffeomorphism through the exponential mapping u = exp(υ⃗).
In this case, the stationary ODE ∂x(t)/∂t = υ⃗(x(t)) with the initial condition x(0) ∈ ℝ3 yields
exp(υ⃗) as a solution at time 1, i.e., x(1) = exp(υ⃗)(x(0)) ∈ ℝ3. In this case, exp(υ⃗)(x(0)) maps
point x(0) to point x(1).

The Demons algorithm and its variants are fast because for certain forms of dist(ϒ, Γ) and
Reg(ϒ), Step 1 reduces to a non-linear least-squares problem that can be efficiently
minimized via Gauss-Newton optimization and Step 2 can be solved by a single convolution
of the displacement field Γ with a smoothing kernel. The proof of the reduction of Step 2 to
a smoothing operation is illuminating and holds for dist(ϒ, Γ) = ‖ϒ − Γ‖2 and any Sobolev
norm Reg(ϒ) = Σi σi‖ ∇i(ϒ − Id)‖2 [14], [45]. In practice, a Gaussian filter is used without
consideration of the actual induced norm [14], [66]. The proof uses Fourier transforms and
is therefore specific to the Euclidean domain. Due to differences between the geometry of
the sphere and Euclidean spaces, we will see in Section III-D that the reduction of Step 2 to
a smoothing operation is only an approximation on the sphere.
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III. Spherical Demons
In this section, we demonstrate suitable choices of dist(ϒ, Γ) and Reg(ϒ) that lead to
efficient optimization of the modified Demons objective function in Eq. (3) on the unit
sphere S2. We construct updates u as diffeomorphisms from S2 to S2 parameterized by a
stationary velocity field υ⃗. We emphasize that unlike Diffeomorphic Demons [66], υ⃗ is a
tangent vector field on the sphere and not an arbitrary 3D vector field. A glossary of
common terms used throughout the paper is found in Table I.

A. Choice of dist(ϒ, Γ)
Suppose the transformations Γ and ϒ map a point xn ∈ S2 to two different points Γ(xn) ∈ S2

and ϒ(xn) ∈ S2 respectively. An intuitive notion of distance between Γ(xn) and ϒ(xn) would
be the geodesic distance between Γ(xn) and ϒ (xn). Therefore, we could define

 geodesic(ϒ(xn), Γ (xn)). For reasons that will become clear in Section III-
D, we prefer to define dist(ϒ, Γ) in terms of a tangent vector representation of the
transformations Γ and ϒ, illustrated in Fig. 1, where the length of the tangent vector encodes
the amount of deformation.

Let Txn S2 be the tangent space at xn. We define Γ⃗n ∈ Txn S2 to be the tangent vector at xn
pointing along the great circle connecting xn to Γ(xn). In this work, we set the length of Γ⃗n to
be equal to the sine of the angle between xn and Γ(xn). With this particular choice of length,
there is a one-to-one correspondence between Γ(xn) and Γ⃗n, assuming the angle between xn
and Γ(xn) is less than π/2, which is a reasonable assumption even for relatively large
deformations. The choice of this length leads to a compact representation of Γ⃗n via vector
products. We define Gn to be the 3 × 3 skew-symmetric matrix representing the cross-
product of xn with any vector:

(4)

where xn(i) is the i-th coordinate of xn. Thus, xn × Γ(xn) = GnΓ(xn). Then on a unit sphere,
we obtain

(5)

A more intuitive choice for the length of Γ⃗n might be the geodesic distance between xn and
Γ(xn). If we restrict Γ⃗n to be at most length π, there is a one-to-one mapping between this
choice of the tangent vector Γ⃗n and the resulting transformation Γ(xn). Indeed, such a choice
of a tangent vector corresponds to an exponential map of S2 [39]. The resulting expression

for  is feasible, but more complicated than Eq. (5). In this
paper, for simplicity, we follow the definition in Eq. (5).

Given N vertices , the set of transformed points  – or equivalently the

tangent vectors  – together with a choice of an interpolation function define the
transformation Γ everywhere on S2. Similarly, we can define the transformation ϒ or the

equivalent tangent vector field ϒ⃗ through a set of N tangent vectors . We emphasize
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that these tangent vector fields are simply a convenient representation of the transformations
ϒ and Γ and should not be confused with the stationary velocity field υ⃗ that will be used
later on. We now set

(6)

which is well-defined since both Γ⃗n and ϒ⃗n belong to Txn S2 for each n = 1,…, N.

B. Spherical Demons Step 1
In this section, we show that the update for Step 1 of the Spherical Demons algorithm can be
computed independently for each vertex. With our choice of dist(ϒ, Γ), step 1 of the

algorithm becomes a minimization with respect to the velocity field .

By substituting u = exp(υ⃗) and  into Eq. (1), we obtain

(7)

(8)

(9)

where  is the n-th diagonal entry of Σ and ∘ denotes warp composition.

Defining Coordinate Charts on the Sphere
The cost function in Eq. (9) is a mapping from the tangent bundle TS2 to the real numbers
ℝ. We can think of each tangent vector υ⃗n as a 3 × 1 vector in ℝ3 tangent to the sphere at xn.
Therefore υ⃗n has 2 degrees of freedom and Eq. (9) represents a constrained optimization
problem. Instead of dealing with the constraints, we employ coordinate charts that are
diffeomorphisms (smooth and invertible mappings) between open sets in R2 and open sets
on S2. The differential of the coordinate chart establishes correspondences between the
tangent bundles Tℝ2 and TS2 [39], [44], so we can reparameterize the constrained
optimization problem into an unconstrained one in terms of Tℝ2 (see Fig. 2).

It is a well-known fact in differential geometry that covering S2 requires at least two
coordinate charts. Since the tools of differential geometry are coordinate-free [39], [44], our
results are independent of the choice of the coordinate charts. Let e⃗n1, e⃗n2 be any two
orthonormal 3 × 1 vectors tangent to the sphere at xn, where orthonormality is defined via
the usual Euclidean inner product in 3D. In this work, for each mesh vertex xn, we define a
local coordinate chart Ψn: ℝ2 ↦ S2,
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(10)

As illustrated in Fig. 2, Ψn(0) = xn. Let z⃗n be a 2 × 1 tangent vector at the origin of ℝ2. With
the choice of the coordinate chart above, the corresponding tangent vector at xn is given by
the differential of the mapping DΨn(·) evaluated at x′ = 0:

(11)

(12)

(13)

(14)

The above equation defines the mapping of a tangent vector z⃗n at the origin of ℝ2 to the
tangent vector υ⃗n at xn via the differential of the coordinate chart DΨn at x′ = 0. We note
that for a tangent vector at an arbitrary point in ℝ2, the expression for the corresponding
tangent vector on the sphere is more complicated. This motivates our definition of a separate
chart for each mesh vertex, to simplify the derivations.

Gauss-Newton Step of Spherical Demons
From Eq. (14), we obtain exp(υ⃗) = exp({υ⃗n}) = exp({Enz⃗n}) and rewrite Eq. (9) as an
unconstrained optimization problem:

(15)

(16)

This non-linear least-squares form can be optimized efficiently with the Gauss-Newton
method, which requires finding the gradient of both terms with respect to {z⃗n} at {z⃗n = 0}
and solving a linearized least-squares problem.

We let  be the 1 × 3 spatial gradient of the warped moving image M ∘ ϒ(t)(·) at xn and

note that  is tangent to the sphere at xn. The computation of  is discussed in Appendix
A-A. Defining un ≜ exp({Enz⃗n})(xn), we differentiate the first term of the cost function fn(z⃗)
in Eq. (15) using the chain rule, resulting in the 1 × 2 vector:
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(17)

(18)

(19)

(20)

where δ(k, n) = 1 if k = n and 0 otherwise. Eq. (20) uses the fact that the differential of
exp(υ⃗) at υ⃗ = 0 is the identity [47], i.e, [D exp(0)] υ⃗ = υ⃗. In other words, a change in
velocity υ⃗k. at vertex xk does not affect exp(υ⃗)(xn) for n ≠ k up to the first order derivatives.

Similarly, we define  to be the 3 × 3 Jacobian of ϒ(t)(·) at xn. The computation of  is
discussed in Appendix A-B. Differentiating the second term of the cost function gn(z⃗) in Eq.
(15) using the chain rule, we get the 3 × 2 matrix:

(21)

where Gn is the skew-symmetric matrix defined in Eq. (4).

Once the derivatives are known, we can compute the corresponding gradients based on our
choice of the metric of vector fields on S2. In this work, we assume an l2 inner product, so
that the inner product of vector fields is equal to the sum of the inner products of the
individual vectors. The inner product of individual vectors is in turn specified by the choice
of the Riemannian metric on S2. Assuming the canonical metric, so that the inner product of
two tangent vectors is the usual inner product in the Euclidean space [39], the gradients are
equal to the transpose of the derivatives Eqs. (20), (21) (see Appendix A-C). We can then
rewrite Eq. (15) as a linearized least-squares objective function:

(22)

Yeo et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(23)

(24)

Because of the delta function δ(k, n) in the derivatives in Eqs. (20), (21), z⃗n only appears in
the n-th term of the cost function Eq. (24). The solution of Eq. (24) can therefore be
computed independently for each z⃗n. Solving this linear least-squares equation yields an
update rule for z⃗n:

(25)

For each vertex, we only need to perform matrix-vector multiplication of up to 3 × 3
matrices and matrix inversion of 2 × 2 matrices. This implies the update rule for v⃗n:

(26)

(27)

In practice, we use the Levenberg-Marquardt modification of Gauss-Newton optimization
[49] to ensure matrix invertibility:

(28)

where ε is a regularization constant. We note that in the classical Euclidean Demons [57],

[14], the term  turns out to be the identity, so it can also be seen as
utilizing Levenberg-Marquardt optimization. Once again, we emphasize that a different
choice of the coordinate charts will lead to the same update.

Given , we use “scaling and squaring” to compute exp(υ⃗(t)) [3], which is then
composed with the current transformation estimate ϒ(t) to form Γ(t) = ϒ(t) ∘ exp(υ⃗(t)).
Appendix D discusses implementation details of extending the “scaling and squaring”
procedure in Euclidean spaces to S2.
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C. Choice of Reg(ϒ)
We now define the Reg(ϒ) term using the corresponding tangent vector field representation
ϒ⃗. Following the work of [31], [61], we let H be the Hilbert space of square integrable
vector fields on the sphere defined by the inner product:

(29)

where u⃗1, u⃗2 ∈ H and 〈·,·〉R refers to the canonical metric. Because vector fields from H are
not necessarily smooth, we restrict the deformation ϒ⃗ to belong to the Hilbert space V ⊂ H
of vector fields obtained by the closure of the space of smooth vector fields on S2 via a
choice of the so-called energetic inner product denoted by

(30)

where L could for example be the Laplacian operator on smooth vector fields on S2 [31],
[61].

We define Reg(ϒ) ≜ ‖ϒ⃗‖V. With a proper choice of the energetic inner product (e.g.,
Laplacian), a smaller value of ‖ϒ⃗‖V corresponds to a smoother vector field and thus
smoother transformation ϒ. As we will see later in this section, the exact choice of the inner
product is unimportant in our implementation.

D. Optimizing Step 2 of Spherical Demons
With our choice of dist(ϒ, Γ) in Section III-A and Reg(ϒ) in Section III-C, the optimization
in Step 2 of the Spherical Demons algorithm

(31)

seeks a smooth vector field ϒ⃗ ∈ V that approximates the tangent vectors . This
problem corresponds to the inexact vector spline interpolation problem solved in [31],
motivating our use of tangent vectors in the definition of dist(ϒ, Γ) in Section III-A, instead
of the more intuitive choice of geodesic distance.

We can express the tangent vectors Γ⃗n and ϒ⃗n as EnΓn and Enϒn respectively. Essentially,
this represents Γ⃗n and ϒ⃗n in terms of the tangent space basis En at xn, where Γn and ϒn are
the components of the tangent vectors with respect to this basis. Γ̂ and ϒ̂ be 2N × 1 vectors
corresponding to stacking Γn and ϒn respectively. The particular optimization formulated in
Eq. (31) has a unique optimum [31], given by

(32)

where K is a 2N × 2N matrix consisting of N × N blocks of 2 × 2 matrices: the (i,j) block
corresponds to k(xi,xj)Txi,xj. The 2 × 2 linear transformation Txi,xj(·) parallel transports a
tangent vector along the great circle from TxiS

2 to TxjS2. k(xi,xj) is a non-negative scalar
function uniquely determined by the choice of the energetic norm. Typically, k(xi,xj)
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monotonically decreases as a function of the distance between xi and xj. The proof of the
uniqueness of the global optimum and the form of solution in Eq. (32) follow from the fact
that the Hilbert space V is a reproducing kernel hilbert space (RKHS), allowing the
exploitation of the Riesz representation theorem [31]. This offers a wide range of choices of
regularization depending on the choice of the energetic norm and the corresponding RKHS.

In [31], the spherical vector spline interpolation problem was applied to landmark matching
on S2, resulting in a reasonable sized linear system of equations. Solving the matrix
inversion shown in Eq. (32) is unfortunately prohibitive for cortical surfaces with more than
100,000 vertices. If one chooses a relatively wide kernel k(xi,xj), the system is not even
sparse.

Inspired by the convolution method of optimizing Step 2 in the Demons algorithm [14],
[57], [66] and the convolution-based fast fluid registration in the Euclidean space [12], we
propose an iterative smoothing approximation to the solution of the spherical vector spline
interpolation problem.

In each smoothing iteration, for each vertex xi, tangent vectors of neighboring vertices xj are
parallel transported to xi and linearly combined with the tangent vector at xi. The weights for

the linear combination are set to  and 
for i ≠ j, where |Ni| is the number of neighboring vertices of xi. Therefore, larger number of
iterations m and values of γ results in greater amount of smoothing.

We note that the iterative smoothing approximation to spline interpolation is not exact
because parallel transport is not transitive on S2 due to the non-flat curvature of S2 (unlike in
Euclidean space), i.e., parallel transporting a tangent vector from point a to b to c results in a
vector different from the result of parallel transporting a tangent vector from a to c.
Furthermore, the approximation accuracy degrades as the distribution of points becomes less
uniform. In Appendix B, we provide a theoretical bound on the approximation error and
demonstrate empirically that iterative smoothing provides a good approximation of spherical
vector spline interpolation for a relatively uniform distribution of points corresponding to
those of the subdivided icosahedron meshes used in this work.

E. Remarks
The Spherical Demons algorithm is summarized in Algorithm 2.

We run the Spherical Demons algorithm in a multi-scale fashion on a subdivided icosahedral
mesh. We begin from a subdivided icosahedral mesh (ic4) that contains 2,562 vertices and
work up to a subdivided icosahedral mesh (ic7) that contains 163,842 vertices, which is
roughly equal to the number of vertices in the cortical meshes we work with. We perform 15
iterations of Step 1 and Step 2 at each level. Because of the fast convergence rate of the
Gauss-Newton method, we find that 15 iterations are more than sufficient for our purposes.
We also perform a rotational registration at the beginning of each multi-scale level via a
sectioned search of the three Euler angles.

Empirically, we find the computation time of the Spherical Demons algorithm is roughly
divided equally among the four components: registration by rotation, computing the Gauss-
Newton update, performing “scaling and squaring” and smoothing the vector field.
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Algorithm 2

Spherical Demons Algorithm

Data: A fixed spherical image F and moving spherical image M.

Result: Diffeomorphism Γ so that M ∘ Γ is “close” to F.

Set ϒ0 = identity transformation (or some a-priori transformation, e.g., from a previous registration)

repeat

 Step 1. Given ϒ(t),

  foreach vertex n do

   Compute  using Eq. (28).

  end

  Compute Γ(t) = exp(v̄) using “scaling and squaring”.

 Step 2. Given Γ(t),

  foreach vertex n do

   Compute  using Eq. (48) implemented via iterative smoothing.

  end

until convergence;

In practice, we work with spheres that are normalized to be of radius 100, because we find
that at ic7, the average edge length of 1mm corresponds to that of the original cortical
surface meshes. This allows for meaningful interpretation of distances on the sphere. This
requires slight modification of the equations presented previously to keep track of the radius
of the sphere.

The Spherical Demons algorithm presented here registers pairs of spherical images. To
incorporate a probabilistic atlas defined by a mean image and a standard deviation image,
we modify the Demons objective function in Eq. (3), as explained in Appendix C. This
requires a choice of warping the subject or warping the atlas. We find that interpolating the
atlas gives slightly better results, compared with interpolating the subject. However,
interpolating the subject results in a runtime of under 3 minutes, while the runtime for
interpolating the atlas is less than 5 minutes. In the next section, we report results for
interpolating the atlas.

IV. Experiments
We use two sets of experiments to evaluate the performance of the Spherical Demons
algorithm by comparing it to the widely used and freely available FreeSurfer [27] software.
The FreeSurfer registration algorithm uses the same similarity measure as Demons, but
explicitly penalizes for metric and areal distortion. As we will show, even though the
Spherical Demons algorithm does not specifically take into account the original metric
properties of the cortical surface, we still achieve comparable if not better registration
accuracy than FreeSurfer. Furthermore, FreeSurfer runtime is more than an hour while
Spherical Demons runtime is less than 5 minutes.

There are four parameters in the algorithm.  and ε appear in Eq. (28). Larger values of

 and ε decrease the size of the update taken in Step 1 of the Spherical Demons

algorithm. In the experiments that follow, we set  and set their values such that the
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largest vector of the update velocity field is roughly two times the edge lengths of the mesh.

The number of iterations m and the weight  determine the degree of smoothing.
We set γ = 1 and explore a range of smoothing iterations m in the following experiments.

A. Parcellation of In-Vivo Cortical Surfaces
We validate Spherical Demons in the context of automatic cortical parcellation. Automatic
labeling of cortical brain surfaces is important for identifying regions of interests for
clinical, functional and structural studies [20], [52]. Recent efforts have ranged from the
identification of sulcal/gyral ridge lines [56], [62] to the segmentation of sulcal/gyral basins
[20], [28], [38], [41], [42], [51], [52], [67]. Similar to these prior studies, we are interested in
parcellation of the entire cortical surface meshes, where each vertex is assigned a label.

We consider a set of 39 left and right cortical surface models extracted from in-vivo MRI
[19]. Each surface is spherically parameterized and represented as a spherical image with
geometric features at each vertex: mean curvature of the cortical surfaces, mean curvature of
the inflated cortical surfaces and average convexity of the cortical surfaces, which roughly
corresponds to sulcal depth [26]. These features are intrinsic and thus independent of the
parameterization of the surface. The tools used for segmentation [19] and spherical
parameterization [26] are freely available [29]. Both hemispheres of each subject were
manually parcellated by a neuroanatomist into 35 labels, corresponding to the main sulci and
gyri, enumerated in Table II.

We co-register all 39 spherical images of cortical geometry with Spherical Demons by
iteratively building an atlas and registering the surfaces to the atlas. The atlas consists of the
mean and variance of cortical geometry represented by the surface features described above.
We then perform 4-fold cross-validation of the parcellation of the co-registered cortical
surfaces. In each iteration of cross-validation, we leave out ten subjects and use the
remainder of the subjects to train a classifier [20], [28] that predicts the labels based on
location and geometric features. We then apply the classifier to the hold-out set of ten
subjects. We perform each iteration with a different hold-out set, i.e., subjects 1-10, 11-20,
21-30 and 31-39.

As mentioned previously, increasing the number of iterations of smoothing results in
smoother warps. As discussed in [67], the choice of the tradeoff between the similarity
measure and regularization is important for segmentation accuracy. Estimating the optimal
registration regularization tradeoff is an active area of research [1], [18], [48], [65], [67],
[68] that we do not deal with in this paper. Here, we simply repeat the above experiments
using {6, 8, 10, 12, 14} iterations of smoothing. For brevity, we will focus the discussion on
using 10 iterations of smoothing and comment on results obtained with the other levels of
smoothing.

We repeat the above procedure of performing co-registration and cross-validation with the
FreeSurfer registration algorithm [27] using the default FreeSurfer settings. Once again, we
use the same features and parcellation algorithm [20], [28]. As before, the atlas consists of
the mean and variance of cortical geometry.

To compare the cortical parcellation results, we compute the average Dice measure, defined
as the ratio of cortical surface area with correct labels to the total surface area averaged over
the test set. Because the average Dice can be misleading by suppressing small structures, we
also compute the Dice measure for each structure.
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On the left hemisphere, FreeSurfer achieves an average Dice of 88.9, while Spherical
Demons achieves an average Dice of 89.6 with 10 iterations of smoothing. While the
improvement is not big, the difference is statistically significant for a onesided t-test with the
Dice measure of each subject treated as an independent sample (p = 2 × 10−6). Furthermore,
the overall Dice is statistically significantly better than FreeSurfer for all levels of smoothing
we considered, with the best overal dice achieved with 12 iterations of smoothing.

On the right hemisphere, FreeSurfer obtains a Dice of 88.8 and Spherical Demons achieves
89.1 with 10 iterations of smoothing. Here, the improvement is smaller, but still statistically
significant (p = 0.01). Furthermore, the overall dice is statistically significantly better than
FreeSurfer for all levels of smoothing we considered, except when 6 iterations of smoothing
is used (p = 0.06). All results we report in the remainder of this section use 10 iterations of
smoothing.

We analyze the segmentation accuracy separately for each structure. To compare Spherical
Demons with FreeSurfer, we perform a one-sided paired-sampled t-test treating each subject
as an independent sample and correct for multiple comparisons using a False Discovery Rate
(FDR) of 0.05 [10]. On the left (right) hemisphere, the segmentations of 16 (8) structures are
statistically significantly improved by Spherical Demons with respect to FreeSurfer, while
no structure is significantly worse.

Fig. 3 shows the percentage improvement of individual structures over FreeSurfer. Fig. 4
displays the average Dice per structure for FreeSurfer and Spherical Demons (10 iterations
of smoothing) for the left and right hemispheres. Standard errors of the mean are displayed
as red bars. The numbering of the structures correspond to Table II. Parcellation
improvements suggest that our registration is at least as accurate as FreeSurfer.

The structures with the worst Dice are the frontal pole and entorhinal cortex. These
structures are small and relatively poorly defined by the underlying cortical geometry. For
example, the entorhinal cortex is partially defined by the rhinal sulcus, a tiny sulcus that is
only visible on the pial surface. The frontal pole is defined by the surrounding structures,
rather than by the underlying cortical geometry.

B. Brodmann Area Localization on Ex-vivo Cortical Surfaces
Brodmann areas are cyto-architectonically defined parcellations of the cerebral cortex [13].
They can be observed through histology and more recently, through ex-vivo high resolution
MRI [6]. Unfortunately, much of the cytoarchitectonics cannot be observed with current in-
vivo imaging. Nevertheless, most studies today report their functional findings with respect
to Brodmann areas, usually estimated by visual comparison of cortical folds with
Brodmann's original drawings without quantitative analysis of local accuracy. By combining
histology and MRI, recent methods for creating probabilistic Brodmann area maps in the
Talairach and Colin27 normalized space promise a more principled approach [2], [24], [54],
[55], [71].

In this experiment, we consider a data set that contains Brodmann labels mapped to the
corresponding MRI volume. Specifically, we work with postmortem histological images of
ten brains created using the techniques described in [54], [71]. The histological sections
were aligned to postmortem MR with nonlinear warps to build a 3D histological volume.
These volumes were segmented to separate white matter from other tissue classes, and the
segmentation was used to generate topologically correct and geometrically accurate surface
representations of the cerebral cortex using FreeSurfer [19]. The eight manually labeled
Brodmann area maps (areas 2, 4a, 4p, 6, 44, 45, 17 and 18) were sampled onto the surface
representations of each hemisphere, and errors in this sampling were manually corrected
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(e.g., when a label was erroneously assigned to both banks of a sulcus). A morphological
close was then performed on each label to remove small holes. We note that Brodmann
areas 4a, 4p and 6 were mapped in only eight of the ten subjects. Fig. 5 shows these eight
Brodmann areas on the resulting cortical representations for two subjects. Finally, we map
the folding patterns and the Brodmann area labels onto a spherical coordinate system [27].

It has been shown that nonlinear surface registration of cortical folds can significantly
improve Brodmann area overlap across different subjects [25], [68] compared with
volumetric registration. Registering the ex-vivo surfaces is more difficult than in-vivo
surfaces because the reconstructed volumes are extremely noisy due to the distortions
introduced by the histology, resulting in noisy geometric features, as shown in Fig. 6.

We consider two strategies for aligning Brodmann areas. For both strategies, we will use 10
iterations of smoothing for Spherical Demons as it proved reasonable in the previous set of
experiments. The first strategy involves co-registering the 10 ex-vivo surfaces using cortical
geometry by repeatedly building an atlas and registering the surfaces to the atlas, similar to
the previous experiment on cortical parcellation. We use either Spherical Demons or
FreeSurfer for registration. We refer to the co-registration using Spherical Demons and
FreeSurfer as SD10 and FS10 respectively (10 refers to the number of subjects in the study,
not the number of smoothing iterations).

The second strategy involves registering the 10 ex-vivo surfaces to the in-vivo “Buckner40”
atlas, constructed from 40 in-vivo subjects, that is distributed with the FreeSurfer software.
Once again, we use either Spherical Demons or FreeSurfer for the registration. We refer to
the co-registration using Spherical Demons and FreeSurfer as SD40 and FS40 respectively.

To measure the quality of alignment of the Brodmann areas after cortical registration, we
use an adaptation of the modified Hausdorff distance [21]. For each pair of registered
subjects, we project each Brodmann area from the first subject onto the second subject and
compute the mean distance between the boundaries, measured on the original cortical
surface of the second subject. We obtain a second measurement by projecting each
Brodmann area from the second subject onto the first subject. Since we have 10 surfaces, we
get 90 ordered pairs and 90 alignment errors for each Brodmann area.

Table III reports the mean alignment errors for each Brodmann area and for each method.
The lowest errors for each Brodmann area are shown in bold. We see that for almost all
Brodmann areas, the best alignment come from SD10 or SD40. Similarly, Fig. 7 shows the
median alignment error for each Brodmann area. The error bars indicate the lower and upper
quartile alignment errors.

We use permutation testing to evaluate statistical significance of the results. We cannot use
the t-test because the 90 alignment errors are correlated - since the subjects are co-registered
together, good alignment between subjects 1 and 2 and between subjects 2 and 3 necessarily
implies a higher likelihood of good alignment between subjects 1 and 3.

The tests show that SD10 is better than FS10 and SD40 is slightly better than FS40. SD10
and SD40 are comparable. Compared with FS10, SD10 improves the median alignment
errors of 5 (4) Brodmann areas on the right (left) hemisphere (FDR = 0.05) and no structure
gets worse. Compared with FS40, SD40 statistically improves the alignment of 2 (1)
Brodmann areas on the right (left) hemisphere (FDR = 0.05) with no structure getting worse.
Permutation tests on the mean alignment errors show similar results, except that FS40
performs better than SD40 for BA4p on the left hemisphere when using the mean statistic.
These results suggest that the Spherical Demons algorithm is at least as accurate as
FreeSurfer in aligning cortical folds and Brodmann areas.
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V. Discussion
The Demons algorithms [57], [66] discussed in Section II and the Spherical Demons
algorithm proposed in this paper use a regularization term that modulates the final
deformation. Motivated by [12], [14], the Diffeomorphic Demons algorithm [66] admits a
fluid prior on the velocity fields. This involves smoothing the velocity field updates before
computing the exponential map to obtain the displacement field updates to be composed
with the current transformation. The resulting algorithm is very similar to the fast
implementation [12] of Christensen's well-known fluid registration algorithm [16], except
that Christensen's algorithm does not employ a higher-order update method like Gauss-
Newon. The Spherical Demons algorithm can similarly incorporate a fluid prior by
smoothing the velocity field υ⃗(t) in Eq. (28) before computing the exponential map to obtain
the displacement updates exp(υ⃗(t)).

An alternative interpretation of the smoothing implementation of Christensen's algorithm
comes from choosing a different metric for computing the gradient from the derivatives [9].
The choice of the metric also arises in our problem when computing the gradient as
discussed in Appendix A-C. This suggests that the Spherical Demons algorithm can
incorporate a fluid prior by modifying the Gauss-Newton update step Eq. (28).
Unfortunately, this process introduces coupling among the vertices resulting in the loss of
the speed-up advantage of Spherical Demons (see for example the derivations of [34]). The
exploration of the performance of the different fluid prior implementations is outside the
scope of this paper.

Because the tools of differential geometry are general, the Spherical Demons algorithm can
be in principle extended to arbitrary manifolds, besides the sphere. One challenge is that the
definition of coordinate charts for an arbitrary manifold is more difficult than that for the
sphere. Approaches of utilizing the embedding space [15] or the intrinsic properties of
manifolds [40] are promising avenues of future work.

VI. Conclusion
In this paper, we presented the fast Spherical Demons algorithm for registering spherical
images. We showed that the two-step optimization of the Demons algorithm can also be
applied on the sphere. By utilizing the one parameter subgroups of diffeomorphims, the
resulting deformation is invertible. We tested the algorithm extensively in two different
applications and showed that the accuracy of the algorithm compares favorably with the
widely used FreeSurfer registration algorithm [27] while offering more than one order of
magnitude speedup. Both matlab and ITK versions of the Spherical Demons algorithm are
publicly available2.

A clear future challenge is to take into account the original metric properties of the cortical
surface in the registration process, as demonstrated in previously proposed registration
methods [27], [59].

We note that while fast algorithms are useful for deploying the developed tool on large
datasets, they can further allow for complex applications that were previously
computationally intractable. For example, we have incorporated the ideas behind Spherical
Demons into a meta-registration framework that learns registration cost functions which are
optimal for specific applications [68].

2The matlab code was used for this paper. The ITK code is still preliminary. Please check website http://sites.google.com/site/
yeoyeo02/software/sphericaldemonsrelease for updates.
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Appendix A: Step 1 Gradient Derivation
In this appendix, we provide details on the computation of the spatial gradient of the warped
moving image M ∘ ϒ(t) and the Jacobian of the deformation ϒ(t). We also compute the
gradients of the demons cost function using the derivatives computed in Eq. (20) and Eq.
(21), assuming the l2 inner product space for vector fields and the canonical metric.

A. Computing Spatial Gradient of M ∘ ϒ(t)

In this appendix, we discuss the computation of , the spatial gradient of the warped
moving image M ∘ ϒ(t) at the point xn. We can think of M ∘ ϒ(·) as an image Ms ≜ M ∘ ϒ
defined on the mesh vertices {xn}. This image is made continuous by the choice of an
interpolation method. In this work, we assume that we are working with a triangular mesh.
To evaluate Ms at a point x ∈ S2, we first find the triangle that contains the intersection
between the vector representing the point x (i.e., the vector between the center and the point
x of the sphere) and the mesh. The image value at x is then given by the barycentric
interpolation of the image values at the intersection point. Mathematically, we can write

(33)

where p(x) is the intersection point and I(·) is the barycentric interpolation. Let p1, p2, p3
denote the vertices of the triangle containing p(x) and n⃗ denote the 3 × 1 normal vector to
the triangle. Since p(x) = αx for some α and 〈p(x) − p1, n⃗〉 = 0, we can write

(34)

and

(35)

where A1(p), A2(p) and A3(p) are the areas of the triangles △pp2p3, △pp1p3 and △pp1p2
respectively. Note that A = A1(p) + A2(p) + A3(p). Ms(p1), Ms(p2) and Ms(p3) are the image
values at the mesh vertices p1, p2 and p3 respectively.

Computing the derivative of the image value at x follows easily from the chain rule:
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(36)

(37)

where ∇pAi(p) is the derivative of the triangle area Ai. For example, ∇pA1(p) is a 1 × 3
vector in the plane of the triangle pp2p3, perpendicular and pointing to the edge p2p3, with
magnitude half the length of p2p3. Combining Eq. (36) and Eq. (37) gives the spatial
gradient of the warped moving image.

A complication arises when x corresponds to one of the mesh vertices, since the spatial
gradient is not defined in this case. The same problem arises in Euclidean space with linear
interpolation and the spatial gradient is typically defined via finite central difference. It is
unclear what the equivalent definition on a mesh is. Here, for a mesh vertex x, we compute
the spatial gradient for each of the surrounding triangles and linearly combine the spatial
gradients using weights corresponding to the areas of the triangles.

B. Computing the Jacobian of Deformation ϒ(t)

In this appendix, we discuss the computation of , the Jacobian of the deformation ϒ(t) at
xn. We can think of ϒ(t) as a vector function on S2 that maps each mesh vertex {xn} to a new
point on the sphere. This vector image is made continuous by the choice of an interpolation
method. We use the same interpolation as in Appendix A-A, except we need to normalize
the barycentric interpolation so that the interpolated point is constrained to be on the sphere:

(38)

where p(x) is the same as in the previous section and

(39)

The Jacobian is computed via chain rule, just like in the previous section.

C. Computing the Gradients from the Derivatives
In this appendix, we seek to compute the gradients of fn(z⃗) ≜ F(xn) − M ∘ {ϒ(t) ∘

exp({Enz⃗n})}(xn) and , assuming a l2 inner product
for vector fields and the canonical metric R for S2. These assumptions imply that the inner

product of two vector fields  and  are given by

(40)

Yeo et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(41)

(42)

where

• Eq. (40) follows from the equivalence of the tangent bundles Tℝ2 and TS2 induced
by the coordinate charts{Ψn}.

• Eq. (41) is the result of the l2 assumption that the inner product of vector fields is
given by the sum of the inner products of individual vectors.

• Because we assume the canonical metric, each term in the inner product in Eq. (41)

is simply the usual inner product between 3 × 1 vectors  and . Since the
columns of Ek are orthonormal with respect to the usual inner product and using
linearity of the inner product, Eq. (41) implies Eq. (42), i.e., the inner product 〈z⃗1,
z⃗2〉l2 can be computed by the sum of the usual inner product between 2 × 1 tangent

vectors  and .

Let dfn(z⃗) be the directional derivative of fn for any z⃗ = {z⃗k}. The directional derivative is
independent of the choice of metric. Since the derivative of fn(z⃗) with respect to z⃗k is a 1 × 2

vector  (Eq. (20)), we get

(43)

Recall that the gradient ∇l2fn of fn(z⃗) is defined to be a tangent vector field such that dfn(z⃗) =
〈∇l2fn, z⃗〉l2 for any z⃗ = {z⃗k}. The gradient is therefore dependent on the choice of the inner
product. From Eq. (42) and Eq. (43), we can write

(44)

(45)

(46)

Therefore, the gradient ∇l2fn can be written as a 2N × 1 vector consisting of N blocks of 2 ×

1 vectors, where all the blocks are zeros, except the n-th block is equal to .

Similarly, we denote the gradient of gn(z⃗) as ∇l2gn(j) for j = 1, 2, 3 corresponding to the 3
output components of gn(z⃗). The derivative of ∇gn with respect to z⃗k is a 3 × 2 matrix

 (Eq. (21)), where  is a 1 × 2 vector
corresponding to the derivative of the j-th component of gn with respect to z⃗k. Using the
same derivation as before, we can show that ∇l2gn(j) can be written as a 2N × 1 vector
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consisting of N blocks of 2 × 1 vectors, where all the blocks are zeros, except the n-th block
is equal to a⃗jn.

Appendix B: Approximating Spline Interpolation with Iterative Smoothing
In this appendix, we demonstrate empirically that iterative smoothing provides a good
approximation of spherical vector spline interpolation for a relatively uniform distribution of
points corresponding to those of the subdivided icosahedron meshes used in this work. Once
again, we work with spheres that are normalized to be of radius 100.

Recall that we seek {ϒ⃗n} = {Enϒn}, which is a smooth approximation of the input vector
field {Γ⃗n} = {EnΓn}. The solution of the spherical vector spline interpolation problem is
given in Eq. (32) as

(47)

where K is a 2N × 2N matrix consisting of N × N blocks of 2 × 2 matrices: the (i, j) block
corresponds to k(xi, xj)Txi,xj. Txi,xj is the parallel transport operator from xi to xj. k(xi, xj) is
a non-negative scalar function uniquely determined by the choice of the energetic norm that
monotonically decreases as a function of the distance between xi and xj.

In constrast, the iterative smoothing approximation we propose can be formalized as
follows:

(48)

where m is a positive integer and K′ is a 2N × 2N matrix consisting of N × N blocks of 2 ×
2 matrices: the (i, j) block corresponds to λ(xi, xj)Txi,xj if xi and xj are neighboring vertices

and is a zero matrix otherwise.  and  for i
≠ j, where |Ni| is the number of neighboring vertices of xi.

A. Reverse Engineering the Kernel
We now demonstrate empirically that for a range of values of γ, iterations m and the
relatively uniform distribution of points corresponding to those of the subdivided
icosahedron mesh, there exist kernels k(xi, xj) that are well approximated by iterative
smoothing. Technically, the resulting k(xi, xj) might not correspond to a true choice of the
energetic norm. However, in practice, this does not appear to be a problem.

More specifically, given a configuration of mesh points, iterations m and value of γ, we

seek k̃(xi, xj), such that  is “close” to (K′)m. We propose a two-stage
estimation of k̃(xi, xj):

1. In the first stage, we seek k*(xi, xj) that is not constrained to be a function of the
distance between xi and xj, such that
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(49)

Rearranging the terms, we get

(50)

To make the “≈” concrete, we optimize for

(51)

where ‖ · ‖F is the Frobenius norm.

The cost function Eq. (51) can be optimized componentwise, i.e., we can solve for
k*(xi, xj) for each pair xi, xj. For γ = 1, m = 10 and a subdivided icosahedron mesh
with 642 vertices, we plot the resulting k*(xi, xj) as a function of the geodesic
distance between xi and xj in Fig. 8.

2. In the second stage, we perform a least-squares fit of a b-spline function to the
estimated k*(xi, xj) to obtain the final estimate of k̃(xi, xj). Fig. 8 illustrates an
example kernel k̃(xi, xj) we obtain (c.f., the kernel illustrated in [31]). We note that
an alternative to b-spline interpolation is to fit the coefficients of the general kernel
function suggested in Appendix A of [31]. This will guarantee that the estimated
kernel corresponds to an energetic norm. We leave exploring this direction to future
work.

B. Evaluating Approximation
We now investigate the quality of the estimate k̃(xi, xj) by computing:

(52)

where ‖ · ‖2 is the l2 matrix operator norm. The difference metric Eq. (52) measures the
maximum l2 difference between smoothed vector fields obtained from iterative smoothing
and spherical vector spline interpolation for any possible input vector field {Γ⃗n} of unit l2
norm, i.e., Σn ‖Γ⃗n‖2 = 1. We note that k̃(xi, xj) can be in principle estimated by minimizing
Eq. (52) instead of the proposed 2-stage process. However, the optimization is difficult since
evaluating the cost function itself requires finding the largest singular value of a large, non-
sparse matrix.

Fig. 9 displays the difference metric we obtained with different values of γ and iterations m
for meshes ic2, ic3, ic4 and ic5. Each of the meshes is obtained from recursively subdividing
a lower resolution mesh: ic2 indicates that the mesh was obtained from subdividing an
icosahedron mesh twice. The number of vertices quadruples with each subdivision, so that
ic5 corresponds to 10,242 vertices.
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We conclude from the figure that the differences between the two smoothing methods are
relatively small and increase with mesh resolution. As discussed in the next section, we run
Spherical Demons on different mesh resolutions, including ic7. Unfortunately, because of
the large non-sparse matrices we are dealing with, we were only able to compute the
differences up to ic5. Computing the difference metric for ic5 took an entire week on a
machine with 128GB of RAM. However, the plots in Fig. 9 indicate that the differences
appear to have converged by ic5.

To better understand the incurred differences, Fig. 10 illustrates the outputs and differences
of the two smoothing methods for different inputs on ic4. The first row illustrates an input
vector field which is zero everywhere except for a single tangent vector of unit norm. The
results of spline interpolation and iterative smoothing correspond to our intuition that
smoothing a single tangent vector propagates tangent vectors of smaller magnitudes to the
surronding areas. The two methods also produce almost identical results as shown by the
clean difference image in the fourth column.

The second row of Fig. 10 demonstrates the worst unit norm input vector field as measured
by the difference metric Eq. (52). This worst unit norm input vector field corresponds to the
largest eigenvector in Eq. (52). The pattern of large differences correspond to the original 12
vertices of the uniform icosahedron mesh. These original 12 vertices are the only vertices in
the subdivided icosahedron meshes with five, instead of six neighbors, as shown by the
pentagon pattern. The fact that these 12 vertices are local maxima of differences suggest that
these vertices are treated differently by the two smoothing techniques.

The last row of Fig. 10 demonstrates an input vector field that represents the deformation of
an actual registration performed in Section IV. The norm of the input vector field is 700
times that in the first two rows, but the discrepancies between spline interpolation and
iterative smoothing are less than expected. The differences of 90% of the vectors are less
than 0.2mm, with larger differences in the neighborhoods of the 12 vertices identified
previously. Since we conclude previously that the difference metric appears to have
converged after ic4, the discrepancies are likely to be acceptable at ic7, whose mesh
resultion is 1mm.

We should emphasize that the discrepancies between spline interpolation and iterative
smoothing do not necessarily imply registration errors. The differences only indicate the
deviations of the deformations from true local optima of the Demons registration cost
function Eq. (3) assuming the estimated kernel. Approximating smoothing kernels by
iterative smoothing is an active area of research in medical imaging [17], [32]. Future work
would involve understanding the interaction between the number of smoothing iterations m

and the choice of the weights  on the quality of the spherical registration.

Appendix C: Atlas-Based Spherical Demons
In this section, we demonstrate how an atlas consisting of a mean image and a standard
deviation image can be incorporated into the Spherical Demons algorithm. The standard
deviation image replaces Σ in Eq. (3). We first discuss a probabilistic interpretation of the
Demons objective function and its relationship to atlases. We then discuss the optimization
of the resulting probabilistic objective function.
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A. Probabilistic Demons Objective Function
The Demons objective function reviewed in Section II is defined for the pairwise
registration of images. To incorporate a probabilistic atlas, we now reformulate the objective
function. Consider the following Maximum-A-Posteriori objective function:

(53)

(54)

(55)

Assuming a Gaussian noise model, we define

(56)

(57)

(58)

where Reg(ϒ) is defined via the energetic norm as discussed in Section III-C and for reasons
that will soon be clear, we are being purposefully agnostic about the form of σ(Γ, xn). The
objective function in Eq. (55) becomes

(59)

which is the instantiation of the Demons objective function Eq. (3), except for the extra term

. Note that we have omitted the partition functions  and 
because σx and σT are constant with respect to the deformations Γ and (ϒ). In this
probabilistic interpretation, the two regularization terms p(Γ∣(ϒ)) and p(ϒ) act as a
hierarchical prior on Γ, with the hidden transformation (ϒ) as a hyperparameter.

As before, σ(Γ, xn) is the standard deviation of the intensity at vertex n. Given a set of co-
registered images, we can create an atlas by computing the mean intensity and standard
deviation at each vertex. To incorporate the atlas, we need to make the choice of treating the
atlas as the fixed or moving image. If we treat the atlas as the fixed image, then we set F to
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be the mean image and σ to be the standard deviation. In this case, we do not need to
interpolate the mean or standard deviation image. Consequently, σ(Γ, xn) = σ(xn) and log
σ(Γ, xn) can be omitted from the optimization. The registration becomes identical to the
Spherical Demons algorithm for two images.

However, recent work [1], [53] suggests that treating the atlas as a moving image might be
more correct theoretically. This involves setting the moving image M to be the mean image.
In this case, σ(Γ, xn) = σ(Γ(xn)) is a function of Γ and we must include log(σ(Γ(xn))) in the
optimization. We performed experiments for both choices and found the results from
interpolating the atlas, i.e., treating it as a moving image, to be only slightly better than
interpolating the subject. However, interpolating the subject results in a faster algorithm,
whose computational time is less than 3 minutes. We report the results of interpolating the
atlas in the experimental section.

B. Optimization of Atlas-Based Spherical Demons
We now discuss the optimization in Eq. (59). Note that the introduction of the new term

 only affects Step 1 of the Spherical Demons algorithm. By parameterizing
Γ(t) = (ϒ)(t) ∘ exp({Enz⃗n}), we get

(60)

(61)

The second term is the same as before, while the first term has become more complicated.
Using the product rule and the techniques described in Appendix A, we can find the first
derivatives of the first and second terms and estimate their second derivatives using the
Gauss-Newton method. The difficulty lies in the third term, which is not quadratic and is
even strictly concave, so we have to make further approximations.

Consider the problem of optimizing a one-dimensional function f(x). Let the current
estimate of x be x0. Newton's optimization [49] involves the following update:

(62)

where f′(x0) and f″(x0) are the gradient and the Hessian of f evaluated at x0 respectively.
When f″ is negative (positive), the update △x increases (decreases) the objective function,
regardless of whether one is attempting to increase or decrease the objective function! The
Gauss-Newton approximation of the Hessian for minimizing non-linear quadratic functions
actually stabilizes the Newton's method by ensuring the estimated Hessian is positive.
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To optimize Eq. (61) with Newton's method, we need to compute the gradient and the
Hessian. Because we are using the l2 inner product and the canonical metric (see Appendix
A-C), the gradient and the Hessian correspond to the first and second derivatives. The first
derivative or gradient corresponds to

(63)

and the second derivative corresponds to

(64)

(65)

where the last approximation was made using the Gauss-Newton method. Not surprisingly,
the third term corresponding to log is negative, which can introduce instability in the Gauss-
Newton update. Consequently, we drop the last term, resulting in:

(66)

Note that the resulting update Eq. (62) is always in the direction of descent since the
estimated second derivative is always positive. Theoretically, it is necessary to do a line
search along the Gauss-Newton update direction to ensure convergence. In practice, we find
that the objective function decreases reliably for each full Newton's step.

Appendix D: Numerics of Diffeomorphism
While υ and Φυ(x) = exp(υ)(x) are technically defined on the entire continuous image
domain, in practice, υ and u are represented by vector fields defined on a discrete set of
points in the image, such as at each pixel [57], [66] or control points [4], [9] or in our case,
vertices of a spherical mesh. From the theories of ODEs [11], we know that the integral
curves or trajectories u(t) = Φtυ(·) of a velocity field υ(x, t) exist and are unique if υ(x, t) is
Lipschitz continuous in x and continuous in t. This is true in both Euclidean spaces and on
manifolds. Uniqueness means that the trajectories do not cross, implying that the
deformation is invertible. Furthermore, we know from the theories of ODEs that a Cr

continuous velocity field υ produces a Cr continuous deformation field. Therefore, a
sufficiently smooth velocity field results in a diffeomorphic transformation.

Since the velocity field υ is stationary in the case of the one parameter subgroup of
diffeomorphisms, υ is clearly continuous (and in fact C∞) in t. A smooth interpolation of υ
is continuous in the spatial domain and is Lipschitz continuous if we consider a compact
domain, which holds since we only consider images that are closed and bounded.
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To compute the final deformation of an image, we have to estimate exp(υ) at least at the set
of image grid points. We can compute exp(υ) by numerically integrating the smoothly
interpolated velocity field υ with Euler integration. In this case, the estimate becomes
arbitrarily close to the true exp(υ) as the number of integration time steps increases. With a
sufficiently large number of integration steps, we expect the estimate to be invertible and the
resulting transformation to be diffeomorphic.

The parameterization of diffeomorphisms by a stationary velocity field is popular due to the
“scaling and squaring” approach [3] for computing exp(υ). Instead of Euler integration, the
“scaling and squaring” approach iteratively composes displacement fields. Because we are
working on the sphere S2, the “scaling and squaring” procedure discussed in [3] has to be
slightly modified:

(67)

(68)

where Ψn is the local coordinate chart defined in Eq. (10), such that Ψn(0) = xn. Eq. (67)

differs from “scaling and squaring” in Euclidean space.  is the velocity vector at

the origin of ℝ2 corresponding to the velocity vector  at xn. For large enough K, we

can approximate a particle at the origin to move to position  via the flow of

. Finally, the coordinate chart Ψn maps the point  back to the sphere.
The correctness of this process follows from the fact that the solution trajectories of the
ODEs of a vector field can be consistently transformed via the coordinate charts.

While “scaling and squaring” converges to the true answer as K approaches ∞ in the
continuous case, in the discrete case, composition of the displacement fields requires
interpolation of displacement fields, introducing errors in the process. In particular, suppose
Φt0υ (x) and Φ2t0υ (x) are the true trajectories found by performing an accurate Euler
integration up to time t0 and 2t0 respectively. Then, there does not exist a trivial
interpolation scheme, so that Φ2t0υ(x) = Φt0υ(Φt0υ(x)). In practice however, it is widely
reported that in ℝ2 and ℝ3, “scaling and squaring” tends to preserve invertibility even with
rather large deformations [4], [66].

As discussed in Appendix A-B, we employ barycentric interpolation, followed by
normalization to ensure the warp stays on the unit sphere. In practice, we find that the
resulting transformation is indeed diffeomorphic. Technically speaking, since we use linear
interpolation for the displacement field, the transformation is only homeomorphic rather
than diffeomorphic. This is because the transformation is continuous, but not differentiable
across mesh edges. However, we follow the convention of [3], [4], [66] who call their
transformation diffeomorphic even though they are homeomorphic.
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Fig. 1.
Tangent vector representation of transformation Γ. See text for more details.
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Fig. 2.
Coordinate chart of the sphere S2. The chart allows a reparameterization of the constrained
optimization problem f in step 1 of the Spherical Demons algorithm into an unconstrained
one.
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Fig. 3.
Percentage Improvement over FreeSurfer. Yellow regions indicate structures scoring better
than FreeSurfer. Blue regions correspond to decrease in accuracy. Note that none of these
blue regions are statistically significant. The boundaries between parcellation regions are set
to reddish-brown to improve visualization of the regions.
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Fig. 4.
(a) Dice measure for each structure in the left hemisphere. (b) Dice measure for each
structure in the right hemisphere. Black columns correspond to FreeSurfer. White columns
correspond to Spherical Demons. * indicates structures where Spherical Demons shows
statistically significant improvement over FreeSurfer (FDR = 0.05). No structure exhibit
significant decrease in accuracy.
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Fig. 5.
Brodmann areas 17 (V1), 18 (V2), 2, 4a, 4p, 6, 44 and 45 shown on inflated cortical surfaces
of two subjects. Notice the variability of BA44 and BA45 with respect to the underlying
folding pattern.
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Fig. 6.
Left: example in-vivo surface used in the parcellation study. Right: example ex-vivo surface
used in the Brodmann area study.
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Fig. 7.
Median alignment errors of Brodmann areas in mm for the four registration methods. The
error bars indicate the upper and lower quartile alignment errors. “#” indicates that the
median errors of SD10 are statistically lower than those of FS10 (FDR = 0.05). “*” indicates
SD40 outperforms FS40. For no Brodmann area does FreeSurfer outperform Spherical
Demons.
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Fig. 8.
Approximating the kernel function k(xi, xj). The scattered points corresponds to the
estimation of k*(xi, xj) via Eq. (51). The red curve corresponds to fitting the scattered points
so that k̃(xi, xj) is strictly a function of the geodesic distance between xi and xj.
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Fig. 9.
Difference metric as a function of the number of iterations m and value of γ.
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Fig. 10.
Comparison of spline interpolation and iterative smoothing (m = 10, γ = 1). (a) Input vector
field (b) Spline Interpolation Output (c) Iterative Smoothing Output (d) Difference between
the second and third columns (e) l2 norm of the difference. The first row uses an input vector
field which is zero everywhere except for a single tangent vector of unit norm. Second row
illustrates the worst unit norm input as measured by the difference metric Eq. (52). This
worst unit norm input vector field corresponds to the largest eigenvector in Eq. (52). The
third row uses a vector field from an actual warped image from the experimental section.
Note that the input vector field in the first two rows are scaled down for the purpose of
display. The vector fields in the entire third row are of the same scale, but are scaled down
relative to the first two rows, since the vector field from the warped image is substantially
larger in magnitude than the unit norm inputs of the first two rows. This explains the
substantially larger difference metric on the third row.
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TABLE I

Glossary of terms used throughout the paper.

F, M Fixed image F, moving image M.

Σ Typically a diagonal matrix that models variability of feature values at a particular vertex.

σx, σT Parameters of Demons cost function in Eq. (3).

Γ, ϒ Transformations from S2 to S2. Γ is the transformation we are seeking. ϒ is the smooth hidden transformation close to
Γ.

Γ⃗ ≜ {Γ⃗n}, ϒ⃗ ≜ {ϒ⃗n} Discrete tangent vector representation of the deformations (see Fig. 1 and Eq. (5)). For example, given the tangent
vector Γ⃗n at xn ∈ S2, one can compute Γ(xn).

υ⃗ ≜ {υ⃗n} We parameterize diffeomorphic transformations from S2 to S2 by a composition of diffeomorphisms, each
parameterized by a stationary velocity field υ⃗. υ⃗n is the velocity vector at xn.

u(·) ≜ exp(υ⃗)(·) The diffeomorphism parameterized by the stationary velocity field υ⃗ is the solution of a stationary ODE at time 1.

En ≜ [e⃗n1 e⃗n2] e⃗n1 and e⃗n2 are orthonormal vectors tangent to the sphere at xn

Ψn

Coordinate chart defined in Eq.(10): . Ψn is a diffeomorphism between ℝ2 and a hemisphere
centered at xn ∈ S2.

z⃗n z⃗n is an arbitrary tangent vector at the origin of ℝ2. At xn, the velocity vector υ⃗n = Enz⃗n via the coordinate chart Ψn (see
Eq. (14)).
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TABLE II

List of Parcellation Structures

1. Sylvian Fissure / Unknown 2. Bank of the Superior Temporal Sulcus 3. Caudal Anterior Cingulate

4. Caudal Middle Frontal Gyrus 5. Corpus Callosum 6. Cuneus

7. Entorhinal 8. Fusiform Gyrus 9. Inferior Parietal Complex

10. Inferior Temporal Gyrus 11. Isthmus Cingulate 12. Lateral Occipital

13. Lateral Orbito Frontal 14. Lingual 15. Medial Orbito Frontal

16. Middle Temporal Gyrus 17. Parahippocampal 18. Paracentral

19. Parsopercularis 20. Parsorbitalis 21. Parstriangularis

22. Peri-calcarine 23. Post-central Gyrus 24. Posterior Cingulate

25. Pre-central Gyrus 26. Pre-cuneus 27. Rostral Anterior Cingulate

28. Rostral Middle Frontal 29. Superior Frontal Gyrus 30. Superior Parietal Complex

31. Superior Temporal Gyrus 32. Supramarginal 33. Frontal Pole

34. Temporal Pole 35. Transverse Temporal
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