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Abstract
Reinforcement learning algorithms provide powerful explanations for simple learning and decision
making behaviors and the functions of their underlying neural substrates. Unfortunately, in real world
situations that involve many stimuli and actions, these algorithms learn pitifully slowly, exposing
their inferiority in comparison to animal and human learning. Here we suggest that one reason for
this discrepancy is that humans and animals take advantage of structure that is inherent in real-world
tasks to simplify the learning problem. We survey an emerging literature on “structure learning”—
using experience to infer the structure of a task—and how this can be of service to reinforcement
learning, with an emphasis on structure in perception and action.
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1. Introduction
A major breakthrough in understanding how animals and humans learn to choose actions in
order to obtain rewards and avoid punishments has been the recent framing of trial and error
learning (conditioning) in the computational terms of reinforcement learning (RL; [1]). RL is
a powerful framework that has been instrumental in describing how the basal ganglia learn to
evaluate different situations (states) in terms of their future expected rewards, and in suggesting
that dopaminergic activity conveys errors in the prediction of reward which are crucial for
optimal learning [2,3]. However, in their most basic form, RL algorithms are extremely limited
when applied to real-world situations: when confronted with more than a handful of states and
possible actions, learning becomes pitifully slow, necessitating thousands of trials to learn what
animals can learn in a mere tens or hundreds.

One reason that animals and humans can rapidly learn new problems is perhaps because they
take advantage of the high degree of structure of natural tasks [4]. This starts with perception:
although our brains are confronted with undifferentiated sensory input, our conscious
perception is highly structured. As Ernst Mach remarked, “We do not see optical images in an
optical space, but we perceive the bodies round about us in their many and sensuous
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qualities” [5]. Helmholtz referred to the perception of such qualities as “unconscious
inference” [6], emphasizing the inductive nature of the process: The brain must go beyond the
available sensory data to make inferences about the hidden structure of the world. Identifying
structure in sensory data allows animals and humans to focus their attention on those objects
and events that are key to obtaining reinforcement, and learn only about these while ignoring
other irrelevant stimuli. Further structure lies in the way actions affect the environment. This
can be utilized to “divide and conquer,” and to decompose tasks to smaller (and more
manageable) components.

To solve the problem of inferring structure from observations, one must determine which of a
(possibly large) number of possible structures is most likely to capture correctly the causal
structure of the environment. Each structure represents a hypothesis about the set of latent
causes that generate observed data (in the case of RL: the latent causes of reinforcement; Box
1). For a given structure, one must also estimate the parameters relating the different variables
in the structure, that is, the model of how it gives rise to observations. The problem of how,
given an assumed structure, the brain can infer the particular latent cause that generated
observations has been extensively studied in cognitive neuroscience and psychology [e.g., 7–
9]. However, the problem of how the relevant causal structure is identified, which we refer to
as structure learning, remains mysterious. The difficulty of the structure learning problem is
highlighted by the fact that in many domains the number of possible structures is essentially
limitless.

Here we review recent experimental and theoretical research that has begun to elucidate how
the brain solves the structure learning problem, and how RL mechanisms can take advantage
of such structure to facilitate learning. We first outline a normative computational approach to
this problem, and then describe research that tests some of these ideas. We focus on latent
structures in two different components of reinforcement learning problems: perception and
action.

2. A normative framework
The canonical description of a decision making problem in RL has four components: 1) a set
of states of the environment, each comprised of different stimuli, 2) a set of actions that can
be taken at these states, 3) a transition function denoting how actions cause the world to
transition from one state to another, and 4) a reward function denoting the immediate reward
that is available at each state. The goal of the agent is to learn a policy of actions at each state,
that will maximize overall rewards. Model-based RL algorithms concentrate on finding an
optimal policy when the transition function and the reward function are known (such as when
playing chess). Model-free RL algorithms do not assume such knowledge, but rather assign
values to different actions at different states through learning (such as when learning to navigate
a maze) [10]. These values represent the sum of future rewards that can be expected if a
particular action is taken at a particular state. Given such values, decision making is easy: of
the available actions in the current state, one should take the action with the highest value.

Importantly, both model-based and model-free RL assume that the set of states and the set of
actions are provided to the learning agent. Unfortunately, in real-world tasks this is often not
the case. Rather, the relevant set of states and actions must also be inferred or learned from
observations, as the space of all possible states and actions is too large to be of practical use.
As an example, when learning to escape predators one must learn the values of running left,
right, straight ahead, hiding in the bushes etc. Clearly, assigning values to scratching one’s
nose or wiggling one’s toes are irrelevant, although these are perfectly valid actions in this
situation. How do animals and humans reduce the space of states and actions to a manageable
(and learnable) subset?
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One approach is grounded in Bayesian probability theory, which specifies how to update
probabilistic beliefs about causal structures in light of new data. Through Bayesian inference
one can use observed data to update an estimate of the probability that each of several possible
structures accurately describes the environment (see Box 1). For example, in a typical classical
conditioning experiment, an animal receives a series of tones and shocks. Rather than
(erroneously) assuming that either tones cause shocks or shocks cause tones, we suggest that
animals attempt to learn about the latent causes that generate both tones and shocks (structures
II and III in Box 1). Intuitively, in this case the true latent cause is the stage of the experiment,
as defined by the experimenter (e.g., acquisition, extinction, etc.). If the animal knew what
stage of the experiment it was in, it could perfectly predict whether it will be shocked or not
following a tone. Moreover, learning about relationships between shocks and tones should be
restricted such that experience is only averaged over trials that can be attributed to the same
latent cause. Thus after 20 acquisition trials in which tones were followed by shocks, and 20
extinction trials in which tones were not followed by shock, the rat should not predict a shock
with 50% probability, but rather predict a shock with (near) certainty if it infers that the current
trial is a training trial, or predict the absence of a shock if the current trial is an extinction trial.

This perspective represents a significant departure from classical learning theory [11], which
imputes to the animal the assumption that sensory variables are directly predictive of
reinforcement. In contrast, we suggest that the animal uses a different internal model in which
sensory variables and reinforcements are both generated by latent variables. Under this
assumption, the task of predicting future reinforcement requires a system for performing
inference over these latent variables [12–15]. We will return in later sections to the question
of what brain areas might be responsible for this inference process.

Although the Bayesian framework provides the optimal solution to the structure learning
problem, in most cases computing this solution is intractable. However, the solution can be
approximated, for example by representing the posterior probability over structures with a set
of samples [16–19]. Another possible approximation is to use policy search methods [20], that
is, to avoid representing the posterior distribution altogether, and instead try to find a good
behavioral policy without knowledge of the environment’s latent structure. As we describe in
the next section, it is possible to interpret an influential family of neural reinforcement learning
models as a form of policy search over not only an action space, but also a state space.

3. Structure in perception
In this section, we focus on two types of perceptual structure that can play a role in
reinforcement learning. The first arises in situations where multiple sensory inputs are coupled
by a common latent cause, as was described above in the case of classical conditioning, and
will be elaborated further below. Recent work has demonstrated that in (instrumental) bandit
tasks in which a latent variable couples rewards, human behavior is consistent with Bayesian
inference over the underlying coupling structure [21] . The second type of structure arises in
situations where only a subset of sensory inputs are causally related to reinforcement, such as
in tasks that require selective attention to particular stimulus dimensions [23,24] or to particular
stimuli in a sequence [25,26].

Continuing our example from the previous section, one perplexing observation (from the
perspective of classical learning theory) is that extinction training (i.e., presenting a tone
without the previously associated shock) does not result in unlearning the original association
between tone and shock. Many studies have shown that returning the animal to the original
acquisition context (aka “renewal”) [27,28], presenting an unpaired shock (“reinstatement”)
[29,30], or simply waiting 48 hours before testing the animal again (“spontaneous recovery”)
[31,32] are all sufficient to return the animal’s original fear response to the tone to nearly pre-
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extinction levels, suggesting that the presentation of the tone still causes the animal to predict
an imminent shock. This observation is rendered less perplexing if one considers the animal’s
conditioned response as reflecting its inferences about the latent structure of the environment
at each stage of the experiment. Specifically, if the animal assumes that the pattern of tones,
shocks and contextual cues during acquisition trials were generated by one latent cause, and
the distinct pattern of tones and conextual cues during extinction trials were generated by a
different latent cause, then returning the animal to the acquisition context will naturally lead
it to infer that the “acquisition” cause is once again active, and hence to predict shocks (and
exhibit fear). Similarly, Bouton has argued that time itself is treated by animals as a contextual
cue [33], providing one explanation for spontaneous recovery of fear as a result of the mere
passage of time.

Recently, Redish et al. [34] presented a novel computational theory of these renewal effects,
synthesizing ideas from reinforcement learning and neural network models. They postulated
a state-splitting mechanism that creates new states when the perceptual statistics alter radically.
In their model, the affinity for state-splitting is modulated by dopamine, such that tonically
negative prediction errors result in a higher probability of creating a new state. This modulatory
process was motivated by the idea that new states should be created when the current set of
states proves inadequate for adaptive behavior. The new set of states is then used as input to a
standard RL algorithm. We have elaborated upon this proposal, showing how it can be
interpreted in terms of the normative structure learning framework proposed in the previous
section [12]. In addition, we suggest that the hippocampus may play a particularly important
role in learning about the structure of these tasks. Pre-training lesions of the hippocampus
eliminate renewal [35], an effect we explain in terms of the animal’s impaired ability to infer
the existence of new latent causes. In essence, according to our theory, hippocampal lesions
compel the animal to attribute all its observations to a single latent cause. Intriguingly, young
rats appear to display the same lack of renewal as hippocampal-lesioned adult rats [36],
suggesting that structure learning is a late-developing process, possibly requiring hippocampal
maturity.

So far we have been dealing with static structure contained in the mosaic of sensory inputs;
however, certain tasks require inferring dynamic structure from a sequence of sensory inputs.
For example, in a sequential alternation task, an animal must alternate its response to the same
sensory cues on each trial. To perform this task correctly, the animal must base its decision not
just on its immediate sensory observations, but on information stored in its memory as well
[37]. More complex tasks may require storing different pieces of information from arbitrarily
far into the past. We interpret this as a structure learning problem: among the past sensory
inputs, which of them is predictive of reward?

The “gating framework” [26,38–40] is one computational solution to this problem, proposing
that dopaminergic prediction error signals control the contents of working memory in prefrontal
cortex. Because the dopamine signal to the basal ganglia and the prefrontal cortex encodes the
discrepancy between predicted and observed rewards [2,3], the prefrontal gating mechanism
will tend to add the current sensory input to working memory when it coincides with unexpected
rewards, and remove the contents of working memory that are unpredictive of reward. This
model is consistent with the finding that prefrontal dopamine dysfunction appears to be
responsible for abberant attentional control in schizophrenia [38,41–43].

Recently, Todd, Niv and Cohen [44] showed how the gating framework can be interpreted as
a policy search algorithm [45]. The state space for this policy has two components: the current
sensory inputs and an internal memory register. The policy maps states onto two different kinds
of actions: motor actions that directly affect the external world, and gating actions that update
the contents of the memory register. RL is then used to find the policy that maximizes reward.

Gershman and Niv Page 4

Curr Opin Neurobiol. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



One appealing property of this proposal is that it allows the animal to learn about reward
structure without representing an explicit internal model of the world, or a posterior distribution
over possible causal structures. Other recent variants of the gating framework have explored
how it can support performance in a variety of complex tasks [37,46], but direct experimental
evidence supporting its central claims remains scant.

4. Structure in actions
Just as animals are provided with a surfeit of perceptual inputs, they must also contend with
an overwhelming bounty of motor effectors. Although such high degree of motor control is in
principle useful, it presents a formidable learning problem, known in machine learning and
engineering as the curse of dimensionality [47]: the number of possible effector combinations
grows exponentially with the number of effectors, and therefore an unrealistic amount of
experience would be needed to accurately estimate and compare the value of each of these
combinations. The curse of dimensionality can be alleviated if one is willing to make certain
assumptions about the structure of the environment or the structure of correct motor strategies
[48,49]. In particular, assuming that the value of an effector combination decomposes into a
sum of effector-specific components drastically reduces the amount of experience required for
accurate value estimates. Structure learning thus takes center-stage in making action evaluation
tractable.

Two recent functional magnetic resonance imaging studies have begun to examine how the
human brain takes advantage of structure in the space of actions. Gershman, Pesaran and Daw
[50] designed a reinforcement learning task in which subjects were asked to make two choices
simultaneously, one with each hand, after which probabilistic reward feedback was presented.
They showed behaviorally that when the rewards decomposed into hand-specific components,
subjects exploited this structure to guide learning. Furthermore, prediction error signals in the
ventral striatum (the main afferent of midbrain dopamine) displayed a corresponding
fractionation, with the prediction error component for each hand correlating preferentially with
the contralateral hemisphere. Value signals in the intraparietal sulcus also displayed
hemispheric fractionation. In a related decision making experiment, Palminteri et al. [51] cued
subjects to make choices either with the left or right hand. They showed that hand-specific
values were preferentially correlated with the contralateral ventral prefrontal cortex, consistent
with the idea that the brain’s RL system exploits structure in the space of actions rather than
learning a single value function over the space of effector combinations.

5. Conclusions
Although computational models of reinforcement learning have greatly enriched our
understanding of learning and decision making in the brain, they have often rested upon naive
assumptions about the representations over which learning operates. In particular, many studies
have assumed that states are represented by simple perceptual primitives, and actions are
represented by monolithic motor responses. If we have learned anything from machine
learning, it is that these assumptions will not “scale up” to real-world problems, and the very
fact that humans and animals are able to learn effectively in highly complex environments
suggests that these assumptions are not psychologically plausible. We have reviewed several
lines of research that begin to paint a portrait of a more sophisticated learning system, based
on interactions between the basal ganglia, prefrontal cortex and hippocampus, that can deal
with the challenges of a complex world by inferring its latent structure.

Box 1: Latent structures as a state space for reinforcement learning
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Graphical models provide a useful framework for describing causal structures. These depict
the statistical relations between latent and observed variables. For instance, Figure 1 shows
three possible relations between tones, shocks and latent variables in a classical conditioning
experiment. In RL, the emphasis is on the possible causes of reinforcement – the goal of
the animal is to infer whether reinforcement will or will not occur, based on the currently
observed variables and past experience. Through Bayesian inference one can use the co-
occurence of observable events to infer which structure is the most plausible, as well as
what are the current settings of different latent variables.

Let us suppose that before observing any data, your belief about the hidden structure S of
your environment is encoded by a prior distribution over possible structures, P(S ) (for
instance an equal probability p = 1/3 over the three structures in Figure 1). This expresses
how likely you think it is that each structure accurately describes the environment a
priori. After observing some sensory data D, the statistically correct way to update this
belief is given by Bayes’ rule:

(1)

P(D|S ) is known as the likelihood and expresses how likely it is that sensory data D was
generated by structure S . The end result, P(S |D), is the posterior distribution over structures
given the observed data. This is the best estimate of the probability that each structure
accurately describes the environment a posteriori. In our case, observing both trials in which
tones and shocks co-occur and trials in which tones occur without shocks mitigates against
structure I. Parsimony and the “automatic Occam’s razor” inherent in Bayesian inference
[52] further tilts the balance towards structure II which assumes fewer latent variables.

In the context of reinforcement learning, an inferred structure (for instance, the one with
the highest probability) can then be used to define a state space—the set of variables that
have a causal relationship to reinforcement, and thus must be learned about and evaluated.
These can include observed sensory variables, as well as unobserved (but inferred)
variables. In this way, RL algorithms can operate over a small subset of variables that are
causally related to reinforcement, and are specified by the inferred structure. In many cases,
this should substantially improve adaptive behavior, since rewards and punishments are
rarely caused by all observable variables and only by these.
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Figure 1.
The graphical models of three possible causal relationships between variables in a classical
conditioning experiment. By convention, observed variables are represented by shaded nodes
and unshaded nodes represent unobserved (latent) variables. Arrows represent probabilistic
dependencies. The parameters of a model, for instance, structure II, define the probability of
each of the nodes taking on a value (e.g., absence or presence of shock) given each setting of
its parent nodes (e.g., when y=acquisition or when y=extinction).
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