1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnue Joyiny vd-HIN

"% NIH Public Access

O
H%

Author Manuscript

Published in final edited form as:
Mol Carcinog. 2008 November ; 47(11): 845-885. doi:10.1002/mc.20440.

Genome wide transcriptional profiling in breast cancer cells
reveals distinct changes in hormone receptor target genes and
chromatin modifying enzymes after proteasome inhibition

H. Karimi Kinyamu113, Jennifer B. Collins?, Sherry F. Grissom?2, Pratibha B. Hebbar?, and
Trevor K. Archerl

1Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National
Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O.
Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709

2Microarray Group, National Institute of Environmental Health Sciences, National Institutes of
Health, 111 Alexander Drive, P.O. Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709

Abstract

Steroid hormone receptors, like glucocorticoid (GR) and estrogen receptors (ER), are master
regulators of genes that control many biological processes implicated in health and disease. Gene
expression is dependent on receptor levels which are tightly regulated by the ubiquitin-proteasome
system. Previous studies have shown that proteasome inhibition increases GR, but decreases ER-
mediated gene expression. At the gene expression level this divergent role of the proteasome in
receptor-dependent transcriptional regulation is not well understood. We have used a genomic
approach to examine the impact of proteasome activity on GR and ER-mediated gene expression in
MCEF-7 breast cancer cells treated with dexamethasone (DEX) or 17p-estradiol (E2), the proteasome
inhibitor MG132 (MG) or MG132 and either hormone (MD or ME2) for 24h. Transcript profiling
reveals that inhibiting proteasome activity modulates gene expression by GR and ER in a similar
manner in that several GR and ER target genes are up-regulated and down-regulated after proteasome
inhibition. In addition, proteasome inhibition modulates receptor-dependent genes involved in the
etiology of a number of human pathological states, including multiple myeloma, leukemia, breast/
prostate cancer, HIV/AIDS and neurodegenerative disorders. Importantly, our analysis reveals that
a number of transcripts encoding histone and DNA modifying enzymes, prominently histone/DNA
methyltransferases and demethylases, are altered after proteasome inhibition. As proteasome
inhibitors are currently in clinical trials as therapy for multiple myeloma, HIV/AIDs and leukemia,
the possibility that some of the target molecules are hormone regulated and by chromatin modifying
enzymes is intriguing in this era of epigenetic therapy.
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Introduction

Glucorticoids and estrogens play a crucial role in regulating transcription of many genes that
are important regulators of diverse physiological processes, including development,
reproduction, bone formation/resorption, energy metabolism, cholesterol mobilization and
immunity. The physiological actions of glucocorticoids and estrogens are mediated primarily
through the glucocorticoid receptor (GR) and estrogen receptor (ER). Glucocorticoid and
estrogen receptors are ligand-dependent transcription factors and members of the nuclear
hormone receptor super family [1]. Upon hormone binding these receptors localize in the
nucleus where they associate with specific hormone response elements within promoter
sequences embedded in chromatin [2]. To activate or repress target genes, steroid hormone
receptors recruit various co-regulator complexes, including chromatin remodeling complexes
to modify local chromatin structure [3,4]. Receptor and coregulator levels play key roles in
controlling appropriate physiological outcomes in specific target tissues. Similar to other
steroid hormone receptors, GR and ER are tightly regulated by the ubiquitin proteasome system
(UPS) [reviewed in [5,6]. Additionally, levels of nuclear hormone receptor co-regulators are
also regulated by the UPS [7-9]. Briefly, the UPS plays an important role in a variety of cellular
functions primarily via its proteolytic activity, although recent studies implicate the
components of the pathway in direct regulation of specific transcriptional processes [reviewed
in [10,11]. The 26S proteasome is the principal biochemical machinary that degrades short
lived cellular proteins and rids the cell of damaged and misfolded polypeptides, in addition to
providing basic housekeeping functions [12]. The 26S proteasome is a multi-enzyme complex
made of a 20S catalytic ‘core’, capped by the 19S regulatory complex [13,14]. The 19S complex
is composed of two sub-complexes: the lid and the base composed of six AAA-type ATPases
and two non-ATPase subunits. Proteolysis of a target protein by the 26S proteasome, involves
two intricate steps [13,14]. First, the protein is tagged with ubiquitin (Ub), a conserved 76
amino acid polypeptide, or, more precisely, with a poly-Ub chain of defined length and
topology to generate the polyubiquitin degradation signal [14]. Secondly, the tagged protein
is degraded by the 26S proteasome complex. Conjugation of ubiquitin to the protein substrate
is mediated by a multi-enzyme cascade consisting of an Ub-activating enzyme (E1), an Ub-
conjugating enzyme (E2), and an Ub ligase (E3) [15].

Control of cellular protein levels by the ubiquitin—proteasome system is essential for various
cellular functions and ultimately dysregulation of the system is associated with many
pathological conditions [16,17]. Although the role of the ubiquitin-proteasome system in
regulating many transcription factors, such as p53, is well established, the system has only
recently been linked to steroid hormone receptor function. There is a general agreement that
the ubiquitin-proteasome system and particularly the proteolytic activity of the proteasome is
critical for promoting the exchange of transcriptional factors on chromatin and possibly
facilitating multiple rounds of transcription initiation, hence controlling receptor mediated gene
expression [6,10,11,18,19. In addition, a number of ubiquitin proteasome pathway enzymes,
such as E6 associated protein (E6-AP) and the marine double minute-2 (Mdm2), have been
identified as steroid receptor co-activator [reviewed by {Kinyamu, 2005 #388]. Furthermore,
specific components of the proteasome, such as the 19S subunit, thyroid interacting protein 1
(TRIP1/Sugl) and the 20S beta subunit low molecular mass polypeptide 2 (LMP2) are
implicated in receptor-mediated transcriptional regulation [20,21]. Consequently, receptor
turnover is tightly linked to receptor-mediated transcription.

Two main observations led us to the current study. First, our laboratory and others showed that
proteasome inhibitors, such as MG132, increase GR mediated transcriptional activation of the
mouse mammary tumor virus promoter (MMTYV) in breast cancer cells [22,23]. Secondly, other
groups showed that proteasome inhibitors were inhibitory to nuclear receptor function
particularly that of the ER [19,24]. These findings suggested that proteasome activity
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differentially modulates gene transcription in a receptor dependent manner. This divergentrole
of the proteasome in receptor-dependent transcriptional regulation is not well understood.
Since previous experiments suggesting a requirement for proteasome activity in ER, but not
GR were conducted using specific model genes, we used microarray analysis to test the
requirement for proteasome activity in the regulation of global gene expression mediated by
these two receptors. Data from the global gene expression analysis show that inhibiting
proteasome activity modulates gene expression mediated by GR and ER in a similar manner.
Specifically, the requirement for proteasome activity is gene, but not receptor specific.
Proteasome activity modulates receptor dependent genes involved in the etiology of a number
of diseases, including leukemia, HIVV/AIDS and neurodegenerative disorders. Intriguingly,
proteasome inhibition modulates a subset of transcripts that encode factors that regulate RNA
polymerase Il and DNA/histone modifying enzymes. Our study provides a snapshot of global
gene expression after proteasome inhibition in breast cancer cells treated with either
dexamethasone or 17B-estradiol. These data provide a useful tool particularly since proteasome
inhibitors are currently in clinical trials as potential therapeutics for various diseases.

Materials and Methods

Cell Culture

The generation of MCF-7 cells stably expressing the GR and endogenous ERa has been
described previously [25]. Briefly, parental MCF-7 cells (American Type Culture Collection,
Manassas, Va.) were co-transfected with pGR-NEO and a neomycin resistance plasmid, pRSV-
NEO, using the calcium phosphate precipitation method (GIBCO-BRL Life Technologies,
Grand Island, NY) [26]. The resulting cell line which expresses both GR and ER shows similar
gene expression profiles in response tol17p-estradiol compared to MCF-7 from other
laboratories [27-29]. Similar to ER, the GR in MCF-7 cells activates known exogenous and
endogenous GR target genes [25,30,31].

For the current study, cells were grown in a humidified incubator at 37°C with 5% CO, in
MEM supplemented with 2 mM glutamine, 100 pg/mL penicillin/streptomycin, 10 mM
HEPES, 10% FBS and 300 ug/mL G418. For glucocorticoid treatment, cells were seeded
overnight in phenol red-free MEM supplemented with 5% charcoal-stripped calf serum and 2
mM glutamate. Cells treated with 17p-estradiol were cultured in MEM media with 5% charcoal
stripped serum for 3 days and then seeded for experiments as described for microarray analysis.

Antibodies and Western Blotting

After washing twice with PBS, cells were pelleted by centrifugation. For whole cell extracts,
cells were lysed as previously described [25]. Twenty to 50 ug of protein was resolved on 4-12
% SDS-PAGE and transferred to a PVDF membrane (Amersham). Proteins were
immunoblotted using the following antibodies: anti-GR-BUGR2 (Dr. B. Gametchu, Medical
College of Wisconsin, Milwaukee, WI), ERa-H-184 Santa Cruz Biotechnology, p-Actin
(Sigma), GAPDH (Research Diagnostics Inc).

Gene Expression Profiling and Analysis

Gene expression analysis was performed using Agilent Humanl1A array (pattern id = 01152)
(Agilent Technologies, Palo Alto, CA). Total RNA samples were prepared from two biological
replicates of MCF-7 cells treated with vehicle, 1 nM dexamethasone or 10 nM 17p-estradiol
(24 hr), 1 mM MG132 (24 hr) or MG132 and dexamethasone or 17p-estradiol (24 hr) using
RNeasy Midi Kits (Invitrogen). Total RNA was labeled with Cyanine (Cy) 3- or Cy5-dCTP
(Amersham, Piscataway, NJ) using the Agilent Fluorescent Direct Label Kit protocol with a
slight modification in the starting amount (10 ug was used rather than 20 pg). Each RNA pair
(vehicle and either dexamethasone, 17p-estradiol, MG132, MG132 and dexamethasone, or
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17p-estradiol and dexamethasone) was mixed and hybridized to an array at two separate times
employing fluor reversal. Hybridizations were performed for 17 hours in a rotating
hybridization oven using the Agilent 60-mer oligo microarray processing protocol. Slides were
washed as indicated in this protocol and then scanned with an Agilent Scanner.

Data were retrieved with the Agilent Feature Extraction software (v7.1), using defaults for all
parameters, except the Ratio terms. To account for the use of the Direct Label protocol, error
terms were changed as suggested by Agilent as follows: Cy5 multiplicative error = 0.15, Cy3
multiplicative error = 0.25, Cy5 additive error = 20, Cy3 additive error = 20. The Agilent
Feature Extraction Software adjusted the data to account for additive and multiplicative noise
in the array data acquisition process. The resulting ratio intensity value for each gene feature
on the array was averaged across technical and biological replicates as follows: the log base
10 ratio values from all four arrays for each comparison [two biological replicates, each with
a fluor reversal (technical replicate)] were averaged in the Rosetta Resolver® system (Rosetta
Biosoftware, Kirkland, WA) using the error-weighted approach [32]. Briefly, letting x(i)
represent the ith log base 10 ratio value for a gene and oy(i) the measurement error, the error-
weighted average for a gene feature is

Tw(x(i)
Y:W, where w(i):ﬁ, i=1:N, and N is the number of replicates.

A p-value for each gene feature is computed based upon the reproducibility of the expression
measurements across the four arrays (biological and technical replicates). Gene features with
p < 0.001 for a given comparison were considered significantly and differentially expressed.

Validation of microarray results by real-time RT-PCR

The microarray data trends were verified by examining a subset of representative classes of
genes after treatment with hormone and proteasome inhibitor for 24 hr. To establish whether
the genes were direct targets of the hormone or proteasome inhibitor, expression of select genes
was monitored after treating the cells for 2 hr. Because MG132 is known to inhibit targets other
than the 26S proteasome, expression of a subset of genes was also determined after a similar
treatment with the highly specific proteasome inhibitor epoxomicin. After removing genomic
DNA, total RNA (1-2 pg) from cells treated with the vehicle, hormone or the proteasome
inhibitor (MG132 or epoxomicin) in the presence or absence of hormone were reverse
transcribed using oligo-dt as described in the Superscript Kit (Invitrogen Corp.). The cDNA
was treated with ribonuclease H (Invitrogen Corp.) to remove RNA:DNA hybrids. The cDNA
was diluted 5-fold with DNAse-free water and used for real-time PCR analysis.

Real-Time PCR Analysis

cDNA levels were detected using the STRATAGENE, Mx3000P™ real time PCR system and
SYBR Green | dye (STRATAGENE, Cedar Creek, TX). Primers were created using Applied
Biosystems Primer Express Software version 2.0. For cDNA amplification, 2-5 uL of cDNA
was combined with SYBR Green PCR mix as described by the manufacturer (STRATAGENE,
Cedar Creek, TX). GAPDH mRNA expression was used as the endogenous control for
normalization of initial RNA levels. Data is expressed as relative expression.

Chromosome Map

Genes that were found to be significant in Rosetta Resolver (p < 0.001) following treatment
by MG132, MG132 + DEX, and MG132 + E2 were displayed in the Physical Position View
for the Agilent Human 1A array (011521) in Agilent's GeneSpring GX software (version 7.3.1).
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Microarray data accession number

The microarray data discussed in this publication have been deposited in NCBI's Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through
GEO Series accession nhumber GSE8383" [33].

Results

Global transcriptional changes in glucocorticoid and estrogen receptor targets after
proteasome inhibition

It is well known that cellular levels of steroid hormone receptors including those of the
glucocorticoid (GR) and estrogen receptors (ER) are tightly regulated by proteosomal
degradation. Consequently proteasome inhibition by widely used proteasome inhibitors such
as MG132, block ligand dependent degradation and stabilize receptor levels (Figure 1A and
2A). However, previous studies using model reporter gene assays have shown that proteasome
inhibition increased GR-mediated gene transcription, whereas ER-mediated gene transcription
is decreased. Since receptor levels, should correlate with gene expression, the divergent effect
of proteasome inhibition on gene expression mediated by the two receptors is not well
understood. To examine the global role of proteasome activity, we turned to transcript profiling
to provide genome wide view of gene expression in response to proteasome inhibitor and
hormone in MCF-7 cells. We compared transcripts from RNA treated with vehicle (Con) vs.
dexamethasone (D or DEX) or 17B-estradiol (E2) vs. those treated with proteasome inhibitor
MG132 (MG) vs. MG132 plus dexamethasone (MD) or MG132 plus 17p-estradiol (ME2).
Those genes differentially expressed were clustered and displayed in dendograms (Figure 1B
and 2B). In all figures MD designates treatment with MG132 and dexamethasone (D), whereas
ME?2 designates treatment with MG132 and 17p-estradiol (E2).

Proteasome inhibition has a synergistic and antagonistic effect on
glucocorticoid-induced gene expression—In the first set of analysis we concentrated
on genes affected by treatment with DEX alone or with DEX and MG. Clustering analysis
revealed 4 broad transcript categories. The first category represents genes affected by
glucocorticoid treatment only. Of the over 20,000 genes on the Agilent human 1a array, 268
genes were up-regulated and 118 down-regulated when cells were treated with DEX alone
(Figure 1B and C). In the second category, 209 genes (131 + 78) were similarly affected by
DEX and MG treatment (Figure 1C); of these 131 genes were up-regulated and 78 were down-
regulated. In a third category, although 48 transcripts were affected in common by DEX and
MG, the effect of the treatment on a specific gene was antagonistic; e.g., treatment with MG
blocked DEX induction or repression of the gene (Figure 1C). A fourth category consisting of
atotal of 2945 genes that were affected when cells were treated with MG and DEX in a hormone
independent manner, 1290 and 1655 gene transcripts were increased and decreased,
respectively. We further explored the transcripts in the 3 categories where the hormone
response is affected by proteasome inhibition. Genes from the fourth category are primarily
affected by proteasome inhibition and are discussed in section 3. It is important to note that
transcript profiling resulting in microarray analysis, as carried out in this study, only deciphers
‘relative’ changes among genes and not genome wide gene expression. While validation of all
the genes identified was not practical, we chose a representative sample that was subsequently
analyzed by quantitative RT-PCR to verify the microarray trends.

Among the genes in the first category affected by DEX alone were bona fide GR targets. These
include 11-B-hydroxysteroid dehydrogenase type 2 (HSD11B2), msh homeobox homolog 2
(MSX2), dual specificity phosphatase 6 (DUSP6) and sin 3A associated protein (SAP 30)
(Figure 1D and Table 1-1). Some genes known to be repressed by GR like neurturin (NRTN),
adhesion molecule with Ig like domain 1 (Amigol), heterogeneous nuclear ribonucleoprotein
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A2/B1 (HNRPA2B1) and melanoma antigen family D4 (MAGEDA4) were down-regulated by
DEX alone (Figure 1D, Table 1-1). HSD11p2 is a well established target of GR mediated
activation. As predicted from the microarray analysis, treatment with DEX (D) for 24 hr
increases HSD11P2 expression over 100-fold (Figure 1D, 24hr), whereas treatment with
MG132 alone (MG) or with dexamethasone (MD) had no significant effect HSD11p2
expression compared to control. Furthermore, the HSD112 mRNA expression increased (6-
fold) within 2 hr after dexamethasone treatment, indicating direct regulation of this gene by
the GR (Figure 1D, 2hr). In a similar manner, treatment with dexamethasone decreased NTRN
expression by 90% compared to control as predicted from microarray analysis (Figure 1D,
24hr). Compared to DEX treatment, treatment with proteasome inhibitor did not significantly
affect NTRN expression, suggesting DEX-dependent repression of this gene at 24hr. This
repression was not detected at an earlier time point in which DEX treatment increased NTRN
expression 2-fold (Figure 1D, 2hr). Notably, treatment with proteasome inhibitor does not
significantly changed NTRN expression compared to DEX.

The second category of transcripts was synergistically altered by MG and DEX (Figure 1E,
Table 1-2). As demonstrated previously for model genes in vitro, proteasome inhibition
enhanced glucocorticoid-mediated gene expression [22,23]. Similar to the effect observed with
MMTV-LUC and CAT reporter gene, proteasome inhibition enhanced expression of some well
characterized GR target genes [34-38]. These include S100 calcium binding protein (S100P),
regulator of G protein signaling (RGS2) also known as GOS8, RNA Pol |1 elongation factor 2
(ELL2) and dual specificity phosphatase 1 (DUSP1) (Figure 1E, Table 1-2). Among the genes
in this category were genes not previously shown to be glucocorticoid inducible, such as alpha
B crystallin (CRYAB) and N-Myc downstream regulated gene 1 (NDRG1) which are mildly
activated by DEX, but highly up-regulated after proteasome inhibition. Other genes in this
category include collagen type VI, alpha 1 (COL6AL1), musculoaponeurotic fibrosarcoma
oncogene B (MAFB) and annexin 1 (ANXA1) (Figure 1E, Table 1-2). For this class of genes
we validated expression of S100 P after treatment with DEX (D) or inhibitor and DEX (MG,
MD). At 24 hr, treatment with DEX (D) increased S100P expression by 30-fold, MG alone
was not significantly different from control. Treatment with MG and DEX (MD)
synergistically increased S100P expression 120-fold, an effect significantly larger than the sum
of the individual effect of hormone or inhibitor alone. (Figure 1E-24hr). A similar effect is
observed when the cells were treated with DEX or MG for 2 hrs. DEX induced S100P
expression 3-fold at early time points and this effect was potentiated by proteasome inhibition
(6-fold) (Figure 1E- 2hr).

Conversely, proteasome inhibition facilitates glucocorticoid-mediated repression as seen for
the GR target adhesion molecule with an Ig-like domain 2 (AMIGO2), 2-5-oligoadenylate
synthetase 2 (OAS2), interferon-responsive protein 28 or receptor transporting protein 4
(RTP4/IFRG28), androgen-induced basic leucine zipper (AIBZIP/CREB3L4), neuronal cell
adhesion molecule (NCAM2) and other transcripts, such as fasciculation and elongation
protein zeta 1 (FEZ1) and hedgehog acyltransferase (HHAT) and transforming growth factor
beta 3 (TGFB3) (Figure 1E, Table 1-2). Expression of TGFB3 was validated as an example of
those genes repressed. At 24 hr, treatment with DEX (D) decreased TGFB3 expression by 50
percent. Treatment with MG and DEX (MD) synergistically decreased TFGB3 expression by
over 90%, an effect significantly larger than the sum of the individual effect of hormone or
inhibitor alone. (Figure 1E-24hr). Significant TGFB3 repression did not occur at shorter time
points under these experimental conditions, although a trend to decrease was observed (Figure
1E- 2hr).

For the third category, treatment with either proteasome inhibitor or hormone had an

antagonistic effect on gene expression. An antagonistic response was viewed as one where the
inhibitor blocks hormone induction or repression of a transcript and vise versa. This third
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category of genes was different from that described in Figure 1D (Table 1-1). In the first
category, the hormone exerts its main effect on gene expression, whereas in the third category
the hormone or proteasome inhibitor have an independent effect on gene expression, which is
reversed in the opposite manner by either agent; i.e. antagonism. Proteasome inhibition
attenuates DEX induction of a number of bona fide GR targets including, galanin (GAL),
baculoviral IAP repeat-containing 3 (BIRC3) and B-Cell CLL/lymphoma 6 (BCL6) (Figure
1F, Table 1-3). For some genes DEX-induced changes in the levels of certain transcripts, but
these transcripts were completely repressed by proteasome inhibition. These included
transcripts for calcium binding protein A8 (5100A8), prolactin inducible protein (PIP), TAR
(HIV) RNA binding protein (TARBP1) and transcripts encoding interferon genes IFIH1 and
IFIT2 (Figure 1F, Table 1-3). The results from the microarray analysis were confirmed by
RTPCR using GAL and IFIT2 as a representative gene for this class (Figure 1F). GAL
expression increased 26-fold after treatment with DEX (D) for 24 hr, and this effect was
reduced 7-fold by MG, which was very similar to microarray analysis (Table 1-3). A short time
treatment with DEX induced GAL expression only 2-fold, and proteasome inhibition did not
affect this induction, suggesting an indirect effect of inhibitor observed at 24 hr. A second
example of antagonistic response was detected when DEX-mediated repression was abrogated
by proteasome inhibition. Treatment with dexamethasone reduced IFIT2 expression by 85%,
whereas treatment with MG alone increased IFIT2 expression 4-fold compared to control
(Figure 1F). Co-treatment with dexamethasone and inhibitor reversed DEX-mediated
repression by 8-fold as predicted by microarray analysis (Table 1-3). A short treatment time
with DEX decreased IFIT2 expression by 60% with a smaller but consistent effect of the
proteasome inhibitor compared to 24 hr treatment (Figure 1F-2hr).

Because MG132 has targets other than the 26S proteasome, we validated a select number of
gene targets after treatment with a second proteasome inhibitor, epoxomicin. Gene expression
profiles for HSD11B2, S100P and GAL following epoxomicin exposure were similar to those
observed after MG132 treatment (Figure S1 A-C).

Proteasome inhibition has a synergistic and antagonistic effect on estrogen response

Previous studies suggested that proteasome inhibition repressed ER-mediated gene expression
[19,24]. We therefore examined the effect of proteasome inhibition on estrogen response
(Figure 2B, Table 2-1-4). We compared transcripts treated with E2 to those from cells treated
with MG alone or MG plus E2. Genes were classified into 4 categories as carried out for the
glucocorticoid response. The first category of genes was specifically altered by E2 treatment;
272 transcripts were up-regulated and 126 down-regulated, respectively (Figure 2C). Among
those transcripts up-regulated by E2 were bona fide ER targets including early growth response
3 (EGR3), retinoblastoma binding protein 8 (RBBP8) and low density lipoprotein receptor
related 8 (LRP8) (Figure 2D, Table 2-1). Transcripts repressed included grainyhead like protein
1 (GRHL1) or leader-binding protein 32 (LBP-32), transcripts encoding histone H2A (H2AFA)
and H2B (H2BFQ) (Figure 2 D, Table 2-1). EGR3 is a well established target of ER. As
predicted from the microarray analysis, treatment with E2 for 24 hr increased EGR3 expression
65-fold (Figure 2 D, 24hr), whereas treatment with MG132 alone (MG) led to a significant
increase in expression compared to control. However, co-administration of drug and hormone
(ME2) resulted in a smaller increase than seen with E2 alone. EGR3 mRNA expression
increased (52-fold) within 2 hr after E2 and the inhibitor had no significant effect alone (MG)
or on the ER-mediated induction (ME2), confirming EGR3 is primarily an ER target gene
(Figure 2D, 2hr), In contrast to EGR3, LBP-32 was repressed (70%) by E2 at both time points
(Figure 2D). Treatment with MG132 alone or with MG132 and E2 did not lead to a significant
change in expression compared to control or E2.
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The second category of genes were those synergistically up-regulated (66) or down-regulated
(122) by treatment with MG and E2 (Figure 2E, Table 2-2). Among ER targets up-regulated
after E2 and MG treatment was a GTP binding protein over expressed in skeletal muscle
(GEM), tubulin beta 2 (TUBB2A), DEAD (Asp-Glu-Ala-Asp) box polypeptide 10 (DDX10)
and cofilin 2 (CFL2). Proteasome inhibition also synergistically repressed ER targets including
the well characterized ER target, thioredoxin interacting protein (TXNIP), calcium/calmodulin
dependent kinase 1l inhibitor 1 (CANK2N1), SRY (sex determining region Y) box 13 (Sox
13), neuronal cell adhesion molecule (NCAM2), cadherin 10 type 2 (CDH10) CREB3L4/
AIBZIP, AMIGO2 and S100 A8 (Figure 2E, Table 2-2). For this class of genes DDX10 and
AMIGO2 expression were validated as representative genes. Treatment with E2 or inhibitor
MG and E2 (MG, ME2) for 24 hr increased DDX10 expression by 2-fold; MG alone was only
6-fold. Treatment with MG and E2 (ME2) increases DDX10 expression 7.5-fold (Figure
2E-24hr). The synergistic action of proteasome inhibition of E2-mediated increase in DDX10
expression was more evident at 2 hr, whereas treatment with E2 induced DDX10 (13-fold) and
treatment with MG and E2 led to a 26-fold induction (Figure 2E-2hr). As an additional positive
control, we observed that proteasome inhibition increased E2 induction of pS2, a known ER
target gene (Figure S2 A-B).

In the third category, as shown for the glucocorticoid response, proteasome inhibition
antagonized the effects of estrogen response. Proteasome inhibition abrogated the effect of E2
on amphiregulin (AREG), epiregulin (EREG) and retinol binding protein 7 (RBP7) (Figure
2F, Table 2-3). A classic example of the previously reported repression of proteasome
inhibition on ER-mediated regulation is the effect on the progesterone receptor (PGR), which
is increased by E2, but repressed by MG (validation data not shown). Additionally, other ER
targets including stromal derived factor 1 (SDF-1/CXCL12), collagen, type XII, alpha 1
(COL12A1), minichromosome maintenance deficient 6 (MCM6), DNA (cytosine-5)
methyltransferase 1 (DNMTL1) are induced by E2, but significantly repressed by MG (Figure
2F, Table 2-3). Other targets were repressed by E2, but up-regulated by proteasome inhibition
(Figure 2F, Table 2-3). These included the lipocalin-2 (LCN2), a putative in vivo estrogen
target gene and paracrine factor that mediates the growth regulatory effects of estrogen in
normal breast epithelium. Additionally, tribbles homolog 3 (TRIB3), a negative regulator of
NF-kappaB, interferon—induced protein with tetrapeptide repeats 2 (IFIT2) and sel-1-
suppressor of lin-12 like (SEL1L), which plays a role in pancreatic carcinoma and breast cancer
(Figure 2F, Table 2-3). There were also transcripts repressed by E2, but the repression
dampened by proteasome inhibition, for example the immunoglobin-like domain counter
receptor 1 (ILDR1) (Figure 2F, Table 2-3). Expression of SDF-1 was validated as example a
gene that was activated by E2, but repressed by inhibitor (Figure 2F). SDF-1 expression
increased 12-fold after treatment with E2 for 24 hr, and this effect is inhibited 3-fold by MG,
very similar to what was observed in the microarray analysis (Figure 2F-24 hr, Table 2-3).
SDF-1 is a direct target of ER and a short treatment time with E2 induces SDF-1 expression
8-fold. The impact of proteasome inhibition is observed at 24 hr suggesting an indirect effect
of the inhibitor (Figure 2F-2 hr). In another characteristic antagonism, treatment with E2 for
24 hr decreased expression 30%, whereas treatment with MG alone increased IFIT2 expression
4-fold compared to control (Figure 1F). Co-treatment with E2 and inhibitor reversed E2-
mediated repression, thereby increasing IFT2 expression by 7-fold, which was similar to that
observed in microarray analysis (Table 2-3). A short treatment time with E2 induced IFIT2
repression by 30% with a smaller, but consistent antagonistic effect of the proteasome inhibitor
(Figure 2F-2 hr). Interestingly, the effect of proteasome inhibition on ER-mediated induction
and repression of SDF-1 and IFIT2, respectively, was very similar to that observed for the GR
targets GAL and IFIT2 (Figure 1F). Furthermore IFIT2 is a target of both hormones and
proteasome inhibition has similar inhibition effect on DEX and E2 mediated repression (Figure
1F and 2F). This observation solidifies the idea that the two receptors behave in a similar
manner when the proteasome is inhibited. We further show that proteasome inhibition by
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epoxomicin on ER-dependent gene expression is similar to that observed with MG132
treatment (Figure S3, A-C).

Specific effect of proteasome inhibitor on gene expression—The fourth category
of genes represents those primarily affected by proteasome inhibition (MG). The transcripts
activated in this class presumably do not require proteasome activity, while it may be required
for the repressed transcripts. Some genes in this category were not significantly changed by
either hormone acting alone, but significant changes in gene expression were observed after
treatment with proteasome inhibitor and hormone. To pinpoint transcripts only affected by
MG, we compared transcripts from MG alone with those affected by MG plus DEX or MG
plus E2 (Figure 3A). A total of 583 genes were altered by MG alone. Of these genes, 294 were
up-regulated and 289 down-regulated. Among the specific genes increased by proteasome
inhibitor exclusively were replication factor C1 (activator 1) (RFC1), 5-azacystidine induced
gene 2 (AZI2), proteasome subunits PSMB1 and PSMD12, CD44, DNA damage inducible
beta GADD45B, p300/CBP associated factor (PCAF), SET and MYD domain containing
(SMYD1), and TAF7 RNA polymerase Il TATA box binding protein (TAF7). A number of
transcripts were repressed by proteasome inhibition, including breast cancer 1 (BRCAL),
jumoniji containing 2D (JMJD2D) and jumonji AT rich interactive domain 2 (JARID2) (Figure
3B, Table 3-1).

A total of 913 transcripts were changed by MG and DEX, 487 up-regulated and 426 down-
regulated. Key transcripts regulated in this manner are heat shock protein 70 (HSPA®),
Kruppel-like factor 6 (KLF6) also known as core promoter element binding protein (COPEB),
activating transcription factor 3 (ATF3), growth differentiation factor 15 (GDF15) also known
as placental bone morphogenetic protein (PLAB) or nonsteroidal anti-inflammatory drug-
activated gene (NAG-1), myeloid/lympoid or mixed lineage leukemia translocation 11
(AF1Q), GTP binding protein or gene expressed in mitogen stimulated T cells (GEM), and
DNA damage inducible transcript 1 (GADDA45A) (Figure 3C, Table 3-2). Conversely, some
transcripts were repressed by MG plus DEX, including chloride intracellular channel 3
(CLIC3), lin-28 homolog of C elegans (lin 28), interferon induced transmembrane protein 2
(IFITM2), SOX 13, nuclear receptor type 1 (COUPTF11), S100 calcium binding protein A4
(S100A4) and transcription elongation factor A (SI1) 2 and 3 (TCEAZ2 and 3). The microarray
analyses were confirmed by RT-PCR of a representative genes, HSPAG6 and S100A4 (Figure
3C). Treatment with proteasome inhibitor alone induced HSPAG gene expression at both 2 hr
and 24 hr, indicating HSPAG is a direct target of proteasome inhibitor. Conversely, treatment
with proteasome inhibitor results in the repression of SI00A4 transcript at 24 hr, but not at 2
hr suggesting the effect of inhibitor on SLI00A4 gene is mediated in the long term (Figure 3C).
To verify the effect of the inhibitor we demonstrated that treatment with epoxomicin increased
expression of HSPAG6 (Figure S1-D).

A total of 618 genes were altered by MG and E2, 290 were up-regulated and 328 down-
regulated. The key transcripts activated by MG and E2 were HSPA6, KLF6/COPEB, ATF3,
GDF15, AF1Q and GADDA45A. Some transcripts were repressed by MG and E2, including
CLICS, lin 28, IFITMZ2, SOX 13, NR2F1 and 2, S100A4, TCEA2 and 3, zinc finger protein
467 (ZNF467), solute carrier family 40 (SLC40AL1) and prolactin induced protein (PIP). Most
these genes are also changed by MG and DEX; however, a number were specifically changed
after treating with MG plus E2, including dehydrogenase/reductase (SDR family) member 10
(DHRS10), DNA damage inducible transcript 3 (DDIT3), DEAD (Asp-Glu-Ala-Asp) box
polypeptide 43 (DDX43) and interleukin 8 (IL8) (Figure 3 D, Table 3-3). The microarray
analyses were confirmed by RT-PCR of representative genes, ATF3 and Lin 28 (Figure 3D).
Treatment with proteasome inhibitor alone induces ATF3 gene expression at both time points,
indicating ATF3 is a direct target of proteasome inhibitor, but not E2. Treatment with
proteasome inhibitor leads to decreased expression of Lin28 at 2 hr and 24 hr (Figure 3D). E2
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alone, independent of inhibitor, led to a diminution in Lin 28 after 2 hr treatment (a result to
be further investigated). For each category of genes the effect of the proteasome inhibitor on
gene expression was verified by gene expression after treating with epoxomicin (Figure S3-
D).

Approximately 1700 genes were common between MG plus DEX and MG plus E2, 699
transcripts up-regulated and 988 repressed, whereas 10 genes were differentially expressed.
Common activated genes include CRYAB, NDRG1, GADD45A, DUSP1, KLF6/COPEB,
HSPAG6, GEM, TUBB2A, ATF3 and AF1Q; and examples of genes repressed include S100A8,
COL12A1, CLIC3, AMIGO2, NR2F1, NCAM2, cAMP responsive element binding protein
3-like 4 (CREB3L4/AIBZIP), PIP, CXXC finger 4 (CXXC4/IDAX), SOX13and lin 28 (Figure
3E, Table 3-4). The microarray analyses were confirmed by RT-PCR of a representative gene,
CRYAB (Figure 3E). Treatment with proteasome inhibitor alone induces CRYAB gene
expression at both 2 hr and 24 hr, indicating CRYAB is a direct target of proteasome inhibitor,
but not DEX; however, treatment with DEX and MG132 highly induced CRYAB (Figure 3-
MD). In contrast to DEX, treatment with E2 and inhibitor did not affect CRY AB expression
(Figure 3E- ME2). In addition, prolactin-induced protein (another gene in this class) is
repressed by inhibitor alone and with hormone (Figure 3E-PIP). The observation that CRYAB
expression increases after treatment with proteasome inhibitor was confirmed after treatment
with another inhibitor, epoxomicin (Figure S3-E).

Proteasome inhibition modulates transcripts encoding RNA polymerase ||
transcriptional regulators—To better understand the biological and molecular functions
of the transcripts regulated after proteasome inhibition and hormone, we performed gene
ontology classification. The analysis revealed that many of the transcripts changed after
proteasome inhibition and hormone are characteristic of genes involved in transcription and
transcription factor activity (Figure 4). Apart from transcripts encoding transcription factors,
such as ATF3 and zinc finger-binding proteins, two prominent classes of transcripts emerged
from further analysis. These included transcripts encoding factors that drive RNA polymerase
Il transcription and modify chromatin. Among transcripts changed by proteasome inhibitor
that regulate RNA polymerase Il transcription included PTEFb complex Cdk9 and cyclin K
that regulates RNA polymerase carboxy-terminus phosphorylation. We note that treatment
with DEX alone repressed CDKO transcript, but treatment with MG and DEX increased Cdk9,
whereas the treatment with E2 increased CDK9 transcript (2-fold) and MG plus E2 decreased
Cdk9 transcript (Figure 4C). Transcripts encoding carboxy terminus phosphatase (CTD)
including SSU72, CTDSP1 and CTDSPL were repressed by proteasome inhibition except
CTDP1 (FCP1), which increased with proteasome inhibition (Figure 4C, Table 4-1).

Proteasome inhibition had significant effects on other RNA polymerase Il regulators.
Transcripts that encode the TATA box binding protein (TBP)-associated factors, TAF10 and
TAF1B (TAFI63) were repressed by proteasome inhibition, whereas TAF1A, TAF2, TAF7,
TAF9 and TAF 13 increased with proteasome inhibition (Figure 4C, Table 4-2). Transcripts
that encode mediator subunits, MED10, MED28 and MEDG increased with proteasome
inhibition (Figure 4C, Table 4-1). Genes that regulate the elongation rate of RNA polymerase
I, RNA polymerase Il elongation factor 2 (ELL2), which is also a GR target,, ELL and cell
division cycle 73 (CDC73/PAF1) increased, whereas RNA polymerase |1 elongation factor-
like 3 (ELL3) decreased.

Further analysis showed that proteasome inhibition had a substantial effect on transcripts
encoding transcription elongation and translation initiation factors (Figure 4D, Table 4B).
Transcription elongation factor A (SI1) (TCEA) factors were all repressed by proteasome
inhibition. MG plus DEX significantly decreased transcription elongation factor A (SII) like
1 (TCEALZ1) and TCEALA4, while TCEAL remained unchanged (Figure 4D). Proteasome
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inhibition alone or in addition to either dexamethasone or E2 significantly repressed TCEA2,
TCEA3, TCEALS8 and TCEALS. A number of transcripts encoding eukaryaotic translation
factors were significantly increased by proteasome inhibition including EIF1, EIF1B, EIF2A
and EIF2C3 (Argonaute3), whereas those transcripts that encode negative regulators of the
translation factors, such as eukaryotic translation initiation factor 2- alpha kinase (EIF2AK2)
an interferon induced kinase that phosphorylates EIF2A and eukaryotic translation initiation
factor 4E binding protein 2 (EIFAEBP2) a protein that binds to EIFE to inhibit protein
translation, are repressed by proteasome inhibition (Figure 4D, Table 4-2).

Proteasome inhibition modulates expression of chromatin regulators including
histone and DNA modifying enzymes—~Proteasome inhibition alters transcripts
encoding enzymes or factors that modify DNA and histones. Nuclear receptors utilize a number
of coregulators to modulate transcription. To date the best characterized histone modifying
enzymes are those that mediate histone acetylation (HATSs) and de-acetylation (HDACS),
activating and repressing transcription, respectively. Proteasome inhibition increased some
common nuclear receptor coactivators including NCOAG also known as activating signal
cointegrator (ASC2), NCOA7 also known as estrogen receptor activation protein 140
(ERAP140), thyroid interacting protein 4 (TRIP4) also known as ASC-1 and TRIP12.
Conversely transcripts encoding co-repressors were decreased by proteasome inhibition
including nuclear receptor co-repressor 2 (NCOR2 or SMRT) and histone deacetylases,
HDAC1 and 8, although HDAC3 transcript was significantly increased when proteasome is
inhibited in the presence of dexamethasone. Most strikingly, sin 3A associated protein (SAP30)
is induced by DEX, but inhibited by MG alone and in the presence of DEX (Figure 4E and
Table 4-3).

Apart from acetylation and deacetylation of histone N-terminal tails, another modification
gaining interest with respect to gene regulation by a nuclear receptor is histone methylation.
Examination of transcripts changes by proteasome inhibition revealed a number of histone
methyltransferases and recently discovered demethylases were altered by proteasome
inhibition. Transcripts encoding histone methyltransferases particularly associated with
histone H3-Lysine 4 were increased by proteasome inhibition, including MLL and MLL
translocation partners namely, MLLT2/AFF1/AF4/FMR2, MLLT11/AF1Q, SETD1A and
SMYDL. Transcripts encoding other MLL translocation partners, MLLT3/AF9 and MLLT1/
ENL decreased (Figure 4F and Table 4-4). Transcripts encoding histone methyltransferases
specific for histone H3-lysine 9, euchromatin-lysine N-methyltransferase 1 (EHMT1 or G9
like protein, GLP) and EHMT?2 (G9a), and the testis specific H3K9 methyltransferase
SUV39H2 decreased, whereas the KAP-1 associating SET domain bifurcated 1 also known as
ERG associated protein (ESET) increased after proteasome inhibition. Of note, EHMT1
increased by DEX, but repressed by MG and DEX, whereas SETDBL is repressed by E2, but
increased after MG and E2. In addition proteasome inhibition alters transcripts encoding
methyltransferases targeting histone H3 lysine 36. These include Wolf-Hirschhorn syndrome
candidate 1 (WHSC1) also known as multiple myeloma SET domain protein (MMSET) or
nuclear SET domain-containing protein 2 (NSD2), Wolf-Hirschhorn syndrome candidate 1-
like 1 (WHSC1L1/NSD3) and SMY D2 which decreased by proteasome inhibition. In a number
of cases the hormone component is involved, for example SMYD2 increased by hormone but
decreased by proteasome inhibition. Transcripts encoding recently identified Jumoniji-
containing histone demethylases were also affected by proteasome inhibition including
JARID2,IMJD2D and RBP2, which were repressed by proteasome inhibition whereas IMD1A
transcript increased (Figure 4F and Table 4-4).

Protein arginine methylation has an important role in hormone regulated transcription [39]
Proteasome inhibition alters expression of protein arginine methyltransferases (PRMT),
including PRMT3 a ribosomal protein arginine methyltransferase that regulates ribosome
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biosynthesis, PRMT8 a membrane-associated and tissue-specific arginine methyltransferase
and PRMT6 a methyltransferase shown to possess auto-methylation activity and methylated
the non-histone chromatin protein HMGAL (Figure 4F, Table 4-4). Finally DNA
methyltransferase, DNMT1, DNMT3B and 3L were significantly repressed by proteasome
inhibition (Figure 4F, Table 4-4).

Among chromatin factors that are affected by proteasome inhibition were transcripts encoding
various histone proteins. The major histone transcripts affected were those encoding histone
H2A and H2B family members. These family members were all decreased by proteasome
inhibition (Figure 4G, Table 4-5). Transcripts for histone H2AFL, H2AFY2, H2AFA, H2BFF,
H2BFD, H2BFH, H2BFQ, H2BFE, H2BFB and H2BFK were repressed 2- to 4-fold by
proteasome inhibition. Interestingly, histone H2AFY2 increased by E2 was inhibited by
proteasome inhibition. Histone H2BFQ is highly down-regulated by E2, but this effect is
reversed by proteasome inhibition. Variants of histone H3, H3FT and H3F1 were also down-
regulated by proteasome inhibition. Histone H1F4 (H1.2), which is predicted to maintain low
methylation state, was repressed up to 4-fold. Histone H1F0 (H1.0) was up-regulated by DEX,
but repressed by MG and DEX (Figure 4G, Table 4-5).

Effect of proteasome inhibition on transcription of developmental genes,
proteasome subunits and stress proteins—Because there were very significant
changes in transcripts encoding MLL and MLL translocation partners, we investigated whether
transcripts encoding clustered homeobox (Hox) genes were affected by proteasome inhibition.
Knockout experiments have previously identified Hox genes as targets of MLL. Of the
transcripts encoding HOX genes, HOXA1 which was down regulated by hormone alone (DEX
or E2) was highly up-regulated by MG and either hormone. Other Hox genes were down-
regulated by proteasome inhibition including those of HOXC8, HOXA10, HOX D9, B2, C13
and C9 (Figure 5A, Table 5-1).

Analysis of transcripts regulated by proteasome inhibition showed an increase in transcripts
encoding lin-7 homolog A and C (Lin7A and C), but a decrease in Lin 7B was seen. Lin-28
was highly repressed by proteasome inhibition, where as sel-1 suppressor of lin-12-like
increased by proteasome inhibition (Figure 5A, Table 5-1).

Among other targets of the proteasome are the proteasome subunits themselves. Our transcript
profiling analysis shows that proteasome inhibition up-regulated 19S proteasome ATPase
subunits PSMC1, -4, -5, and -6, but not PSMC2 and non-ATPase subunits, PSMD1, -2, -8, -9,
-11, -12 and -14. Proteasome inhibition also increases transcripts encoding the 20S subunits,
alpha subunits PSMAL, -3, -4, -5, and -7 and beta subunits 1, 2,3,4,5, 6 and 7. On the other
hand, proteasome inhibition repressed transcripts encoding antigen presenting,
immunoassembly proteasomes PSMB10, PSME1 and -2 (Figure 5B, Table 5-2).

Previous studies have shown that proteasome inhibition increased stress response factors,
particularly heat shock proteins. Proteasome inhibition induced a global increase heat shock
protein transcripts, including hsp90, -70 and -40 families. These changes are among the most
pronounced changes of proteasome inhibition; for example, proteasome inhibition induced
HSPAG transcript (Hsp70B) up to 40-fold and DNAJBL1 (Hsp40, subfamily B) up to 14-fold,
whereas another member of this family DNAJC19 (Hsp40, subfamily C) is repressed (Figure
5C, Table 5-3).

Proteasome inhibition affects transcription of genes associated in the
pathogenesis of neurodegenerative diseases, leukemia, multiple myeloma,
breast/prostate cancer and HIV/AIDS—Proteasome inhibitors, such as bortezomib, are
currently in clinical trials as potential therapeutic agents. In particular, protein inhibitors plus
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DEX have been used to treat relapsed multiple myeloma. Using a chromosome tool, we aligned
the 1697 genes affected in common by MG, MG plus DEX and MG plus E2 to chromosome
loci (Figure 6, see also Figure 3A). Examination of chromosome loci showed specific clustering
of genes or hot spots on chromosomes 1, 6, 11, 19 and on the X chromosome. Genes clustered
on the hot spots marked in a black line on the specific chromosome are associated with
leukemia, Kaposi sarcoma, severe combined immunodeficiency, non-Hodgkin's B-cell
lymphoma, acute myeloid leukemia, breast cancer and Sjogren syndrome antigen among other
diseases. Genes clustered in chromosome 19 encode a number of zinc finger proteins. This
observation is interesting, considering that 50% of all human KRAB-ZNF genes are located
on chromosome 19 and recent data shows that the specific domain harboring these genes is
heterochromatic and marked by elevated binding of heterochromatin protein 1 (HP1) [40].

Discussion

A number of studies indicated that inhibiting proteasome degradation increased transcriptional
activity of some, but not all nuclear receptors suggesting a receptor specific effect of
proteasome inhibition [19,22,24,41,42]. Specifically blocking proteasome degradation with
the proteasome inhibitor MG132 elevated GR, but diminished ER-mediated gene activation,
suggesting that proteasome degradation is required for transactivation at least by the estrogen
receptor [19,22-24]. However, these studies were based on either reporter gene constructs or
limited individual receptor target genes [19,22-24]. We have taken a genomic approach to show
that the requirement for proteasome activity is gene specific rather than receptor specific. Our
data provides new information indicating that proteasome inhibition has both synergistic and
antagonistic effects on GR and ER-mediated gene expression. Proteasome inhibition enhances
GR-mediated gene expression of endogenous targets (S100P), but other known GR targets like
galanin, BCL6 and TGFB3 are repressed [35-38].

We confirm previous reports that proteasome inhibition decreases E2-mediated progesterone
receptor gene expression, but also show that E2 targets, such as DDX10, are synergistically
induced by E2 and a proteasome inhibitor, whereas TXNIP, SOX13 and IFIT2 were
synergistically repressed.

Gene expression profiles observed in this study are similar to those reported by others in MCF-7
cells treated with E2 [27-29]. With respect to the GR response, the gene profiling signature
from the GR/ER positive MCF-7 cell line is similar to that observed in other cell lines in
response to dexamethasone [35-38].

Present analysis suggests some negative cross-talk between GR and ER [25]. A number of
gene transcripts are differentially regulated by GR and ER, when proteasome activity is
inhibited. For example, the gene NDRGL1 is activated by DEX and MG, but repressed by E2
and inhibitor. A similar trend follows for KLF6, SMYD2 and S100A8 genes. NDRGL1 is
markedly expressed in the placenta and it is the most ubiquitous member of the NDRG family
genes (NDRG 1-4) [43]. Over expression of NDRGL1 in colon, breast or prostate cell lines
decreases proliferation rate, enhances differentiation and suppresses the metastatic potency of
the tumor [44,45]. KLF6 or core promoter element binding protein is a Kriippel family of
C2H2-type zinc finger protein involved in regulation and maintenance of the basal expression
of TATA box-less genes. It is highly expressed in the placenta [46]. KLF6 is an inhibitor of
cell proliferation, suggesting a role of KLF6 as a potential tumor suppressor [47]. SYMD2 has
arole in cell proliferation since it was shown recently to methylate p53 [45,47,48]; S100 A8
is strongly up-regulated only in ductal carcinoma in situ [49]. For these genes, repression by
E2 favors cell proliferation, whereas activation by DEX inhibits proliferation. It is of particular
interest that some the genes differentially expressed after proteasome inhibition and hormone
treatment are highly expressed in various type of breast tumors [50-52]. Proteasome inhibitors
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are currently applied in the therapy of hormone responsive cancers; however, the negative
crosstalk between GR and ER can influence the outcome of therapeutic application.

A novel finding from the genomic profiling is the regulation of transcripts encoding genes for
RNA polymerase Il transcriptional regulators (transcription elongation/translation initiation
factors) and chromatin modifying enzymes (DNA and histone methyltransferases/histone
demethylases/acetyltransferases/deacetylases). The profound impact of proteasome inhibition
on transcriptional regulators suggests that proteasome activity can regulate transcription at
multiple steps, initiation, elongation and even mRNA processing. Key molecules, such as
TAFs, mediator subunits and KLF6 that impact transcriptional initiation/activation and confer
gene specific activation, are altered by proteasome inhibition. TAFs and KLF6 play a role in
regulation of TATA less promoters [46,53]. Perhaps these factors can account for differential
regulation of receptor target genes after proteasome inhibition.

Additionally, proteasome inhibition alters transcripts encoding RNA polymerase |1 CTD
phosphatases and transcriptional elongation factors (TCEA (SII), ELL). These factors can
enhance or repress RNA Pol Il elongation rate, supporting a role of the proteasome in
transcriptional elongation. We have reported recently that proteasome activity at least in part
regulates transcription by modulating the phosphorylation of RNA polymerase 11, a hallmark
of the elongating polymerase [31]. Other gene transcripts, such as transcriptional translation
initiation factors and genes regulated by micro-RNAs (Lin 28, Lin 7), suggest proteasome
activity might be required in the regulation of mMRNA processing and translation [54-56].

DNA methylation and histone modifications have crucial roles in the control of gene activity.
Changes in expression of enzymes that modify DNA or histones after proteasome inhibition
can impact on gene expression. Proteasome inhibition alters expression of transcripts that
encode DNA methyltransferases (DNMT1, 3L and 3B). DNA methylation is normally
associated with gene silencing, but also provides multiple layers of gene control; for example,
tissue specific gene expression. Proteasome activity may impact on genes tightly regulated by
DNA methylation: for example, the melanoma antigen (MAGE) family of cancer testis genes
and the S100 calcium binding protein A4 (S100A4), which is over-expressed in colon cancer,
are tightly regulated by DNA methylation and in this study they are altered by proteasome
inhibition [57,58](Figure 1C and 1 F).

Another level of transcriptional regulation by proteasome activity can be achieved by
modification of chromatin architecture. Several gene transcripts encoding histone proteins and
histone modifying enzymes are changed after proteasome inhibition. Histones are no longer
considered to be simple DNA-packaging proteins: they are recognized as dynamic regulators
of chromatin architecture and gene transcription. In this study we found changes in transcripts
encoding specific histones and histone variants, providing an opportunity for proteasome
activity in the regulation of chromatin architecture. We demonstrated that the H1.2 (H1F4)
isoform, which is proposed to maintain low DNA methylation state, is significantly repressed
by proteasome inhibition. In mammals, histone H1 is expressed in at least 8 isoforms. Though
we do not know the direct effect of this isoform on receptor mediated-transcription, we have
previously showed that prolonged DEX treatment effectively dephosphorylated the H1.3,
H1.4, and H1.5 isoforms to repress MMTYV transcription indicating that histone H1 isoforms
directly influence the transcriptional activation/repression of specific genes [59].

Proteasome inhibition results in changes in expression of transcripts encoding a number of
histone modifying enzymes, especially those resulting in arginine and lysine methylation.
Transcripts encoding histone methyltransferases targeting histone H3-K4 and H3-K36
previously associated with active chromatin are significantly changed by proteasome
inhibition. The changes in histone modifying enzymes, methyltransferases and demethylases
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seen after proteasome inhibition offer an exciting mechanism to explain differential regulation
of hormone mediated gene expression. Indeed, recent studies have shown that specific histone
methyltransferases can regulate hormone response and impose gene specific functions [60].

Apart from transcriptional regulation, a number of the transcripts encoding histone modifying
enzymes are particularly interesting because of their established or putative roles in human
diseases. Proteasome inhibition alone or in the presence of either DEX or E2 leads to an increase
mixed lineage leukemia (MLL) specific methyltransferase for histone H3 Lys4 (H3K4). In
addition a number of MLL translocation partners, for example RNA polymerase 11 elongation
factor 2 (ELL2) and AF1Q, are increased when cells are treated with proteasome inhibitor.
Mixed-lineage leukemia 1 (MLL1) gene is disrupted by chromosomal translocation in acute
leukemia and is a master regulator of Hox genes [61], which have been recognized as oncogenes
in leukemia. Additionally, the oncogenic potential of Hox genes is implicated in various
cancers [62]. For example, HOX A1l is up-regulated in cervical cancer and we found that it is
altered by proteasome inhibition and estradiol [63]. The Hox cluster, C10, -11 and -13 are
implicated in metastatic melanoma [64]. Hox C8 is over expressed in prostate cancer [65].
Interestingly, proteasome inhibition decreases most of Hox gene expression perhaps offering
a clue on how proteasome inhibitors act as a therapeutic application in leukemia. Our studies
reveal an interesting avenue to pursue as both the proteasome and steroid hormone receptors
are targets for therapy in the treatment of leukemia [66,67].

Disruption of MLL function by translocation is recently implicated in the promiscuous
regulation of cell cycle regulators (cyclin dependent kinases and kinase inhibitors) and a cluster
of miRNAs involved in cancer, supporting a role of MLL in tumor formation and suppression
[61,68,69]. Our cluster analysis after proteasome inhibition reveals a set of developmental
genes that are regulated by miRNAs are altered by proteasome inhibition. Lin 28 encodes a
RNA binding protein of which functional mutations results in abnormal development of various
cell lineages [70]. Lin 28 is regulatory target of mir-125 cluster which function in neuronal
development [56]. Lin7A, Lin7B, and Lin7C, which each encodes a protein that is required
for generation and maintenance of neuroepithelial cell junctions is a proposed target for mir22
and mir365 (http://microrna.sanger.ac.uk/).

The genes encoding Wolf-Hirschhorn syndrome candidate 1 (WHSC1) also known as multiple
myeloma SET domain (MMSET) or nuclear receptor-binding SET domain-containing protein
2 (NSD2) and Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) also known as
NSD3, the putative histone methyltransferase targeting both histone H3-K36 and H4-K20 are
down-regulated in the cells treated with proteasome inhibitor and hormone. Translocations
between multiple myeloma SET domain (MMSET) and fibroblast growth factor receptor 3
(FGFR3) result in multiple myeloma [71]. Additionally a set of recently discovered histone
demethylases in the Jumonji and Jarid family are altered by proteasome inhibition. These
changes in molecules that impact on multiple myeloma are interesting especially since in
clinical trials proteasome inhibitors are used to treat multiple myeloma patients with
glucocorticoid resistance who have undergone relapse, where treatment with dexamethasone
and proteasome inhibitor restores clinical outcome [72].

Finally, given the potential of proteasome inhibitors in antiviral therapy, an interesting
candidate in this regard is the estrogen-dependent gene stromal cell-derived factor (SDF-1 or
CXCL12) a ligand of CCRX4 chemokine receptor, which is involved in diseases including
AIDS and cancer cell metastasis [73,74]. Other molecules involved in HIV transcription are
altered by proteasome inhibition include NR2F1, the proteasome subunit PSMC4 which
interacts with HIV TAT and the protein arginine methyltransferase PRMT6 which methylates
and modulates TAT-mediated transactivation [75-77].
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Proteasome inhibition modulates transcripts encoding genes involved in protein folding, cell
migration, cell cycle regulation, apoptosis, inflammatory responses, cell adhesion, antigen
presentation and ion transport to name a few. Importantly, our genome-wide transcript profiling
analysis and chromosome mapping shows that proteasome inhibition impacts on expression
of many genes involved in the pathogenesis of various human diseases including many cancers,
HIV/AIDs and neurodegenerative disorders, Alzheimer's, Parkinson's and Huntington's [17,
78]. Many proteasome targets, such p53, MDM2 and ER, play critical roles in cell growth and
proliferation and can contribute to survival of tumor cells. Not surprisingly, inhibitors of the
proteasome, such as Velcade/Bortezomib have been showed to inhibit tumor growth in clinical
trials of multiple myeloma, breast, pancreatic, lung, and ovarian cancers [79,80]. The precise
mechanisms of how proteasome inhibitors, such as Velcade, work as anti-tumor agents are
unknown. The predominant view attributes the outcome of the therapy to the degradation of
specific tumor suppressors or cell cycle regulators or in-activation of the NFkB due to its anti-
apoptotic activity [81]. Our analysis of proteasome/hormone receptor mediated gene
transcription suggests alternative pathways that may provide a mechanistic explanation for
therapeutic outcomes of proteasome inhibitors. Our studies imply that proteasome activity
modulates NR function via changes in chromatin enzymes, there by implicating the proteasome
in epigenetic contribution to human disease. Presently, there is evidence to show that disruption
in the balance of epigenetic networks can cause pathological disease states, such as leukemia
and inhibitors for chromatin modifying enzymes, offer future prospects for epigenetic therapy
[82,83]. Proteasome inhibitors join other classes of therapy, such as DNA demethylating agents
and HDACs that change epigenetic marks.
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Figure 1.

Global transcriptional profile from MCF-7 cells treated with dexamethasone or proteasome
inhibitor. (A) Proteasome inhibition blocks ligand dependent GR turnover. Whole cell extracts
from untreated cells (lane 1), cell treated with DEX for 4 (+) or 24 hr (++, lanes 2 and 3),
MG132 alone (24hr, lane 4) or MG132 and dexamethasone for 4 or 24 hr (lanes 5 and 6) were
immunoblotted with antibodies against GR and actin as control (top). Proteasome inhibition
stabilizes GR protein (bottom). (B) Cluster analysis of genes whose level of transcription
changed (p <0.001) in 4 replicate experiments after treating MCF-7 cells with dexamethasone
alone (DEX), proteasome inhibitor alone (MG) or proteasome inhibitor and dexamethasone
(MD) compared to cells treated with vehicle. Intensity of color correlates with the degree of
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up-regulation (red) or down-regulation (green). (C) Venn diagram showing the number of
genes up or down regulated by dexamethasone (D or DEX) alone or dexamethasone and
proteasome inhibitor (MD). The common boundary represents genes regulated synergistically
by dexamethasone and proteasome inhibitor. Bold letters represent antagonistic response
between dexamethasone and proteasome inhibitor. (D) Cluster analysis of genes regulated by
dexamethasone alone with HSD11B2 and NTRN are examples of genes in this class. RNA
expression was determined by quantitative RT-PCR after 2 or 24 hr treatment. (E) Cluster
analysis of common genes regulated by dexamethasone and proteasome inhibitor with S100P
and TGFB3 as examples of genes increased or repressed in a synergistic response between
dexamethasone and proteasome inhibitor. RNA expression was determined by quantitative
RT-PCR after 2 or 24 hr treatment. (F) Cluster analysis of genes representing an antagonistic
response between dexamethasone and proteasome inhibitor with galanin (GAL) and IFIT2 as
examples. RNA levels were determined by quantitative RT-PCR after 2 or 24 hr treatment.

Mol Carcinog. Author manuscript; available in PMC 2010 May 4.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

MG - - -+ 4+

E2 =+ 4+ -+ 4+
ER —[= =

ACtin =—|a s v w———1

1 2 3 4 5 6

MG132
HR 0 52 4 8 12 24

ER = h—-ﬂ!_‘!“

GAPDH

1 2 3 4565 6 7

1.416 66
1,508 122¢

107

ME2 E2

Mol Carcinog. Author manuscript; available in PMC 2010 May 4.

E2 ME2 MG

1] 0.70000
Log(Ratio)

-0.70000

Page 26



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Kinyamu et al.

FHLZ

PDLIM3
C120rt24
SLFNT1
FAM77C
PEG10
NPY1R
RBBPS
CMTM7
FDCD2L

TSPAN10

H2AF A/H2AE
% GRHL1/LBP-32

o
o
2 ANKRD25
S TNFSF14

- H2BFQ/HZBE

10

PNRC1

i}
Log(Rat

-0.60000

06

M5132 +E2
MG132

LBP-32

051
ol L
034

021

Relative expression

04 4

24HR

!nl

MG ME2

Relative expression

Relative expression

Relative expression

Page 27
EGR3
0.0025
24 HR
o002
0.0015
0001
0.0005
i —== - -
C E2 MG ME2
EGR3
0.001
2HR
0.0008
0.0006
0.0004
0.0002
0
C E2 MG ME2
LBP-32
0.6
2HR
0.5 ]
04
0.3
0.2
0.4
0
Cc E2 MG ME2

Mol Carcinog. Author manuscript; available in PMC 2010 May 4.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

Kinyamu et al.

Relative expression

1.10000

(=]

Log(Ratio)

PPIF
ISG20L 1

PAPSS2
CDC42EP4
CDH10
PrmP4
CAMKZN1
HAIK
S0OX13

CRIP1
CREB3L4/AIBZIP
S100A8
KIAA1324
LTBP1
CHAC4/DAK
EDN1

MG132 +E2
MG132

AMIGO2

24HR

C E2 MG ME2

Relative expression

Relative expression

Page 28

DDX 10
0.04
ad 24 HR
0.03 4
00254
0.02 4
00154
0.01 4
0.005 4 n .
0 T T
C E2 MG ME2
DDX 10
0.035
0.03 4 2HR
0.025 1
0.02
0.015 1
0.01 1
0,005 1
0 [
C E2 MG ME2
AMIGO2
03
e o{ [ 2HR
°
TR
4
5 051
o 04
(]
> 031
®
o 021
14
011
00
C E2 MG ME2

Mol Carcinog. Author manuscript; available in PMC 2010 May 4.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Kinyamu et al.

Page 29

F ILDR1
ZNF791
TOMILZ
% CXCL12/SDF-1
OLFM1 SDF-1

PGR 0025
24 HR

002
0015 4

GNG11
DNMT 1
SLC25A1

UHREF1
TARBP1
HLA-B 0
HBP1 (o4 E2 MG ME2
WDR48

USPS3

BCERHM 1
TRIB3 003
FEXOS8

CLU
WDRA45

o0

0005 4

Relative expression

SDF-1

003
0.025
00
0.015
001
0.005

%
F=0
3 )
i
Relative expression

0.60000
o
a
X
9]
m

SPINK4 S E2 MG ME2

0
Log(Ratio)

MG132

-0.60000

T
N MG132+E2
EJ

IFIT2

24HR 2HR

007
0.06 1
0.05 1

0.020

0.015
0.04

0.03
002
0.01 4

0.010

Relative expression
Relative expression

C E2 MG ME2 c E2 MG ME2

Figure 2.

Global transcriptional profile from MCF-7 cells treated with 17p-estradiol or proteasome
inhibitor. (A). Proteasome inhibition blocks ligand dependent ER turnover. Whole cell extracts
from untreated cells (lane 1), cells treated with E2 for 4 (+) or 24 hr (++, lanes 2 and 3), MG132
alone (24 hr, lane4) or MG132 and E2 for 4 or 24 hr (lanes 5 and 6) were immunoblotted with
antibodies against ER and Actin as control (top). Proteasome inhibition stabilizes ER protein,
GAPDH is a control (bottom). (B) Cluster analysis of genes whose level of transcription
changed (p < 0.001) in 4 replicate experiments after treating MCF-7 cells with 17p-estradiol
alone (E2), proteasome inhibitor alone (MG) or proteasome inhibitor and dexamethasone
(ME2) compared to cells treated with vehicle. The weighted correlation between the two
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biological replicates for all treatments was averaging r = 0.95. Intensity of color correlates with
the degree of up-regulation (red) or down-regulation (green). (C) Venn diagram showing the
number of genes up or down regulated by 173-estradiol (E2) alone or 17p-estradiol and
proteasome inhibitor (ME2). The common boundary represents genes regulated synergistically
by E2 and proteasome inhibitor. Bold letters represent antagonistic response between E2 and
proteasome inhibitor. (D) Cluster analysis of genes regulated by 17p-estradiol alone with EGR3
and LBP-32 as representative genes. RNA expression was determined by quantitative RT-PCR
after 24 or 2 hr treatment. (E) Cluster analysis of common genes regulated by17p-estradiol and
proteasome inhibitor with DDX10 and AMIGO?2 as an example of genes exhibiting a
synergistic response to E2 and proteasome inhibitor. RNA expression was determined by
quantitative RT-PCR after 2 or 24 hr treatments. (F) Cluster analysis of genes representing an
antagonistic response between 17p3-estradiol and proteasome inhibitor, SDF-1 and IFIT2 are
examples. RNA expression was determined by quantitative RT-PCR after 2 or 24 hr treatments.
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Figure 3.

Proteasome inhibition results in broad changes in gene expression. (A) Venn diagrams showing
the number of genes up- or down-regulated by proteasome inhibitor alone and in common with
either dexamethasone (MD) or 17B-estradiol (ME2). (B) Cluster analysis of genes changed by
proteasome inhibitor alone. (C) Cluster analysis of genes mainly affected by proteasome
inhibitor with additional effect by dexamethasone, HSPA6 and S100A4 are examples. RNA
expression was determined by quantitative RT-PCR after 2 or 24 hr treatment. (D) Cluster
analysis of genes mainly affected by proteasome inhibitor with additional effect by E2, ATF3
and Lin28 are examples. RNA expression was determined by quantitative RT-PCR after 2 or
24 hr treatment. (E) Cluster analysis showing genes changed by proteasome inhibitor with a
differential effect of hormone, CRYAB and PIP as examples. RNA expression was determined
by quantitative RT-PCR after 24 treatment.
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Figure 4.

Functional classification of genes changed after treatment of MCF-7 with proteasome inhibitor
and dexamethasone (A) or 17p-estradiol (B), X- axis represents functional category shown on
table, Y-axis represents percent of total genes in the category compared to total genes changed
by the treatment. The genes affected by proteasome inhibitor and hormone categorized in
functional groups according to their main known function based on LocusLink, OMIM,
PubMed, GeneCards, and GenMAPP databases. (C). Cluster analysis of genes encoding RNA
polymerase Il regulators. (D) Cluster analysis of genes encoding transcriptional elongation and
translation initiation factors. (E) Cluster analysis of genes encoding transcriptional co-
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regulators. (F) Cluster analysis of genes encoding histone and DNA modifying enzymes. (G)
Cluster analysis of genes encoding histones.
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Proteasome inhibition alters transcription of developmental, proteasome subunits and stress
response genes. (A). Cluster analysis of genes encoding developmental genes. (B) Cluster
analysis of genes encoding proteasome subunits. (C) Cluster analysis of genes encoding stress

response proteins.

Mol Carcinog. Author manuscript; available in PMC 2010 May 4.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Kinyamu et al.

Page 41

s
YRITITATTTN I L TT! L
| | | | 1 i || ]
o e L Al e L] L] e i1 W | I, | | RIS .S
] il 14 1 ] il a L | L |
1 I L g I
1 L 11N 1 1
L 1 ] Linl | L] |
1 1 1 L1 4 [
[ | IN N | |
1 [T L i
n i IR 1 11 miw '
1 el 1
L 1 I
| I 1] | B 11}
LLULE 118 |
B | | I (LTI | ]
1 TR T W W e
AL 1M I il 14 |
T AT 1
L n_ri
1 L1}
[0 - 1
- i I ]
Figure 6.

Proteasome inhibition affects genes at specific chromosome loci. A chromogram showing
genes affected by exclusively by proteasome inhibition (red up-regulated; green down-
regulated). Proposed hot spots within chromosomes are indicated by a black line.
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