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The structures of the best-performing 
compounds identified by these two groups 
are shown in Figure 1. DLin-KC2-DMA, 
designed by Semple et al., contains a tertia-
ry amine head group. The pKa of this amine 
on the nanoparticle surface should be close 
to 7 because of crowding with the neighbor-
ing groups. Yet, in the acidic endosome, it 
should become protonated and positively 
charged so as to be available for ion pair-
ing with the negatively charged endosomal 
lipids. C12-200, designed by Love et al., is 
almost a macromolecule. It contains multi-
ple tertiary amines, the pKa of which should 
also be close to but no greater than 7. As 
with DLin-KC2-DMA, C12-200 should be 
protonated in the acidic endosome to form 
ion pairs with the negatively charged endo-
some lipids. The molecule also contains five 
alkyl chains. As a whole, C12-200 contains 
bulky hydrophobic tails. Whether it has 
the tendency to form the inverted micelle, 
or HII phase, as does DLin-KC2-DMA, 
will need to be tested. Thus, the following 
design criteria may be useful for creating 
future delivery agents: (i) one or more ter-
tiary amines with relatively low pKa to gen-
erate a weakly cationic head group in which 
the positive charge density is highly pH 
dependent, (ii) more than one alkyl tail so 
as to form a bulky hydrophobic corona, and 
(iii) an ideal length of alkyl tail that may lie 
within the range of 12–18 carbons.

The unprecedented low-dose delivery 
achieved by these two studies is of great 
importance. Not only was the delivery ef-
ficiency improved, the carrier material was 
well tolerated by the treated animals. Because 
silencing can be induced at a low dose, the 
amount of excipients required is also greatly 
reduced. In fact, dose-dependent toxicity and 
pulmonary inflammation of cationic lipid 
limits its effectiveness. It has been demon-
strated that cationic lipids can modify cellular 

signaling pathways and stimulate specific 
immune or anti-inflammatory responses.9 
Tekmira Pharmaceuticals (British Columbia, 
Canada) recently terminated a clinical trial 
of liposomal siRNA for hypercholester-
olemia because of “potential for immune 
stimulation to interfere with further dose es-
calation” (http://clinicaltrials.gov/ct2/show/
NCT00927459?term=siRNA&rank=9). 
Although the underlying reasons have 
not been clearly identified, the immuno-
stimulatory activity of cationic lipid should 
be considered carefully. The lipid or lipi-
doid presented by these two studies may 
help reduce or even eliminate such adverse 
effects. Orders-of-magnitude decreases in 
the required dose will further decrease the 
potential for toxicity.

Cationic lipids hold great promise for 
systemic delivery of siRNA. However, they 
are not the only solution. The fate of a siRNA 

formulation in vivo is affected by vari-
ous factors such as particle size, morphol-
ogy, and surface chemistry. Sophisticated 
structures of the particles and preparation 
methods also influence the in vivo effect 
considerably. Other formulation strategies, 
such as attaching a targeting moiety to the 
nanoparticle, could further enhance the de-
livery efficiency. We believe that rationally 
designed delivery systems formulated with 
promising novel delivery materials will fa-
cilitate the path to the development of the 
full potential of siRNA-based therapeutics.
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figure 1 The best-performing lipids in two recent studies. (a) DLin-KC2-DMA, generated by 
Semple et al.3 (b) C12-200, generated by Love et al.4
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Recombinant adeno-associated virus 
(rAAV) is a promising vector for 

applications in the central nervous system 

(CNS). Clinical phase I/II studies have 
demonstrated safety of rAAV-expressing 
therapeutic transgenes for a variety of 
benign (i.e., noncancer) CNS disorders, 
namely, Canavan disease,1 Parkinson’s dis-
ease,2–4 and Batten disease.5 Human stud-
ies were also recently reported targeting 
the retina.6–9 From the early stages of pre-
clinical development, rAAV was appealing 
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because it was found to be neurotrophic 
and capable of long-term activity without 
immune interference or toxicity when in-
jected into the CNS.10

But what about the potential of rAAV 
for the peripheral nervous system (PNS)? 
The PNS has a major role in a large number 
of neurological disorders, including a com-
mon one, chronic pain. The PNS is also, in 
principle, more easily accessible without 
major surgery, a potential advantage for 
any clinical gene therapy application. The 
PNS consists of three groups of neurons: 
primary sensory neurons, primary motor 
neurons, and autonomic neurons. Pri-
mary sensory neurons reside in the dorsal 
root ganglia (DRG)—hence their frequent 
designation as DRG neurons—and in the 
trigeminal ganglion. Primary sensory neu-
rons are of clinical interest because of their 
role in sensory neuropathies and a wide 
range of chronic pain states.

Testing of rAAV in the PNS was initial-
ly reported as a sidekick of an adenovirus 
marker gene study,11 followed by a report 
of its usefulness for analgesic treatments.12 
Both studies used rAAV consisting of in-
verted terminal repeats and capsid proteins 
derived from AAV serotype 2 (the original 
rAAV vectors developed in the mid-1990s) 
and administered the vectors directly into 
the DRG. In this issue of Molecular Ther-
apy, Mason et al. rekindle this approach, 
reporting on the targeting of primary sen-
sory neurons by injection of rAAV into 
the DRG.13 The authors packaged AAV2 
recombinant genomes into seven different 
capsids—the original serotype 2 as well as 
the newer types 1, 3, 4, 5, 6, and 8—and 
compared their efficacy for expressing the 
marker gene eGFP. Their best-performing 
vector, AAV5, transduced >90% of DRG 
neurons—it can’t get better than that. So is 
it prime time yet for a clinical trial target-
ing the PNS by direct rAAV injection into 
the DRG? A critical set of studies may help 
to light the way.

First, it would be of interest to repeat 
the study in other animal species to evalu-
ate whether the marked performance 
difference among the various capsid se-
rotypes reported by Mason et al.13 seems 
generalizable or is rodent-specific. The 
original reports on capsid pseudotyping of 
rAAV showed very marked differences be-
tween rodent muscle14 and rodent brain15 
resembling or exceeding the differences 

between serotypes demonstrated by Ma-
son et al. in the rodent DRG (e.g., in the 
muscle the difference was several log10 
orders of magnitude14). Unfortunately, 
in the case of muscle- or brain-directed 
rAAV gene transfer, similarly systematic 
serotype comparisons seem not to have 
been performed in nonhuman primates or 
other large animals (dogs or pigs could be 
considered), but the “word on the street” 
(evaluating single-serotype studies and 
anecdotal findings in only a few animals) 
implies differences that are less than over-
whelming. In the case of DRG gene trans-
fer, any firmer guidance would certainly 
help clinical researchers to choose the best 
rAAV serotype when planning human tri-
als in the PNS.

Second, any piece of evidence support-
ing the lack of immunogenicity of rAAV 
vectors would be reassuring. rAAV is 
notable for its inability to induce cellular 
immunity in rodents. However, admin-
istration of AAV2 into the portal vein in 
humans led to an apparent delayed im-
mune response that ended a clinical trial 
prematurely.16–19 rAAV has also been used 
as a platform for vaccine development, 
suggesting that it can induce strong immu-
nity under some circumstances.20 Perhaps 
the most interesting observation reported 
by Mason et al. relates to this problem of 
rAAV immunogenicity—expression of 
AAV6 (but not any of the other serotypes) 
declined 12 weeks after DRG injection 
and was accompanied by neuropatho-
logical tissue damage at the injection site. 
Interestingly, the authors found that only 
AAV6 among the vectors tested was able to 
transduce nonneuronal cells in the DRG, 
namely, satellite cells. Accordingly, the au-
thors speculate that the less discriminate 
transduction profile of AAV6 may have 
led to AAV6 uptake by antigen-presenting 
cells triggering immunity, which conse-
quently led to tissue damage and loss of 
transgene expression.13 Although these 
findings are intriguing, the present study 
leaves open many questions. For example, 
what happens to expression at later time 
points (loss of expression is only partial at 
12 weeks)? Would neuropathological tox-
icity hold up in a blinded experiment (ran-
dom variation in injection technique and 
tissue procurement remain a possibility)? 
Finally, what is the nature of the immune 
response (presumably cytotoxic), and is it 

directed against the transgene (eGFP), the 
virus capsid, or both? A careful follow-up 
study would be most welcome and cer-
tainly highly informative for future clini-
cal research.

Third, a lingering concern with rAAV 
is whether it might be tumorigenic. 
Wild-type AAV has not been associated 
with carcinogenesis. But rAAV causes 
an increased incidence of liver tumors 
when administered to newborn mice of 
certain susceptible strains,21 in which 
vector integration was demonstrated in 
tumor tissues. In at least some of the cases, 
integration occurred in a micro-RNA 
locus on mouse chromosome 12. This 
led to regional transcriptional activation 
of many small RNA genes with known 
growth-regulatory properties, a plausible 
mechanism of carcinogenesis.22 Another 
study found an increased incidence of 
liver tumors only with a specific trans-
gene but not with rAAV administration 
per se.23 Such findings seem to be limited 
to rAAV administration in newborn (as 
opposed to adult) mice and might occur 
only in specific, susceptible strains (such 
as knockout mice with lysosomal storage 
disease) in which liver tumors can occur 
even spontaneously. They could also have 
been favored by relatively high vector doses 
(1.5 × 1011 particles per newborn mouse) 
and have thus far not been noted in other 
organs or other species. It is therefore not 
surprising that no such findings were noted 
by Mason et al.13 Nevertheless, continued 
careful attention to even a low incidence of 
tumor formation will need to be an integral 
part of any preclinical testing.

Fourth, an obvious challenge is the 
development of a minimally invasive DRG 
injection technique resembling the meth-
od practiced by Mason et al. in rodents but 
applicable to humans. The human DRG is 
approximately 50 times larger than that 
of a rodent, e.g., approximately 150–200 
mm3 in humans24 as compared with 4–5 
mm3 for the rat.25 As a result, single-site 
injections will not work. Bankiewicz et al. 
tackled this problem in the CNS through 
the development of an administration 
technique that they refer to as convection-
enhanced delivery, which they studied in 
different species, including primates.26,27 
They defined the technique in terms of bio-
mechanical details such as flow and pres-
sure,28–30 tested it for safety with different 
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vector types,31–33 developed imaging for 
it,34–36 and refined it down to such details 
as the needle to be employed.37,38 From a 
neurosurgical perspective, the DRG is a 
structure that is routinely visualized in the 
scope of many spine operations. But spine 
surgery would ideally not be required 
for injecting rAAV. Instead, a minimally 
invasive technique would be desirable, 
particularly given that clinical syndromes 
involving the PNS would ultimately call 
for treatment of DRG at multiple spinal 
levels and possibly bilaterally. The absence 
of a clinically established procedure for 
injecting DRG in humans calls for some 
creative surgical research.

For the past decade, PNS gene therapy 
has been the domain of herpes simplex vi-
rus, a vector that transduces primary sen-
sory neurons effectively in animal models 
when injected subcutaneously.39,40 Many 
crucial questions, such as those asked 
above for rAAV, have been successfully 
resolved for herpes simplex virus, prompt-
ing ongoing clinical trials in patients 
with intractable pain.41,42 For rAAV-based 
gene therapy of the PNS, it took several 
more years after the initial studies11,12 for 
a more comprehensive picture to emerge 
that covered various administration tech-
niques such as intrathecal delivery of vari-
ous rAAV serotypes,43,44 intraneural and 
systemic targeting of DRG neurons by 
rAAV6 (ref. 45), and long-term efficacy for 
the treatment of neuropathic pain.46,47 The 
study by Mason et al.13 adds seminal data 
refocusing on rAAV injection directly into 
the DRG and further supports the candi-
dacy of rAAV as an alternative for gene 
therapy of the PNS.
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