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Abstract
Immune responses can be compartmentalized into innate versus adaptive components. This relatively
recent dichotomy positioned the innate immune system at the interface between the host and the
external environment and provided a new conceptual framework with which to view allergic diseases,
including asthma. Airway epithelial cells and dendritic cells are key components of the innate
immune system in the nose and lung and are now known to be intimately involved in allergen
recognition and in modulating allergic immune responses. Here we review current thinking about
how these two key cell types sense and respond to inhaled allergens, and emphasize how an
understanding of “allergic innate immunity” can translate into new thinking about mechanisms of
allergen sensitization and potentially lead to new therapeutic targets.
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Introduction
The compartmentalization of immune responses into innate versus adaptive components was
an important recent advance in immunology [1]. As opposed to adaptive immunity, which is
the major provenance of B and T lymphocytes, innate immune responses theoretically can
encompass many other cell types that respond to infections or tissue injury. Epithelial cells and
dendritic cells (DCs) are crucial components of the innate immune system in the airway because
they sense and respond to inhaled allergens and particles. Key distinguishing features between
the innate and adaptive arms of the immune system include the patterns or antigens recognized,
kinetics of activation, and capacity for memory. In contrast to adaptive immune cells, which
recognize an extremely broad repertoire of antigens due to genetic recombination of antigen
receptor genes, innate immune cells respond to a more limited set of targets via a conserved
set of pattern-recognition receptors (PRRs). Similarly, innate immune cells generally respond
quickly to activating signals and have a limited capacity for long-term memory.

PRRs tend to be ancient and conserved, and likely evolved to recognize invading pathogens.
For example, the Toll-like receptor (TLR) family recognizes a diverse family of pathogen-
encoded patterns and evolved at least 100 million years before the rearranged antigen receptors
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that underlie adaptive immunity. In recent years, genetic epidemiology studies have associated
single nucleotide polymorphisms in TLRs with different allergic phenotypes [2–4].
Furthermore, animal models and in vitro studies have firmly implicated TLRs in allergen
sensitization and regulation of allergic immune responses [5,6]. The mechanisms by which
TLRs regulate allergic sensitization and inflammation are complex and likely allergen and
disease specific [7]. Most studies to date have investigated asthma and atopic dermatitis,
whereas less is known about TLRs in allergic rhinitis. One recent study found that a single
nucleotide polymorphism in TLR4, which is part of the lipopolysaccharide signaling complex,
conferred significant protection from hay fever [8]. In addition to their potential role in disease
pathogenesis, natural TLR ligands (as well as synthetic analogues) are being explored as novel
adjuvants in allergen immunotherapy. Some TLR/ligand pairs potentially have protective
effects in allergen immunotherapy (eg, TLR9 and CpG oligonucleotides [9]). In contrast, other
TLR ligands have been linked to allergen sensitization, although the dose and timing of
exposure are critical modulating factors (eg, TLR4 and lipopolysaccharide).

In addition to recognizing cell wall components, nucleic acids, and carbohydrates derived from
microbes, innate immune receptors respond to an array of endogenous danger signals that are
produced or released extracellularly during tissue injury. There has been an explosion of
research in this area in recent years, with new PRR-ligand interactions being discovered at a
rapid pace [10–13]. Endogenous ligands produced during inflammation or released by dead
and injured cells include heat shock proteins, extracellular matrix components (eg, low
molecular weight hyaluronic acid), extracellular adenosine triphosphate, high mobility group
box 1, modified lipoproteins (eg, oxidized low-density lipoproteins), complement factors, and
uric acid crystals that can also be sensed as dangerous [14].

In addition to TLRs, other PRRs include the Dectin family of cell-surface C-type lectins that
recognize fungal cell wall components [15], as well as the intracellular Nod-like receptor
(NLR) NLRP3. Upon activation, NLRP3 forms a complex with the adaptor protein ASC and
pro-caspase-1, which is referred to as the inflammasome [12]. Recent studies have linked the
NLRP3 inflammasome with exposure to various pathogens or toxins with caspase-1-dependent
processing of cytokines, including interleukin (IL)-1β, IL-18, and IL-33 [16]. Interestingly,
the inflammasome was recently demonstrated to be required for activity of the proallergic
adjuvant alum [17], suggesting that it may be involved in generation of T-helper type 2 (Th2)-
dependent immune responses, although alum can also act in an inflammasome-independent
manner [18]. As these cytokines contribute to allergic inflammation [19,20], targeting
components of the inflammasome may hold therapeutic promise in allergic diseases.

Consequences of Innate Immune Activation: Dendritic Cell Recruitment and
Migration to Lymph Nodes

An important consequence of innate immune activation is the recruitment and activation of
DCs in affected tissues. Respiratory tract DCs are interdigitated throughout the epithelium of
the nose and lung and are uniquely poised to respond to tissue injury or infection and alert
adaptive immune cells to the presence of “danger” [21••]. Current thinking is that after
activation by appropriate danger signals, DCs undergo a complex maturation process involving
simultaneous downregulation of endocytosis, enhanced antigen processing and presentation,
and secretion of proinflammatory and immunoregulatory cytokines. DC maturation also results
in changes in chemokine receptor expression that facilitate homing to regional lymph nodes,
where they present peptide antigen in the context of major histocompatibility complex (MHC)
(signal 1) as well as costimulatory molecules (signal 2) to naïve T cells. Epithelial and other
stromal cells are thought to influence DC maturation and their subsequent ability to activate T
cells. DCs then integrate these stromal signals in a way that influences their ability to instruct
T-cell homing and T-cell lineage commitment (ie, signal 3). This is a new and exciting area of
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immunology about which very little is known in human allergic diseases. Experiments in mice
clearly show that signals imprinted in DCs during their maturation induce the expression of
tissue-specific homing receptors in responding T cells [22]. In the case of skin Langerhans
cells, this involves upregulation of chemokine receptors and adhesion molecules on T cells
(eg, C-C chemokine receptor [CCR] 10 and cutaneous lymphocyte antigen) that bind to their
respective ligands expressed in inflamed skin (eg, C-C chemokine ligand [CCL] 27 and E- and
P-selectin) [23]. In the case of gut-educated DCs, this involves upregulation of chemokine
receptors and adhesion molecules on T cells (eg, CCR9 and the integrin α4β7) that bind to their
respective ligands expressed in inflamed skin (eg, CCL25 and MadCAM-1 [mucosal vascular
addressin cell adhesion molecule-1]) [24]. Although it seems likely that similar receptor/ligand
pairs will govern T-cell homing to the respiratory tract, to date there is little firm evidence in
support of this notion. Precisely when and where naïve allergen-specific T cells are educated
in humans is not known. In the case of ubiquitous allergens such as house dust mites and
pollens, sensitization likely occurs early in life. Sensitization to some allergens may occur
epicutaneously, especially in susceptible children who have defects in the epidermal barrier,
whereas other aeroallergens preferentially deposit in the nose and lung. Future studies
investigating the precise mechanisms by which allergens activate DCs at mucosal sites to
initiate and sustain allergen-specific immune responses will likely prove valuable.

Dendritic Cells Influence Th-Cell Differentiation
Subtle differences during DC maturation can profoundly impact the development of subsequent
adaptive immune responses by regulating Th-cell differentiation. In contrast to Th1-promoting
DCs, which induce interferon (IFN)-γ-producing Th1 cells via secretion of high amounts of
IL-12 family members, the molecular mechanisms by which DCs induce differentiation of
other T-cell lineages (eg, Th2 and Th17) are not as well understood. DCs do not produce IL-4,
the critical Th2-promoting cytokine. One early hypothesis was that Th2-promoting DCs arose
by “default” in the absence of strong TLR signals. This was thought to reflect low-grade DC
activation, sufficient to upregulate costimulatory molecules but not enough to induce robust
secretion of Th1-promoting cytokines such as IL-12 or IL-23. This provided a cellular and
molecular correlate of the hygiene hypothesis, although it is now clear that this default model
is an oversimplification and that DCs can actively influence Th2 lineage differentiation. DCs
can promote Th2 responses through contact-dependent or soluble signals, and it seems likely
that multiple mechanisms are involved, depending on the precise mechanisms of DC activation
[25]. Unfortunately, no single cell-surface marker or cytokine discovered to date can reliably
identify a “pro-Th2” DC, which must be defined operationally in co-culture with naïve T cells.
These assays are cumbersome and not well standardized, which makes it challenging to
compare results from different research groups. In a recent and exciting field of study, cytokines
produced by airway epithelial cells or epidermal keratinocytes have been shown to induce the
maturation of Th2-promoting DCs. These proallergic innate cytokines include thymic stromal
lymphopoietin (TSLP), IL-25, and IL-33 [26]. The precise mechanisms by which these
cytokines induce the maturation of Th2-promoting DCs include, in part, suppression of IL-12
production, but also induction of cell-surface molecules that preferentially induce IL-4 gene
transcription in responding T cells. TSLP-exposed DCs can also perpetuate Th2 responses by
promoting survival of memory Th2 cells [27].

Dangerous Allergens: Mechanisms and Consequences of Allergen
Recognition by the Innate Immune System

The remainder of this review focuses on allergen-associated danger signals and how they are
recognized by innate immune cells and receptors to initiate allergen-specific immune
responses. Two general categories of allergen-encoded pro-Th2 signals can be considered,
namely protease dependent and protease independent (Fig. 1). It is worth remembering that
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many allergens will likely activate multiple pathways simultaneously and that in the real world,
allergens will be “contaminated” to some degree with lipopolysaccharide and other microbial
products that activate TLRs. Thus, understanding how allergen-encoded signals interact with
TLR (and other PRR) signaling pathways will be important in future studies. The house dust
mite Dermatophagoides pteronyssinus (Der p) is probably the best studied in this regard and
is now known to contain discrete allergens, many of which have enzymatic activity. These
include the class 1 cysteine protease Der p 1 and class 3 serine protease Der p 3 [28]. A seminal
early paper reported that Der p disrupted tight junctions of airway epithelium in a protease-
dependent manner [29•], suggesting a mechanism by which inhaled allergen would gain access
to innate immune cells in the airway. The cysteine protease activity of Der p 1 seems to be
essential for its proallergic properties. For example, Kikuchi et al. [30] recently showed that
mice immunized with “protease-dead” Der p 1 (induced with the irreversible inhibitor E-64 or
by heat denaturation) did not mount IgE responses when immunized by intraperitoneal
injection with alum. Immunization with E-64 did not affect ova-driven IgE responses,
suggesting that it was specifically targeting Der p [30]. One possibility is that protease activity
of Der p 1 was required for “pro-Th2” DC activation, but this has not been formally investigated
to date. Studies with Der p were reminiscent of fungal-associated allergenic proteases, which
were found to be potent inducers of Th2-type inflammation even in the absence of T cells
[31•].

Two general mechanisms have emerged for the protease-dependent effects of Der p, and they
are not mutually exclusive (Fig. 1, left side). First, Der p 1 can cleave several cell-surface
molecules, including CD23, CD25, and CD40 [32]. This mechanism may be especially
apparent after preactivating Der p in vitro with cysteine. Interestingly, dust mite allergen Der
p 1 seemed to inhibit IL-12 secretion in lipopolysaccharide-stimulated DC by cleaving CD40
expression [32]. Second, Der p can activate the protease-activated receptor (PAR) family of
G-protein-coupled cell-surface receptors [33]. PAR1, the first identified member of this family,
was found to be the main thrombin receptor [34]. Different PAR family members have been
associated with allergic diseases and asthma, and PAR agonists/antagonists are being
developed therapeutically. Allergens seem to activate PAR family members in a cell type-
specific manner, and there is currently a lack of consensus in this area. For example, Adam et
al. [35] reported that Der p 1 activated A549 cells in a PAR2-independent manner and induced
extracellular signal-related kinase 1/2− and nuclear factor κB-dependent IL-8 expression
[35]. In contrast, another study suggested that Der p 1 activated PAR2, but not PAR1, in the
same cell line [36]. Cockroach allergen was found to stimulate PAR2 on fibroblasts [37],
whereas mold allergen pen C 13 activated epithelial cells via both PAR1 and PAR2 [38]. PAR2
may be particularly important for Th2 immune responses and allergic diseases [39]. For
example, PAR2 is upregulated in human asthmatic epithelium [40], and PAR2 knockout mice
are partially protected from asthma [41]in association with reduced IL-4 secretion [42].
Although it is expressed on keratinocytes and monocytes, a comprehensive understanding of
the role of PAR2 and other related family members in allergic immune responses is lacking.
Taken together, these studies suggest that strategies that counteract protease activity and
signaling may have novel antiallergic effects, and that defective antiproteases may be novel
susceptibility genes in allergic diseases.

Protease-Independent Effects of Allergens
Recent studies have uncovered protease-independent pathways by which house dust mites and
other allergens activate their target cells. Two groups recently reported that β-glucans present
in house dust mite extracts interact with Dectin receptors on epithelial cells and DCs [43,44].
The consequences of these interactions were cell-type dependent, resulting in generation of
cysteinyl leukotrienes by DCs [43] and secretion of the chemokine CCL20 by airway epithelial
cells [44]. In contrast, Trompette et al. [45••] showed that Der p 2 is a structural mimic of MD2,
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a component of the TLR4 complex, and can reconstitute a TLR4 signaling complex. Thus, this
groundbreaking article provides an example of allergenic mimicry in which Der p 2 co-opts
other established signaling components to activate its target cells. In the case of cockroach
allergen, Page et al. [46] recently found that cockroach “frass” (fecal matter) caused allergic
airway inflammation and activated neutrophils in mice in a TLR2-dependent manner. Traidl-
Hoffmann et al. [47] showed that phytoprostanes associated with birch pollen inhibited DC
IL-12 production, resulting in a pro-Th2 DC phenotype, whereas Shreffler et al. [48] reported
that the major peanut allergen Ara h 1 was a ligand for DC-SIGN (specific intercellular
adhesion molecule-3-grabbing nonintegrin). Thus, different allergens may use different
mechanisms to initiate and influence innate immune responses (Fig. 1).

In a seminal paper, Boldogh et al. [49•] reported that major pollen allergens, including ragweed,
possess intrinsic NADPH oxidase activity and initiate airway inflammation in an oxidant-
dependent manner. Subsequent studies documented the importance of ragweed-associated
oxidants in inducing epithelial activation (and, at high concentrations, apoptosis) that could be
reversed to differing degrees with antioxidants [50–52]. We recently reported that an identical
short ragweed extract induced oxidative stress and activation of CD11c+ DC that was inhibited
by the antioxidant N-acetyl cysteine but potentiated in the absence of the master antioxidant
transcription factor Nrf2 [53]. Thus, ragweed provides a model allergen to study how oxidative
stress is sensed as “dangerous” by the innate immune system.

Which Cell Type is Key: Epithelial Cells, Dendritic Cells, or Basophils?
Many cells can potentially sense and respond to inhaled allergens, and it remains unclear if
there is one “key” cell type in this regard in the initiation of proallergic Th2 immune responses.
Current candidates include airway epithelial cells, respiratory tract DCs, and tissue basophils.
Different cell types may be involved in the response to different allergens, depending on the
precise makeup of the inhaled allergenic particles and location in the respiratory tract that they
deposit. It is worth noting that many pollens are inhaled together with (and possibly complexed
on) particulate matter, carbon-based pollution byproducts that have their own chemical
constituents and effects on innate immune cell types [54]. Modeling the deposition of allergens
and particulate matter in the respiratory tract is currently challenging. In an elegant recent
study, Hammad et al. [55••] used bone marrow chimeras to uncover an essential role for
epithelial TLR4 in sensing house dust mite extracts that were instilled intratracheally in mice.
The use of chimeric mice allowed these authors to carefully distinguish between the role of
TLR4 on hematopoietic cells (eg, DCs) compared with lung structural cells (eg, airway
epithelium) in the response to house dust mites, and led to the surprising conclusion that TLR4
on hematopoietic cells was largely dispensable for allergen-induced DC activation. In contrast,
a panel of epithelial-derived cytokines seemed to be involved in the response to house dust
mite extracts, including thymic stromal lymphopoietin, IL-25, and IL-33 [55••]. It will be
interesting to use this approach with other allergens and PRRs and determine its generalizability
to other models. In addition to house dust mites, other allergens or allergen extracts have been
shown to directly activate epithelial cells and other structural cells (eg, fibroblasts), including
ragweed, cockroach, and mold allergen [38,51]. Pichavant and colleagues [56] showed that
Der p 1 stimulated epithelial monolayers to secrete chemokines, including CCL20, that induced
DC chemotaxis using a transwell co-culture system. Nathan et al. [43] showed that house dust
mite extract and ragweed extract (to a lesser extent) induced CCL20 secretion from epithelial
cells in vitro. CCL20 (or macrophage inflammatory protein-3α) is a potent chemoattractant for
immature DCs because immature DCs (like naïve T cells) express the CCL20 receptor CCR6.
Thus, these studies suggest that in addition to epithelial cells, DCs will be rapidly recruited to
the site of allergen deposition to endocytose soluble allergenic proteins. Interestingly, we
recently reported that CCL20 is elevated in bronchoalveolar lavage fluids following segmental
allergen challenge and correlated strongly with bronchoalveolar lavage lymphocytes, although
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we did not enumerate DCs in that report [57]. Thus, CCL20 may be a sentinel chemokine that
alerts and recruits innate and adaptive immune cells to the lung, and is an attractive therapeutic
target in allergic asthma.

In addition to epithelial cells and DCs, recent studies have suggested that basophils play a key
role as antigen-presenting cells that induce Th2-type patent of cytokine production in
responding T cells. For example, Sokol et al. [58] demonstrated that basophils were essential
in eliciting Th2-driven immune responses in mice, using papain as a model allergenic protease.
Future research investigating the precise receptors and antigen-presenting cell types activated
by inhaled allergens using physiologic model systems and real world conditions will be
important and should enhance our understanding of the precise molecular mechanisms
involved in allergen sensitization. Future studies investigating allergic innate immune
responses in humans will also be important. Although technically more challenging and more
limited in scope, human studies will be needed to help determine the degree to which animal
model data can be extrapolated to genetically diverse human cohorts.

Conclusions
The field of allergic innate immunity is rapidly growing and attracting the interest of many
laboratories and research groups. It seems likely that new allergen-PRR interactions will be
uncovered, and it may be possible to define an innate immune signature specific to allergic
diseases. New therapeutic targets should be forthcoming as a result of research into the
molecular mechanisms of innate immune receptor signal transduction, and it will be
particularly interesting to follow research into negative regulation of innate immune receptors.
These studies may uncover endogenous inhibitory compounds or pathways that can also be
exploited therapeutically. DC-based therapeutics in allergic asthma, based on novel
vaccination strategies or drug delivery approaches, are a real possibility in the next 5 years.
Technical advances in multicolor flow cytometry should facilitate the identification of antigen-
presenting cell subsets that may be particularly important in promoting sensitization to inhaled
allergens. Although fundamental new discoveries will continue to be made using murine
models, it will be important to remain alert to species-specific differences in innate immune
cell lineage and function and expand human translational research in this field.
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Fig. 1.
Diagram depicting potential mechanisms whereby allergen-encoded signals could directly
activate immature dendritic cells (DCs) and induce their maturation into a T-helper type 2-
promoting phenotype. Allergen-associated molecules are depicted in the top boxes, and
potential DC receptors are depicted in the bottom boxes. PAR protease-activated receptor;
PPAR peroxisome proliferator-activated receptor; ROS reactive oxygen species; SIGN specific
intercellular adhesion molecule-3-grabbing nonintegrin; TLR Toll-like receptor
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