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Abstract
What is learned in perceptual learning? How does perceptual learning change the perceptual system?
We investigate these questions using a systems analysis of the perceptual system during the course
of perceptual learning using psychophysical methods and models of the observer. Effects of
perceptual learning on an observer’s performance are characterized by external noise tests within the
framework of noisy observer models. We find evidence that two independent mechanisms, external
noise exclusion and stimulus enhancement support perceptual learning across a range of tasks. We
suggest that both mechanisms may reflect re-weighting of stable early sensory representations.
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1. INTRODUCTION
Perceptual learning in adult human observers has been documented in a wide range of
perceptual tasks (Ahissar and Hochstein, 1996; Ball and Sekuler, 1982; Beard, Levi and Reich,
1995; DeValois, 1977; Dosher and Lu, 1998, 1999; Fahle and Edelman, 1993; Fine and Jacobs,
2000; Fiorentini and Berardi, 1980, 1981; Furmanski and Engel, 2000; Karni and Sagi, 1991,
1993; Mayer, 1983; McKee and Westheimer, 1978; Mollon and Danilova, 1996; Ramachandran
and Braddick, 1973; Sagi and Tanne, 1994; Shiu and Pashler, 1992; Vogels and Orban,
1985). Most studies of perceptual learning have investigated transfer or lack of transfer of
perceptual learning to modified forms of the same task or to different, related tasks (Ahissar
and Hochstein, 1996, 1997; Ahissar et al., 1998; Ball and Sekuler, 1987; Berardi and Fiorentini,
1987; Dorais and Sagi, 1997; Fiorentini and Berardi, 1980, 1981; Karni and Sagi, 1993; Liu
and Vaina, 1998; Poggio, Fahle and Edelman, 1992; Ramachandran and Braddick, 1973;
Rubenstein and Sagi, 1993; Saarinen and Levi, 1995; Schoups, Vogels and Orban, 1995; Shiu
and Pashler, 1992). In such studies, the generalizability of the learning is usually assessed in
the end of training, the character and the locus of learning are inferred from the extent of
transfer, but task-relevant changes to the perceptual system during learning itself are rarely
assessed directly.

What is learned during perceptual learning? Or, what aspect of information processing is
improved through perceptual learning? These questions have been increasingly investigated
in psychophysics (Chung, Levi and Tjan, 2005; Dosher and Lu, 1998, 1999; Gold, Bennett and

© 2009 Akadémiai Kiadó, Budapest
*Corresponding author; Department of Psychology, SGM 501, University of Southern California, Los Angeles, CA 90089-1061. Phone:
(213) 740-2282; fax: (213) 746-9082; zhonglin@usc.edu.

NIH Public Access
Author Manuscript
Learn Percept. Author manuscript; available in PMC 2010 May 4.

Published in final edited form as:
Learn Percept. 2009 June 1; 1(1): 19–36. doi:10.1556/LP.1.2009.1.3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sekuler, 1999; Saarinen and Levi, 1995), neurophysiology (Crist, Li and Gilbert, 2001; Ghose,
Yang and Maunsell, 2002; Schoups et al., 2001), brain imaging (Schiltz et al., 1999; Schwartz,
Maquet and Frith, 2002), and patient studies (Fahle and Daum, 2002; Lu et al., 2008). In this
review, we focus on the theoretical framework and psychophysical studies that address these
questions by analyzing how perceptual inefficiencies improve over the course of perceptual
learning. Perceptual inefficiencies are attributed to three limitations in perceptual processes:
an imperfect perceptual template, internal additive noise, and multiplicative noise. Systematic
measurements of human performance as a function of both the amount of external noise added
to the signal stimulus and the length of training received by the observers enable us to
distinguish three mechanisms of perceptual learning: external noise exclusion, stimulus
enhancement, and internal multiplicative noise reduction.

2. THE THEORETICAL FRAMEWORK
In signal processing, there are three ways to improve the signal to noise ratio: amplification,
improved filtering, and modified gain control. Similar principles of contrast gain, re-tuning of
cellular signal selectivity, and reduced contrast-gain have also been demonstrated in single unit
neurophysiology (Moran and Desimone, 1985; Reynolds, Pasternak and Desimone, 2000;
Treue and Maunsell, 1999). Motivated by the principles in signal processing and
neurophysiology, we developed the external noise plus attention paradigm and a theoretical
framework based on the Perceptual Template Model (PTM) to distinguish perceptual
mechanisms of attention and perceptual learning (Lu and Dosher, 1998; Dosher and Lu,
1998; see Lu and Dosher, 2008 for a recent review).

2.1. The external noise paradigm
Perceptual performance is limited by such factors as intrinsic stimulus variability, receptor
sampling errors, randomness of neural responses, and loss of information during neural
transmission. At an overall system level, these inefficiencies can be quantified in terms of a
noisy observer limited by equivalent internal noise – random internal noise necessary to
produce the degree of inefficiency exhibited by the perceptual system (e.g. Dosher and Lu,
1999; Pelli, 1981). The amount of equivalent internal noise is estimated by systematically
manipulating the amount of external noise (like TV snow or auditory white noise) added to
the signal stimulus and observing how threshold – signal stimulus energy required for an
observer to maintain a given performance level – depends on the amount of external noise (see
Lu and Dosher, 2008 for a review). These methods characterize the overall limitations of the
perceptual system, and allow comparisons of the efficiency of the perceptual system in different
perceptual tasks. In fact, specification of internal noise has become a requirement of any
computational model of human perception (Sperling, 1989).

2.2. The perceptual template model
The perceptual template model (Fig. 1a) consists of five components: (1) A perceptual template
with certain tuning characteristics (e.g. a spatial frequency filter F(f) with a center frequency
and a bandwidth such that a range of frequencies adjacent to the center frequency pass through
with smaller gains). The template is normalized such that it passes the noise with gain 1.0 and
the signal stimulus with gain β. (2) Anonlinear transducer function with the form: output =
sign(input) ‖ input ‖γ. (3) A multiplicative internal noise that is Gaussian distributed with mean
0 and a standard deviation that is proportional (with a coefficient of Nm) to the total energy in
the input stimulus. Multiplicative noise is a natural way of characterizing tasks in which, for
example, perceived sensory variability, or perceived differences, are proportional to signal
strength (Weber-law situations). (4) An independent additive internal noise that is Gaussian
distributed with mean 0 and a fixed standard deviation Na. The existence of an absolute sensory
threshold for every perceptual process suggests that the perceptual system is limited by an
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additive noise whose amplitude is independent of the amount of input. (5) A decision process
that operates on the noisy internal representation of the stimulus. Depending on the task, the
decision could reflect either detection or discrimination, and could take the form of either N-
alternative forced choice or “yes”/“no”, possibly with confidence ratings, and uses a standard
signal detection model for each task.

The perceptual limitations of the observer can be characterized by systematically manipulating
the amount of external noise added to the signal stimulus (Figs. 1b, c) and observing how
threshold – signal stimulus energy required for an observer to maintain a given performance
level – depends on the amount of external noise (the threshold versus contrast, or TvC, function;
Fig. 1d). In a typical application, the model parameters, Na, Nm, β, and γ, are unknown quantities
that can be estimated from TvC data such as those in Figure 1d by nonlinear estimation
techniques, or, alternatively, simple equations can be derived which allow us to compute
estimates of several of the parameters from certain relations in the data. Two or three measured
threshold levels are required (see Dosher and Lu, 1999; Lu and Dosher, 1999, for details).
Although this characterization does not distinguish between various sources of the inefficiency,
it does allow us to quantify the overall efficiency of the perceptual system, and to compare the
efficiency of the perceptual system in different perceptual tasks.

2.3. The external noise plus perceptual learning paradigm and signatures of perceptual
learning mechanisms

The theoretical performance signatures of mechanisms of perceptual learning (Dosher and Lu,
1998, 1999) can be derived by studying the possible ways training or practice can affect various
components of the PTM and generate model TvC functions for proposed mechanisms of
perceptual learning: stimulus enhancement, external noise exclusion, and internal
multiplicative noise reduction (Fig. 2).

2.3.1. Stimulus enhancement—Enhanced performance due to perceptual learning in clear
(noise-free) conditions corresponds to claims of perceptual enhancement. In the context of the
PTM, stimulus enhancement is mathematically equivalent to internal additive noise reduction,
or equivalently, to relative amplification of the stimulus. The behavioral signature for this
mechanism is performance improvement (reduced thresholds or lower curves) in the region of
low or zero external noise (Fig. 2a). Stimulus enhancement has no benefits for performance in
high external noise because external noise is the primary limiting factor on performance, and
enhancement affects both the signal and the external noise in the input stimulus in the same
way.

2.3.2. External noise exclusion—One-key way in which perceptual learning improves
performance is by focusing perceptual analysis on the appropriate time, spatial region, and/or
content characteristics of the signal stimulus. This focusing, or filtering, serves to eliminate
external noise from further processing, and is related to claims by Shiu and Pashler (1994) and
others. The behavioral signature for this mechanism is performance improvements in high
external noise conditions (Fig. 2b). Mechanisms that filter external noise are of no benefit in
the absence of the external noise.

2.3.3. Internal noise reduction—Another possible mechanism of perceptual learning
involves the reduction of internal noise. The reduction of additive noise is formally equivalent
to the enhancement of stimulus (see above). Multiplicative noise increases with increasing
contrast in the stimulus display. Reduction of multiplicative internal noise produces a signature
of improvements in both high and low levels of external noise, with slightly larger effects in
high external noise (Fig. 2c). To date, we have not empirically observed a case of multiplicative
noise reduction by perceptual learning.
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2.3.4. Distinguish mechanism mixtures—A direct comparison of the experimental data
and the signature patterns of the PTM model may be sufficient to identify the underlying
mechanisms of perceptual learning in certain situations. In other situations, mixtures of more
than one mechanisms may underlie improvements in performance associated with perceptual
learning in a task. In particular, a mixture of stimulus enhancement (low noise effects) and
external noise exclusion (high noise effects) must be discriminated from multiplicative internal
noise suppression (effects in low and high noise). This can be accomplished by measuring
threshold versus external noise contrast functions at multiple criterion performance levels. A
higher level of threshold performance, for example a d’ of 1.5 instead of 1.0, requires higher
contrast signals to achieve. For conditions differing in stimulus enhancement (Fig. 2a), or in
external noise exclusion (Fig. 2b), the magnitude of the perceptual learning effect is the same
(on the log contrast axis) at both the higher, more stringent and the lower, less stringent
threshold performance levels. However, threshold contrast differences between the lower and
higher criterion threshold values depend strongly upon criterion performance level in the
conditions that differ in internal multiplicative noise reduction (Fig. 2c). Thus, measuring TvC
functions at two or more criterion performance levels resolves the individual contribution of
each mechanism in a mixture situation (Dosher and Lu, 1998,1999).

3. EMPIRICAL RESULTS
3.1. Initial applications

In the first application of the external noise plus perceptual learning paradigm, Dosher and Lu
(1998, 1999) investigated mechanisms of perceptual learning in an orientation identification
task in the periphery. A concurrent letter identification task in fovea was used to demand eye
fixation (Fig. 3a). Contrast thresholds in a range of external noise conditions were measured
using two adaptive staircases (Fig. 3b, c) yielding 79.3% and 70.7% accuracies. We found that
the threshold signal contrasts depend upon criterion accuracy, external noise level, and practice
(Fig. 3b). Higher criterion accuracy demands higher contrast thresholds. In the high-noise
region where external noise is the limiting factor in performance, contrast thresholds increase
with increasing external noise. Practice reduces contrast thresholds by a downward vertical
shift (in the log) with practice in both zero and in high external noise (albeit with slightly
different magnitudes). We also observed a shift relationship between thresholds at the two
performance criteria. These strong shift properties in the log contrast threshold as a function
of criterion are a special characteristic of the perceptual template model. We concluded that
perceptual learning improved performance (reduced contrast thresholds) at all levels of external
noise and identified a mixture of stimulus enhancement and template retuning as the
mechanisms of perceptual learning. Dosher and Lu (1999) performed detailed statistical
analyses on their data and found that although performance improvements due to stimulus
enhancement and template retuning co-occurred, the sizes of these separate improvements were
only partially, not perfectly, coupled.

Using the same external noise technique but different signal stimuli, the same data pattern was
replicated by Gold, Bennett and Sekuler (1999) for identification of band-pass noise samples
and for novel face discrimination. Again, perceptual learning caused improvements in
performance across both low and high external noise conditions. Although the data patterns
were identical, Gold, Bennett and Sekuler (1999) concluded that, very differently from Dosher
and Lu (1998), that perceptual learning enhances processing efficiency only for the signal
stimulus. Gold, Bennett and Sekuler based their conclusions on the linear amplifier model,
which has been shown to be too simple to account for human performance. Essentially, the
linear amplifier model fails to give a consistent set of model estimates at different accuracy
criteria – its estimates are very different at distinct points along a contrast psychometric function
(see Lu and Dosher, 2008 for a review). Gold, Bennett and Sekuler (1999) also based their
conclusion on an incorrect interpretation of the double-pass results.
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The double-pass procedure was developed to directly estimate the total amount of internal
noise, both additive and multiplicative, relative to external noise, in the perceptual system for
each stimulus (signal and external noise) condition (Ahumada, 1967; Burgess and Colborne,
1988; Gilkey, Frank and Robinson, 1978, 1981; Green, 1964; Spiegel and Green, 1981). In the
double-pass procedure, the same sequence of stimulus trials (signal + external noise) is repeated
twice for each observer. Repeating each particular sample of external noise provides an
assessment of the relative influence of the external and internal noises. Both response accuracy
and response consistency (whether the response is or is not the same on the two identical tests)
are measured across different passes of the same stimulus condition. If performance is only
affected by external noise, this influence should be shared in the two repeated trials, leading
to response consistency. The results of the double-pass experiments are traditionally (Burgess
and Colborne, 1988) summarized in terms of probability correct (PC) versus probability
agreement (PA) functions (Fig. 4). It is designed to estimate the ratio, α, of the standard
deviation of the total internal noise and that of the external noise. α completely determines the
shape of the PC vs PA function in each external noise condition.

Gold, Bennett and Sekuler (1999) found that the PC vs PA functions were about the same before
and after perceptual learning. They concluded that the internal noise did not change. However,
this interpretation did not consider the fact that the standard deviation of the effective external
noise depends on whether the perceptual template changes during perceptual learning. If
perceptual learning retunes the perceptual template, then the effective external noise in the
system is reduced. If the double-pass agreement function, and therefore the internal to external
noise ratio did not change, then this implies that the internal noise was reduced approximately
equivalently as the effective external noise. The conclusion that internal noise did not change
is quite likely incorrect because it is based on the assumption that the template (or efficiency)
was unchanged by perceptual learning – an assumption directly at odds with the primary
conclusions of the study. In contrast, a mixture of stimulus enhancement and external noise
exclusion, as observed in Dosher and Lu (1998, 1999) fully accounts for the pattern of results
in Gold, Bennett and Sekuler (1999).

3.2. Pure mechanisms
Pure mechanisms of perceptual learning, stimulus enhancement and external noise exclusion,
have been documented in several studies.

Lu and Dosher (2004) trained observers in an orientation identification task (45 ± 8 deg) in
fovea. TvC functions were measured across ten training sessions (Fig. 5). Significant learning
was only observed in the high external noise conditions but not in zero or low external noise
conditions. We concluded that a pure mechanism of external noise exclusion provided the best
account of the data. In fact, the observed pattern of perceptual learning – its dependence on the
amount of external noise added to the signal stimulus – poses major challenges to the linear
amplifier model-based accounts of perceptual learning (Gold, Bennett and Sekuler, 1999).
Interpreted within this model, performance improvements in high external noise conditions
require improved calculation efficiency in the LAM-based model, which would result in
equivalent performance improvements (threshold reduction) across all the external noise
levels. However, because no learning or less learning was observed in low external noise
conditions, paradoxical compensatory increases of the equivalent internal noise that exactly
counteract the improvements in calculation efficiency are necessary to account for the lack of
perceptual learning in the low noise conditions. This plus the lack of a principled account of
the calculation efficiency at different performance-criterion levels render the LAM-based
theoretical framework both inconsistent and less parsimonious. In contrast, the PTM model
provides a coherent account of the data in both attention and perceptual learning across multiple
performance levels and task situations (Lu and Dosher, 2008; Tjan, Chung and Levi, 2002).
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A pure mechanism of stimulus enhancement has been demonstrated in two experiments
(Dosher and Lu, 2007; Kong et al., 2004). Dosher and Lu (2007) investigated the ability for
observers to learn and improve their perceptual performance in 1st order and in 2nd order object
(letter) orientation judgments. Surprisingly, (regular/mirror) orientation judgments for 1st order
letters at fovea were not consistently susceptible of improvement – whether in low or in high
levels of external noise. Significant learning did occur for orientation judgments of letters
defined by a ‘2nd order’ texture pattern, in which the letter was made from a checkerboard of
light and dark squares. For these 2nd order stimuli, the performance improvements
predominantly occurred in low external noise conditions (Fig. 6). Similar patterns of results
were also obtained in an auditory modulation detection experiment (Kong et al., 2004). In both
cases, we concluded that perceptual learning affected the post-rectification stages of perceptual
analysis. It serves to amplify the stimulus relative to limiting internal noise for intrinsically
noisy representations of second-order stimuli.

3.3. Independent mechanisms
The separability of two mechanisms of perceptual learning, stimulus enhancement and external
noise exclusion, was directly tested in two additional studies (Dosher and Lu, 2005; Lu, Chu
and Dosher, 2006). Using an orientation identification task identical to Dosher and Lu
(1998), Dosher and Lu (2005) found that training in a simple object orientation identification
task exhibited an asymmetric pattern of transfer. Training with low noise exemplars transferred
to high noise performance, while training with high noise exemplars – in which target objects
were embedded in white external noise – did not transfer to low noise performance. They
concluded that training in clear displays had unique advantages. They concluded that training
improves the dominant limiting factor, which in the case of training in external noise involves
improvements in filtering.

Lu, Chu and Dosher (2006) used pre-training as a manipulation to evaluate the separability of
stimulus enhancement and external noise exclusion. Observers were trained in identifying the
motion direction of a moving sine-wave grating in fovea with varying amount of superimposed
external noise across trials, after receiving no pre-training, pre-training in high external noise,
or pre-training in zero external noise in the same task. We found (1) Without pre-training,
perceptual learning significantly reduced contrast thresholds by about the same amount across
all the external noise levels. (2) Both types of pre-training significantly reduced contrast
thresholds in the corresponding conditions. (3) Pre-training in high external noise greatly
reduced subsequent learning in high external noise, accounting for 64.6% of the total (pre-
training + subsequent) improvements in that condition. On the other hand, the amount of
subsequent learning in low external noise conditions essentially the same as the total (pre-
training + subsequent) amount of improvements in high external noise, suggesting that pre-
training in high external noise had mostly only improved performance in noisy displays. (4)
Pre-training in zero external noise practically eliminated or left very little additional learning
in all the external noise conditions. We concluded that the two mechanisms of perceptual
learning, stimulus enhancement and external noise exclusion, can be trained independently in
motion direction discrimination in fovea; Training in low noise suffices to improve observer
performance over all the external noise conditions.

That pre-training in high external noise is only effective in high external noise without
impacting learning in low external noise completely rules out a single mechanism account of
perceptual learning. In fact, any theoretical explanation of these results must invoke at least
two independent mechanisms, one of which is only effective in high external noise. This dual
mechanism account does not however require independent manifestation of the two
independent mechanisms in every circumstance – a particular training protocol could in fact
train both mechanisms simultaneously and therefore improve both mechanisms together. Pre-
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training in high external noise only impacted the external noise external noise mechanism, but
pre-training in zero noise impacted both stimulus enhancement and external noise exclusion.
In the presence of high external noise, observer’s performance is ONLY limited by external
noise, not by internal noise. The only way to improve performance is to re-tune the perceptual
template to eliminate external noise. That’s how observers learned in pre-training and
continued to benefit in subsequent learning. In zero external noise, observer’s performance is
limited by internal additive noise. They did indeed improve their performance via stimulus
enhancement during pre-training and continue to benefit in low external noise during
subsequent learning. In addition, the observers were also exposed to the signal stimuli and were
exercising the perceptual template. We suggest that the exposure to signal stimuli during pre-
training in zero external noise condition allowed the observers to re-tune their perceptual
templates (Seitz and Watanabe, 2003; Watanabe et al., 2002). Although the retuning did not
directly benefit their performance during pre-training, it benefited performance in subsequent
testing in high external noise.

3.4. Transfer of mechanisms
Dosher and Lu (1998, 1999) concluded that perceptual learning in an orientation identification
task in peripheral vision is due to a mixture of stimulus enhancement and external noise
exclusion. Dosher and Lu (1999) tested location specificity of both mechanisms by measuring
TvC functions in new transfer locations. We found that improvements due to practice in the
lower-right quadrant task did not transfer substantially to task performance in the transfer
quadrants. Thresholds for the transfer tasks are higher than those for the practiced levels of the
original task. Neither transfer condition differed significantly from the performance in the first
practice set of the standard training; and both transfer conditions were reliably above the
performance in the last practice set. Therefore the transfer test showed practice improvements
in the orientation discrimination task, due to a mixture of both stimulus enhancement and
external noise exclusion, were reasonably specific to the retinal location.

Lu et al. (2005) combined the external noise paradigm and transfer tests to investigate the
mechanisms and eye specificity of perceptual learning of Gabor orientation in visual periphery.
Using a task identical to Dosher and Lu (1998), TvC functions in one eye were measured over
ten practice sessions, followed by five sessions of practice in the other eye to assess transfer.
We found that monocular learning improved performance (reduced contrast thresholds) with
virtually equal magnitude across a wide range of external noise levels with no significant
change in central task performance. Moreover, perceptual learning in the trained eye
generalized completely to the untrained eye. Based on physiology of binocular coding of
orientation (Blasdel, 1992; Livingstone and Hubel, 1984), we suggest that the site for
perceptual learning of Gabor orientation identification resides in areas post layer 4Cb of the
primary visual cortex. This conclusion is largely consistent with observations of learning only
post layer 4 in V1 by Schoups et al. (2001) and relatively small magnitude of learning in V1
neurons (Ghose, Yang and Maunsell, 2002) but relatively large amount of learning in largely
binocular V4 neurons (Ghose, Yang and Maunsell, 2002; Yang and Maunsell, 2004) when
monkeys performed orientation discrimination tasks.

Lu et al. (2005) characterized learning mechanisms in judging motion direction of moving
luminance-defined objects in visual periphery (Experiment 1) and fovea (Experiment 2) and
investigated the degree of transfer of the mechanisms of learning from the trained to the
untrained eyes. We found that learning in the trained eye improved performance in that eye
with virtually equal magnitude across a wide range of external noise levels. Interestingly, the
degree of transfer depended on the amount of external noise added to the signal stimuli. In high
external noise conditions, learning transferred completely to the untrained eye. In low external
noise conditions, there was only partial transfer of learning: 63% in Experiment 1 and 54% in
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Experiment 2. Subsequent practice in the untrained eye further improved performance via
stimulus enhancement in transfer sessions. We concluded that independent mechanisms
underlie perceptual learning of motion direction identification in monocular and binocular
motion systems.

According to Lu and Sperling (2001), there are two monocular and one (less sensitive)
binocular luminance motion systems; All three systems provide inputs to motion integration
and decision on motion direction. One possible interpretation of the relative sensitivities of the
monocular and binocular motion systems is that the monocular systems have less internal noise
and the binocular system is limited by higher amount of internal noise. Training in one eye
affects both the corresponding monocular motion system and the binocular motion system. In
displays with no or little added external noise, both the monocular and the binocular motion
systems are limited by internal noise; effective learning should mostly result from further
reduction of the internal noise in the more sensitive monocular motion system. Because the
relative sensitivity of the monocular and binocular system is about 2 to 1 (Lu and Sperling,
2001), not infinity, a certain amount of training of the binocular system is of course inevitable.
This could account for the observed partial transfer of learning from the trained to the un-
trained eyes. In high external noise displays, the monocular and binocular motion systems are
mostly limited by external rather than internal noise; learning via template retuning improves
both systems. Our results suggest that the binocular system might be more susceptible to
template retuning, consistent with recent neurophysiological results in largely binocular MT
neurons (Bisley and Pasternak, 2000).

4. DISCUSSION AND CONCLUSIONS
Using the external noise paradigm and the perceptual template model, we have documented
two mechanisms of perceptual learning, stimulus enhancement and external noise exclusion.
It appears that these two mechanisms either together or alone explain most perceptual learning
studied so far. In different experiments that used different training tasks, we documented both
coupled and pure mechanisms. Moreover, we showed that the two mechanisms are independent
in studies that manipulated pre-training conditions. Both mechanisms are shown to be specific
to retinal location but not specific to the eye of training in an orientation identification task.
However, stimulus enhancement is partially specific to the training eye in motion direction
discrimination.

We suggest that perceptual learning primarily serves to select or strengthen the appropriate
channel and prune or reduce inputs from irrelevant channels. The connections between the
most closely tuned visual channel and a learned categorization structure are maintained or
strengthened, while input from other channels is reduced or eliminated. A similar interpretation
has been used to account for the improvements in a single stimulus relative to mixed stimulus
blocks in uncertainty experiments (Graham, 1989). Reducing the weights on irrelevant
channels reduces the contributions of external noise and additive internal noise. Perceptual
learning, then, reflects plasticity in the relative activity of different basic visual channels, which
contribute to categorization. At some level of neural representation, this might appear as a
reorganization in the weighting of the critical channel in cortical maps (e.g. Recanzone,
Schreiner and Merzenich, 1993).

In summary, we find evidence that two independent mechanisms, external noise exclusion and
stimulus enhancement support perceptual learning across a range of tasks. We suggest that
both mechanisms may reflect re-weighting of stable early sensory representations.
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Figure 1.
(a) A noisy perceptual template model. (b) Samples of eight levels of external noise. (c) A
Gabor signal embedded in the external noises shown in (b). (c) Simulated threshold versus
external noise contrast (TvC) functions for a perceptual template model at three criterion
performance levels (d’ = 1.0, 1.4, 2.0).
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Figure 2.
Signature performance patterns for three mechanisms of attention within the framework of a
perceptual template model (PTM) at two performance criterion levels (d’ = 1.5 and 1.0): (a)
Stimulus enhancement. It only improves performance in zero or low external noise. (b) External
noise exclusion. It only modulates performance at high levels of external noise. (c) Internal
multiplicative noise reduction. It affects performance at all levels of external noise, but
increasingly so as external noise increases. In both (a) and (b), the magnitude of attention
effects does not depend on the performance criterion. In (c), however, the magnitude of the
attention effects depends critically on the performance criterion.
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Figure 3.
A perceptual learning task using the external noise paradigm. (a) Spatial layout of the task,
including the peripheral orientation discrimination Gabor stimulus, and a central letter stimulus
for a secondary task. (b) Contrast threshold (Gabor signal contrast corresponding to the
criterion accuracy) as a function of the external noise in the stimulus. Threshold is a systematic
function of criterion, external noise, and practice (data from Dosher and Lu, 1998). (c)
Examples of a signal of constant contrast embedded in increasing amounts of external noise.
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Figure 4.
Probability correct Pc vs probability consistent PA for a range of internal to external noise ratio
α’s.
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Figure 5.
(a) Threshold versus external noise contrast (TvC) functions at two performance-criterion
levels (70.7% and 79.3% correct) over 10 training sessions, averaged across the four observers
(Lu and Dosher, 2004). The smooth curves represent the best fit of the PTM model. The relative
SEs of the thresholds are about 5%. (b) versus training session blocks for the four observers
as well as the “average” observer AVG. For the average observer AVG, reduced to 0.7289
after 10 sessions of practice.
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Figure 6.
Contrast thresholds, averaged over observers, as a function of external noise contrast (TvC
functions) for five practice days in the texture (2nd-order) letter task (Dosher and Lu, 2006).
Data are shown for two criteria (3/1 and 2/1 staircases). The dark heavy lines are Day 1, and
the lighter heavy lines are Day 5. Smooth curves are the fit of a PTM model with perceptual
learning through stimulus enhancement.
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Figure 7.
Average threshold versus external noise contrast (TvC) functions at two performance criterion
levels (79.3% and 70.7% correct) across ten training sessions in three experimental groups:
(a) no pre-training, (b) pre-training in high external noise condition, and (c) pre-training in
zero external noise condition.
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