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Abstract
Biomedical research frequently involves performing experiments and developing hypotheses that
link different scales of biological systems such as, for instance, the scales of intracellular
molecular interactions to the scale of cellular behavior and beyond to the behavior of cell
populations. Computational modeling efforts that aim at exploring such multi-scale systems
quantitatively with the help of simulations have to incorporate several different simulation
techniques due to the different time and space scales involved. Here, we provide a non-technical
overview of how different scales of experimental research can be combined with the appropriate
computational modeling techniques. We also show that current modeling software permits
building and simulating multi-scale models without having to become involved with the
underlying technical details of computational modeling.

For many scientists, the first contact with a mathematical description of their data occurs
when they investigate the significance of an assumed correlation between two parameters by
fitting a line or simple curve to a collection of two-dimensional data points. Fitting a straight
line (linear regression) with slope 2, for instance, implicitly creates a mathematical model
that assumes that some mechanism in the observed system causes the property Y
(representing the y-axis) to increase twofold, whenever the property X (representing the x-
axis) increases by one. In many cases, this kind of modeling is phenomenological and
limited to simply demonstrating the significance of the slope. However, once the correlation
between X and Y has been discovered, one may want to find an explanation for the observed
relationship between X and Y that not only clarifies why the two aspects (or parameters) are
related (as opposed to being independent of each other) but also why the relationship is
sufficiently well (for statistical significance) described by a linear equation. The hypotheses
that are then formulated as tentative explanations are model descriptions of the system the
measurements were performed on. Biologists formulating such models create
representations of molecules, cells, cell populations in their minds or on a piece of paper and
interconnect them by what are the assumed influences these components have on each other.
The first tests of such a model are frequently gedanken experiments: ‘If this is how my
system works – what would I expect to observe experimentally?’ At this point, it is
obviously important that the model can make predictions in terms of experimentally
accessible parameters. Problems can arise when the model is too abstract, that is, when too
many components of the model cannot directly represent any experimentally measurable
parameters, or when the model incorporates mechanisms that act on a different scale than
the scale of possible experiments. The latter could be the case, for instance, when the
modeler tries to explain cell population dynamics with the help of a model of intracellular
molecular interactions. One would then need a hypothesis about how the molecular
interactions influence higher-level parameters such as cellular proliferation or death rates. At
that point, the model becomes a multi-scale model. Qualitative diagrammatic multi-scale
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models are very common in biomedical research. Ultimately, all tissue- or organ-level
phenomena are based on molecular interactions occurring within or on the surface of cells.
For the purpose of depicting a hypothetical role that a specific molecular mechanism may
play in a tissue level disease phenomenon, a diagram with an arrow connecting a molecule
to a higher scale correlate of the disease (for instance a graphical symbol for increased
cellular proliferation) is in order. However, if one wants to subject the proposed causal
relationships to a stringent quantitative exploration one needs to transform the knowledge
embodied in the arrow-based diagram and, importantly, the implicit assumptions that it
entails, into a formal description suitable as input for computer simulations.

In contrast to reviews that focus on the technical computational challenges associated with
such simulations [1,2] this article discusses the concepts, prerequisites and ingredients for
multi-scale modeling from a biological point of view and explains how existing software can
greatly facilitate the transformation of a qualitative into a quantitative model.

1. Multi-scale models: Bottom-up or Top-down?
Multi-scale models that link different spatial or temporal scales of experimentation and
hypothesis can traverse and connect those scales with different strategies. Approaches that
start with observed features on a high level of a system and then attempt to deduce what
kinds of mechanisms on lower, more fundamental scales could account for those
observations are called ‘Top-down’. Top-down models have the advantage that hypotheses
can stepwise increase their level of detail with the starting level directly backed-up by the
data. The disadvantage of such models is that in the direction of increasing details adjacent
scales of modeling do not unambiguously emerge from one another because, typically, a
higher scale phenomenon may have multiple different potential underlying explanations on
more fundamental scales. ‘Bottom-up’ models, in contrast, aim at deriving a system’s
behavior on higher spatial or temporal scales from the dynamics and interactions of model
components ‘living’ on lower, more detailed scales. The coarse-graining that connects the
different scales involves identifying which types of collective behavior on a fundamental
scale give rise to a coherent phenomenon on a higher scale.

Consider, for example, the signaling processes that result in biochemical and morphological
polarization of a cell responding to chemotactic stimuli [3–5]. On the sub-cellular scale of
detailed biochemistry, this process may be described as a network of interactions between
trans-membrane receptors, adaptors, phospholipids, kinases, phosphatases and structural
proteins. Mapping the network dynamics onto the cellular scale, will typically involve
dropping many of the molecular details and describing a relationship between the strength
and direction of a chemotactic stimulus and the polarization response of the cell, the latter
quantified, for instance, as the difference in actin turn-over in the morphological front of the
cell compared to the back.

As part of a bottom-up approach, one would try to build a model of the signaling network
that translates the receptor stimulus into a spatially polarized activation of actin
polymerization. The relationship between extra-cellular stimulus and actin polymerization
could then be directly read off from detailed simulations based on the model and could be
compared to the experimental data. However, assembling a network model that includes all
molecular components involved in phenomena as complex as chemosensing confronts the
modeler with several challenges [6]. First, there may be gaps in the available knowledge of
the biochemistry of the cell that make a reliable identification of the necessary network
components very difficult, forcing the modeler to speculate not only on signaling
mechanisms but also on their molecular components. Second, assembling a ‘minimal’
network that would be capable of generating the observed response does not necessarily
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result in a realistic representation of the real cellular biochemistry. One may miss important
components that modulate the cellular response or represent alternative signaling pathways
that render the cell’s behavior robust towards mutations of single components of the main
pathway. Bottom-up models thus may suffer from ambiguity on the fundamental level. The
great disadvantage of these models, namely the requirement to invest much care into the
construction of the fundamental modeling layer is at the same time their main advantage: the
process of assembling the model unveils gaps in our knowledge and points out new
directions for experimental studies that without the modeling effort would be less apparent
[7].

A top-down approach, on the other hand, would analyze the observed actin dynamics and its
spatial properties and their dependence on the applied concentrations of the chemoattractant
and then speculate on the signaling mechanisms that could account for the observations [8].
One would, for instance, identify the need for a mechanism that translates receptor
activation into intracellular signaling events. Linked to this signal transduction there would
have to be a signal amplification mechanism since chemotactic cells respond with steep
intracellular gradients of actin polymerization even to shallow extra-cellular gradients of
chemoattractant. Top-down approaches thus try to reverse-engineer underlying mechanisms
from higher scale observations. They play important roles whenever phenomena are
observed that represented the edge of the current understanding of the biological system at
hand. The top-down models that extrapolate into the unknown regions of potential
underlying (more fundamental) mechanisms in such situations thus can – similar to bottom-
up approaches – provide valuable, even if less detailed, frameworks for further
experimentation aiming at filling fundamental gaps in our knowledge.

In addition to choosing whether a multi-scale approach should be top-down or bottom-up the
modeler has to search for the most useful definition of the different scales, their functional
components and, in particular, of the ways information is exchanged between different
scales of a model. In fact, the process of encapsulation, of dividing a complex biological
system into different scales or functional units with limited exchange of information
between the ‘inner’ components of separate scales or units can be the most difficult part of
creating a model. For instance, using flow cytometry to analyze a process that involves
communication between multiple cells of different types one may identify certain cellular
markers that correspond to specific phenotypes which, in turn, may correlate with some
characteristics (proliferation, death or differentiation rates) of the dynamics of the observed
cell populations. For a mathematical single-scale model that only aims at investigating
possible scenarios of cell population dynamics it may be in order to define communication
between cell types in terms of changes in the expression of those markers: when population
A expresses more of some marker X the proliferation rate of population B will increase. For
a model that aims at understanding the flow cytometric observations on a single cell level
one would simulate cellular decision processes (leading to division, death or differentiation)
based on how intracellular signaling pathways are activated by the signals cells receive
through their receptors. The next higher modeling scale, the cell population scale, would be
constructed by encapsulating the biochemistry of single cells. It would only describe the
resulting changes in the numbers of cells of the different populations over time.

The next section will discuss how to combine detailed mechanistic model components with
phenomenological elements to encapsulate and link scales in models of cell biological
processes.
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2. Detailed mechanisms and phenomenological elements in multi-scale
models

The linear regression ‘model’ mentioned in the beginning simply quantifies a correlation
between two sets of measurements. It is an example of a purely phenomenological model of
the underlying biological system. The model does not assume any particular biological
mechanism that would account for the data nor does it explain anything about the biology1.
Multi-scale models are frequently hybrids containing phenomenological elements as well as
detailed mechanistic parts. Sometimes, the phenomenological elements are inserted as
functional placeholders for not yet understood mechanisms but in many cases models
contain phenomenological shortcuts to avoid the effort of explicitly modeling causal
relationships or processes that lie outside of the focus of the overarching biological question.
Consider, for instance, a hypothesis linking signal-induced cell differentiation and
proliferation that includes feedback between more and less differentiated cell populations
[10]. A model that aims at understanding the relationships between the signals the cells
receive and their intra-cellular decision processes would describe in detail the signaling
pathways leading to the activation of transcription factors inducing differentiation or
proliferation. In the model, once a cell has reached that stage, it would be assumed that –
after some delay – the cell will have created two daughter cells and/or will have
differentiated into another phenotype. Many intracellular signaling pathways process
information within minutes and involve only a relatively small subset of the components of
the cellular biochemistry. Eukaryotic division or significant phenotypic differentiation, on
the other hand, take hours and involve duplicating or modifying major parts of the cell.
Modeling the cell biology of division or phenotypic transformation in more detail would not
deepen the understanding of the cellular decision processes but would considerably increase
the size of the model and the computational cost associated with computer simulations.
Here, introducing a phenomenological model component that links a supra-threshold
activation of transcription factors to the resulting division or differentiation and the products
of these processes does not just reduce the footprint of the model, it represents an important
strategy for linking physical and functional model components that are separated with regard
to their spatial and temporal scale.

3. Strategies and tools for computational multi-scale modeling in biology
As depicted in Fig. 1, each scale of cell biology not only has its characteristic types of data
but also typical modeling and simulation approaches associated with it. The fundamental
scale we have chosen is the scale of molecular interactions. Computational modeling on this
scale typically aims at understanding or predicting the structure of molecules and the
complementarity of potential binding partners with regard to shape and charge distribution
as well as the conformational changes the molecules may undergo in the course of an
interaction [11,12]. The results of theoretical alignment studies or molecular dynamics
simulations are becoming increasingly important for our understanding of the fundamental
scale of molecular signaling mechanisms. Molecular dynamics simulations are usually
governed by the far sub-microsecond timescale. Due to the wide gap between this time scale
of intra-molecular dynamics and the time scale (10−3 – 102 seconds) of most of the chemical
aspects of molecular interactions, there exist to our knowledge no modeling efforts that
directly combine simulation across these different scales. The insights gained from the
structural studies can, however, be used by modeling approaches that describe molecular
reaction networks not just as systems of structureless chemical entities whose interactions

1For a more philosophical discussion on the explanatory value of phenomenological versus mechanistic models see, for example,
reference 9. Craver, C., When mechanistic models explain. Synthese, 2006. 153(3): p. 355–376.
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are sufficiently well characterized by the laws of mass-action, but describe molecular
interactions such as the ligation of receptors by their ligands as mediated by specific
functional binding sites [6,13–15]. These tools are capable of automatically generating the
full network of (multi-) molecular complexes that can form based on the specified
bimolecular interactions and create mathematical descriptions of the reaction kinetics,
thereby linking the scale of molecular binding sites to the scale of chemistry. Obviously, the
generation of chemical reaction kinetics requires quantitative input data, namely association,
dissociation and enzymatic transformation rates of the interactions mediated by the binding
sites. Currently, the scarcity of such data is a major bottleneck for quantitative simulations
of cellular signaling mechanisms.

Many software tools nowadays make it possible to formulate and simulate quantitative
models of cellular signaling processes without having to invest effort into the more technical
aspects (such as integrating differential equations) of calculating time courses of
biochemical concentrations [6,14–23]. Reflecting the growing appreciation of the fact that
molecular interactions are stochastic events, many of these tools contain algorithms that
allow the modeler to simulate the temporal evolution of a model not just as a deterministic
process but, if necessary, also as a sequence of discrete stochastic molecular events. In
addition to approaches that use some implementation of Gillespie’s Monte Carlo algorithm
[24,25] which provides a method to simulate the fluctuations in species abundances there are
approaches that explicitly simulate the stochastic dynamics of single molecules [26].
Neglecting the inherently stochastic nature of molecular interactions is justified when the
contributions of stochastic fluctuations are too small to have a significant influence on the
simulated systems’ behavior. A useful rule of thumb is that the fluctuations around the mean
of a molecular binding state, for instance the number of occupied receptors of a given type,
are typically of the order of the square root of the number of available molecules of that
type. For 100 receptors, the number of occupied receptors would thus stochastically
fluctuate 10% up and down. If the signaling network downstream of the receptors is
sensitive enough, these fluctuations may have biological consequences. For 10,000 receptors
and a high enough concentration of the ligand the receptor signal would fluctuate by only
1%. Depending on the sensitivity of the system, a deterministic simulation – far less time
consuming than a stochastic simulation – may then be in order. It should be noted that
stochastic effects are not only important on the molecular scale. Depending on the
accessibility of their DNA different individual cells of a given phenotype may express
varying numbers of copies of their proteins [27]. These random variations translate into
variations in the responsiveness of the cells toward external signals.

With increasing complexity of diagrams depicting molecular interaction networks [28]
extracting information such as the temporal or causal hierarchy of signaling events becomes
increasingly difficult. Molecular interaction maps with well-defined symbols for specific
types of molecular species, phosphorylation states and interactions aim at establishing a
framework for visualizing the structure of signaling processes [29]. Most modeling tools for
intracellular signaling networks assume well-mixed biochemical systems without taking into
account spatial aspects such as the non-homogeneous intracellular distribution of signaling
components. Mechanisms like membrane recruitment of signaling components and the
interplay between membrane proximal activation and cytosolic deactivation, in addition to
intracellular compartmentalization can make the assumption of a well-mixed homogeneous
cellular biochemistry rather unrealistic [30]. However, due to the greater conceptual and
computational effort required for spatially resolved simulations only few generic modeling
tools are capable of simulating such spatial aspects thereby linking the scales of signaling
networks and sub-cellular distribution of molecular components on the multi-scale map (Fig.
1).

Meier-Schellersheim et al. Page 5

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Some tools simulate intracellular reaction-diffusion with the help of partial differential
equations [6,18] that, in addition to time, include space as a variable. For these approaches,
the intracellular space is divided into volume elements (this process is frequently called
‘discretization’ of the space). Molecular species in different volume elements are
(computationally) treated like different species with the diffusion between volume elements
being equivalent to inter-species transitions. With increasing computer power, it is becoming
feasible to simulate stochastic changes of particle numbers in the volume elements
representing intracellular space through generalizations of Gillespie’s algorithm [24] that
include molecular diffusion events (transitions from one volume element to another) in
addition to chemical reactions [31]. For not too large regions of intracellular space, cellular
membranes or cell-cell contact regions such as neuronal synapses, the stochastic diffusional
trajectories of single molecular particles and their interactions may be simulated [32,33].

Models that focus on cell state transitions and their consequences for inter-cellular
communication – as opposed to details of intracellular biochemistry – are frequently
formulated in terms of finite state automata. Finite state automata models consist of a set of
states and rules specifying how each state reacts to input signals, for instance by switching
from one state to another. Adding a spatial aspect to automata models, cellular automata
consist of grids of ‘cells’ that switch between states based on the states of their neighbor
‘cells’ [34]. Generalizations of the simple structure of cellular automata treat the single
‘cells’ as agents that can carry their states with them as they move on the grid representing
extracellular space. Such agent-based models have been used for computer simulations of
multi-cellular systems such as the adaptive immune system [35–37], excitable tissues [38] or
populations of migrating cells [39], while others aim to provide generic platforms for
studying how tissue-, organ- and organism-level biological phenomena may emerge from
the behavior of simple, locally interacting cells [40]. While cellular automata models treat
the single ‘cells’ in their simulations as entities with fixed shape and size, Potts model
simulations aim at reproducing the shape changes cells undergo due to mechanical contact
with neighbor cells or extracellular matrices [41–43]. The boundary between (frequently
agent-based) simulations of spatially confined multicellular systems and dynamic models of
cell populations characterized mainly by their phenotype is somewhat diffuse. In those
situation in which a model does not have to keep track of single-cellular states, cell
population simulations are more efficiently performed based on differential equations than
based on discrete agents. Differential equation models of cell populations describe how the
change per unit time of the size of each population (that is, the number of cells in the
population) depends on cell proliferation, death, differentiation and on interactions with
other cell types or infectious agents [44–46]. Sometimes, such models include translocation
of cells between spatial compartments – which, in the mathematical description, is very
similar to state transitions. Dynamic differential equation based models have their roots in
general population dynamical modeling. Predator-prey models [47], in particular, have been
used to numerically investigate the influences of negative and positive interactions between
cell populations [48].

The two paradigmatic fields with a long-standing tradition of multi-scale modeling efforts
are heart [49] and brain research [50]. Performing computational studies in these disciplines
typically means facing the challenges of multi-scale models because the functions of heart
and brain can only be understood by investigating the cooperative actions of large numbers
of cells. Fortunately, for the cell types and their modes of communication in heart and brain
tissue, useful models can be formulated and valuable insights gained based on strong
simplifications and abstractions many of which include separation of biochemical from
electrophysiological (and in the case of the heart: mechanical) cellular behavior. Recent
modeling advances in neurobiology have produced models comprising millions of neurons
and much larger numbers of synapses with different classes of functionality [51] and models
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of cardiac dynamics are now capable of reproducing and analyzing many aspects of whole
heart behavior [49,52–54]. Among the challenges that the disciplines of computational
neurology and cardiology will now face is to develop models that use realistic couplings
between intracellular biochemistry and cellular electrophysiology.

4. Developing a multi-scale model of single-cellular signaling and multi-
cellular communication with Simmune

The modeling and simulation software Simmune [6,13] was developed to connect the scale
of interactions between molecular binding sites to the scale of (spatially resolved)
intracellular biochemistry to the scale of whole-cell behavior and beyond, to the scale multi-
cellular systems by combining reaction network simulations with rules (or mechanisms) for
state transitions such as used in automata models. The software performs most of the
bridging between the scales automatically. Based on the user inputs defining molecular
properties such as diffusion coefficients and whether a molecule type represents a trans-
membrane receptor or a membrane anchored adaptor or a freely diffusing cytosolic
component and defining interactions between molecular binding sites and the (enzymatic)
transformations they mediate the software automatically generates the resulting network of
interacting molecular complexes and their kinetic relationships. Defining these properties
does not require writing computer scripts or reaction equations. Instead, icononographic
representations of molecules and molecular complexes are used (see Fig. 2a). After the
building blocks of the extra- and intra-cellular biochemistry have been defined they can be
used to specify the phenotype and the behavior of cells by defining the initial molecular
contents of cells and, importantly, by defining cellular stimulus-response mechanisms that
link sets of conditions (stimuli) to sets of actions (responses) that will be performed by the
cells. A simple stimulus response mechanism could, for instance, link a supra-threshold
ligation of a specific receptor in a user-defined region of the cytoplasmic membrane to
cellular proliferation, death or differentiation. In this way, the scale of (sub-)cellular
biochemistry can be coupled to the scale of whole cell behavior using phenomenological
shortcuts (see section 2). During a simulated experiment, cells can be positioned into
simulated 3D extracellular compartments and can interact through their surface receptors
and can be exposed to extracellular molecular stimuli. The intracellular biochemistry of each
cell can be investigated in detail and can be linked to the history of its movements and of the
stimuli it received through other cells or extracellular molecules (see Fig. 2b).

5. Experiments, multi-scale data, modeling and systems biology
Practically speaking, taking a ‘systems’ approach to a biological problem requires the
integration of data collected over multiple scales in an effort to more comprehensively
describe a biological process. The aim in such research efforts is to establish an
infrastructure for data collection, storage and analysis that provides the basis for
computational modeling of a biological system [55,56]. Such models could in essence be
limited to a single scale, but the potential of systems biology will only be realized with the
development of multi-scale quantitative models capable of predicting the physiological
consequences of interventions at the molecular level.

Almost any biological experiment will produce data that can potentially be incorporated into
a multi-scale model, but developing an appreciation of where various types of data fit into a
multi-scale modeling environment is a valuable exercise. The following descriptions of data
types begins at the finest level of detail describing molecular interactions, working towards
data which provides limited or no molecular details, but more accurately reflects a
physiological function.
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Molecular interactions
Detailed studies of molecular interaction between known components of a biological process
might involve assessment of binding and reaction kinetics (SPR, ligand-receptor
association), structure of both single proteins and complexes, measurement of post-
translation modifications, or accurate quantitation of component concentrations. The number
of components involved in a defined process may be expanded through literature survey
and/or protein-protein interaction screens.

Network structure
Any effort to connect a detailed molecular interaction model to a description of the
contribution of such interactions in a cellular network requires an appreciation that the
significance of an in vitro determination is context dependent. Assuming that co-expression
of the said components in any cell system under study is a given, it is important to establish
that the components can interact in the cell (biochemical fractionation, co-
immunoprecipitation) and that they have overlapping spatial distribution (fluorescence
microscopy). Stimulus dependent regulation of component levels (expression arrays, next-
generation sequencing) is also a key determinant of network structure and dynamics, as is
the activity state of components (associated inhibitors, activity dependent post-translational
modifications).

Network control of cellular function
Expression arrays, proteomic and flow cytometry approaches and quantitative microscopy
provide important data sets for prediction of network function in different cellular contexts.
Testing of such predictions ultimately rests on perturbations that can establish network
sensitivity. Use of small molecules, genetic knockouts, RNA interference and expression of
dominant negatives are currently popular approaches that can identify key nodes in a
network. Epistasis mapping can also be used to establish whether redundancy in key
components confers robustness to the system.

Cellular control of physiological function
Can a model describing network structure and sensitivity nodes established using in vitro or
cell-based assays predict higher order cell-cell interactions and physiological phenomena?
The immune system is especially well-suited to address such questions [57] as it can be
reconstituted with specific cell types harboring specific genetic modifications. Thus it allows
us to ask whether computational models derived from molecular data linked through the
multiple scales described here can explain or predict cellular function and cell-cell
interactions in vivo. The ultimate goal in this regard would be to develop a predictive multi-
scale model of how an organism interacts with an infectious agent, and how the genetics of
both the pathogen and the host affects the outcome of such an infection.

6. Putting the pieces together: integrating models, simulations and data
across scales

Due to the inherent heterogeneity of their components developing successful multi-scale
models is, above all, an exercise in integrating various simulation techniques, various
experimental techniques and data from heterogeneous sources. Projects like cytoscape
(http://www.cytoscape.org) or the geWorkbench of the National Center for the Multiscale
Analysis of Genomic and Cellular Networks (MAGNet)
(http://magnet.c2b2.columbia.edu/index.php) aim at providing frameworks for such
integration efforts.
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On the computational side, model sharing standards such as SBML [58] and CellML [59]
are evolving to accommodate new modeling capabilities (generation of reaction networks
from molecular binding site interactions, spatially resolved computational representations of
intracellular biochemistry etc.). While variations in experimental protocols and
measurements are unavoidable, in the future, increasing emphasis will have to be put on
improving standardization of ontology and data reporting to take us closer to the grand
vision for multi-scale modeling and systems biology – to achieve seamless integration of
models, simulation techniques and the necessary data to build and test the models.
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Figure 1.
A diagrammatic representation of different biological scales and their associated modeling
techniques and experimental approaches. Abbreviations: ODE: ordinary differential
equation; PDE: partial differential equation; IP: immuno-precipitation; SPR: surface
plasmon resonance; Y2H: yeast two-hybrid.
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Figure 2. Screenshots of the user interface of the Simmune modeling and simulation software
(A) Defining molecular properties, interactions and multi-molecular complexes using
iconographic representations for molecules and their binding sites. Binding possibilities
between molecular binding sites can be defined by drawing a line between the sites and then
specifying the interaction rates (for association and dissociation). Based on these user inputs
the software generates the complete network of multi-molecular complexes. The same
iconographic symbols as were used to specify molecular properties can be used to define
(right hand panel) for which complexes (out of all the complexes of the automatically
constructed signaling network) the simulation should report concentration time courses.
(B) Right hand panel: Cells (green and dark-blue disks) are moving in a concentration
gradient of a chemoattractant (indicated by red lines). Receptors on the cells’ surfaces bind
to the chemoattractant and signal into an intracellular chemosensing signaling network. The
biochemical polarization of the responding cells is coupled to a stimulus-response
mechanism for directed movement of the cells along the polarization axis. A second
stimulus response mechanism translates supra-threshold ligation of the receptor into
secretion of a molecular agent into the extracellular milieu (light blue lines). Cells can be
selected for detailed inspection of their intracellular biochemistry by mouse click. The left
hand panel shows this display of concentration time courses in different regions of one
selected cell.
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