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Abstract
We introduce Localized Components Analysis (LoCA) for describing surface shape variation in
an ensemble of biomedical objects using a linear subspace of spatially localized shape components.
In contrast to earlier methods, LoCA optimizes explicitly for localized components and allows a
flexible trade-off between localized and concise representations. Experiments comparing LoCA to
a variety of competing shape representation methods on 2D and 3D shape ensembles establish the
superior ability of LoCA to modulate the locality-conciseness trade-off and generate shape
components corresponding to intuitive modes of shape variation. Our formulation of locality in terms
of compatibility between pairs of surface points is shown to be flexible enough to enable spatially-
localized shape descriptions with attractive higher-order properties such as spatial symmetry.

1 Introduction
The parameterization of an ensemble of biomedical shapes is a key step in a broad array of
scientific and medical applications that require quantification of the shape properties of
physical objects. In this paper, shape parameterization refers to the problem of converting a
representation of the delineating boundary of an object in 2D or 3D into a concise vector of
numbers that captures its salient shape characteristics. Converting the potentially complex
boundary of a biological object such as an organ or bone into a small set of shape
parameters facilitates a variety of statistical analyses, including the characterization of shape
variability across an ensemble; comparison of object shape between groups; and the tracking
of shape change over time. It is important to present the results of these analyses in an intuitive
way to encourage the connection of the shape analysis to domain-specific physical or biological
processes. For instance, the interpretability of statistical tests of brain region shape differences
between healthy and diseased subjects would be enhanced if differences could be presented in
terms of a small number of parameters, each of which represents an easily-grasped aspect of
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region shape. This could promote interpretations of the shape difference in terms of disease
causes or effects.

Our goal is to encourage interpretability of results by generating shape parameterizations that
are both concise– capturing salient shape characteristics in a small number of parameters– and
spatially localized– accounting for the shape of a spatially restricted sub-region in each
parameter. The hypothesis underlying this paper is that spatially-localized and concise shape
parameterizations are more intuitive for end users because they allow them to conceptualize
object shape in terms a small number of object parts, which are often affected differentially by
physical phenomena. In the above example, shape change due to disease processes is known
to occur in spatially-localized brain sub-regions in a variety of disorders [1]. In addition, concise
parameterizations are attractive because the statistical power of tests on those parameters is
reduced as little as possible by corrections for multiple comparisons [2].

We follow the linear subspace paradigm of expressing each shape as a linear combination of
prototypical, or basis shapes. That is, if each shape is represented as a vector vj of the 2m or
3m coordinates of m points sampled from its boundary (i.e., vj = [vj,1, vj,2, ··· vj,m], vj,k = [xk,
yk] for 2D shapes), vj is approximated as a linear combination of k basis vectors {e1, e2, ···
ek}:

The shape parameters are the coefficients αj,i. Linear subspace methods are attractive because
their linearity in ei allows them to be manipulated using standard tools from linear algebra.

However, linear subspace methods do not inherently encourage locality. Figure 1 (left) depicts
a typical ei generated by the classical linear subspace method, principal components analysis
(PCA), applied to tracings of the corpus callosum (CC), a human brain region. The basis shape
summarizes a complex pattern of shape characteristics across the entirety of the CC. Therefore,
if the corresponding αi differs between groups, the explanation of the group difference in
physical terms is complex. Figure 1 (right), by contrast, shows a typical ei generated by the
method presented below; differences in the corresponding αi between groups gives rise to a
simple physical explanation in terms of the genu, the CC subregion whose shape is captured
by the ei.

We present Localized Components Analysis (LoCA), a method that optimizes the ei for spatial
locality and conciseness simultaneously. It improves on previous linear subspace methods by
explicitly optimizing for localized shape parameters and by allowing the user to modulate the
tradeoff between locality and conciseness with greater flexibility than previous methods. The
resulting shape components could provide succinct summaries of spatially-localized changes
to biomedical structures due to a variety of physical phenomena; for example, LoCA could
provide a concise summary of the spatially-localized CC shape changes that are thought to
accompany diseases such as HIV/AIDS [3]. In primate evolution, LoCA could summarize the
shape similarities between the skulls of genetically related species using a few intuitive
parameters.

We summarize related techniques in Section 2, and present LoCA in Section 3. A thorough set
of experiments in Section 4 shows the intuitiveness and flexibility gained by LoCA over
established linear subspace methods when applied to human CC, colobine monkey skulls, and
primate humeri (upper arm) bones.

Alcantara et al. Page 2

Inf Process Med Imaging. Author manuscript; available in PMC 2010 May 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2 Related Work
PCA has been used to find concise bases for shape spaces in medical image analysis [4],
morphometrics [5], computer graphics [6], and many other contexts. In PCA, ei is the ith
eigenvector of the covariance matrix of the example vj vectors; therefore, the ei are orthogonal

and  is the best k-th order approximation of vj under the L2 norm. Two algorithms
independently named Sparse PCA (S-PCA) encourage as many entries in ei to be zero as
possible, either by iteratively adjusting the PCA basis [7] or by iteratively constructing sparse
orthogonal vectors [8] [9] 7. Empirically the ei often represent shape in a small number of
spatially-localized subregions [9] [11]. Similarly, while independent components analysis
(ICA) and principal factor analysis (PFA) do not directly optimize a locality-related objective
function when estimating ei, they appear to generate spatially-localized components anyway
[12] [13]. Alternatively, pre-defined spatially located regions of interest can be integrated into
PCA [14]. Our approach is inspired by S-PCA and follows a similar strategy of adjusting the
ei provided by PCA; but we explicitly optimize for spatially-localized, rather than sparse, ei.
Unlike [14] we allow the decomposition into local regions to emerge from the data.

Networks of localized medial geometric primitives have the potential to capture local shape in
a concise set of parameters [15]. We feel that medial and surface-based representations could
capture complementary shape information. We note, however, that networks of medial
primitives can be challenging to construct in an automated way and may therefore be more
labor-intensive than the approach we present.

An alternative approach for determining spatially-localized differences between shape
ensembles is to perform statistical tests that compare corresponding vj,k between groups; spatial
maps then color-code each vj,k by the effect size or p value of the test. Visual inspection of the
renderings has revealed spatially-localized shape differences in a variety of medical conditions
(see, e.g., [1]); however, m is generally so large that the significance threshold of the statistical
tests must be reduced dramatically to guard against detection of spurious group differences
[2]. This reduces the sensitivity of spatial mapping techniques to detect subtle shape
differences. LoCA uses a linear subspace to reduce the number of variables required for
localized shape comparisons, and therefore boost the power of statistical tests.

3 Methods
PCA produces the most concise basis possible under the L2 norm; that is, for each k,

 is minimized when e1 ··· ek are the first k eigenvectors of the covariance matrix
of the vj. We use a formulation of PCA as the minimization of an energy function Evar, and
modify it by minimizing Evar + λEloc, where Eloc is a new energy term that summarizes the
spatial locality of the ei. The λ balances the tradeoff between the competing interests of
conciseness and locality (Figure 2).

Energy Function
Each successive PCA component accounts for as much of the shape variation as possible; that
is, the distribution of shape variation over the PCA basis vectors is as concentrated as possible
on the leading ei. More formally, one can define the relative variance βi of each basis vector
ei as

7A third, unrelated Sparse PCA sparsifies the vj before applying standard PCA [10]
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where μ represents the mean of the data vectors vj. The entropy of the distribution

 is minimized, over all orthogonal bases, by the PCA basis, so we define this to
be Evar, as in [7]. The S-PCA construction in that paper balances Evar against another energy
function that rewards sparse ei– that is, as many entries as possible in each ei are encouraged
to have zero magnitude. We instead optimize for locality, defining Eloc as follows.

We encourage each ei to have simultaneous nonzero entries corresponding to points pi and pj
if and only if pi and pj are close to each other. To do so, we introduce a pairwise compatibility
matrix B whose entries B[i, j] tend toward 1 when pi and pj are near each other, and tend towards
0 when they are distant; we define B below. The B matrix defines a cost function C:

The ei have unit length, so both B[c, j] and ||ei,j|| vary between 0 and 1. Intuitively, points pc
and pj contribute significantly to C if: 1. pc and pj are incompatible, but ei,j has high magnitude;
or 2. pc and pj are compatible, but ||ei,j|| is close to 0. The exponent κ can take on any value
between 1 and 2 to deal with outlier effects. For our experiments, κ was 1.5.

For each basis vector ei, each pc yields a different C. We define the locality of ei using the best
possible pc, that is, the one that minimizes this cost function C. Each pc differs in the distribution
of its distances to all other pj– for example, points at one end of a humerus bone in Figure 5
are extremely distant from many points at the opposite end of the bone, while points in the
middle are not. So we normalize C as follows:

The denominator for a given pc is simply Σj max(|B[c, j] − 1|, |B[c, j] − 0|)κ. It needs to be
computed only once.

The compatibility B[i, j] can be computed in whatever way is appropriate for the data set; here,
B[i, j] is based on the distance D(pi, pj) between pi and pj. For the CC data set considered below,
D is the geodesic distance computed from dense surface meshes. For the 3D humeri and skull
data sets, D is computed from an adjacency graph constructed between the landmarks. The
compatibility is B[i, j] = f(D(pi, pj)), where f is a function that modulates D to adjust its range
to [0, 1]. We chose a sinusoidal f that is non-zero over a half-period: .
Larger ρ select for groups of points which co-vary over larger spatial extents. It was set to 0.25
in all of the experiments below.

Optimization
Our optimization procedure is similar to that used in [7]. PCA provides an initial orthonormal
basis e, and every possible pair ei, ej are rotated together in the two-dimensional plane they
span. Because the rotating pair is kept orthogonal to each other and stay in their 2D plane, the
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basis remains orthonormal throughout optimization. Each pair is rotated by the angle θ that
minimizes Evar + λEloc. The optimal θ is found numerically using Brent’s method [16]. Notice
that since Evar and Eloc are both summations of terms that each depend solely on an individual
ei, only the terms corresponding to the current ei, ej pair need to be updated during optimization.

The pairs are rotated in decreasing order of shape variation accounted for. The set of all ei, ej
pairs are adjusted repeatedly, and optimization ceases when adjusting them changes the
objective function less than a fixed threshold. Between 50 and 150 iterations were required for
each experiment below.

Data preparation
We assume that we are given an ensemble of n objects, each represented by m points on its
boundary, and the compatibility matrix B. Overall differences in object scale, rotation and
translation over the ensemble are removed through generalized Procrustes alignment [5]. The
resulting scaled and aligned data sets are used as input to the above optimization.

4 Results
Below, we compare LoCA to PCA, ICA, and S-PCA on three data sets: CCs, colobine monkey
skulls, and humeri from various primates8. For each basis, locality is evaluated visually using
renderings of the entries in each basis vector, and through locality graphs (see Figure 2).

Conciseness of each basis is assessed quantitatively by charting  over all k,
and more specifically by recording the number of ei required to capture 90% of shape variation,
i.e. reduce this reconstruction error to 10%.

LoCA behavior depends strongly on λ, the parameter that modulates the tradeoff between
conciseness and locality. For λ = 0, LoCA reduces to PCA. For small λ, LoCA basis vectors
accounting for the highest amounts of shape variation resemble PCA basis vectors, while the
rest of the basis is clearly localized (Figure 2). For larger λ, all LoCA basis vectors are local,
and the bases require more basis vectors to account for shape variation in the data. In Figures
3, 5, and 6, LoCA and S-PCA basis vectors are depicted for the smallest value of λ for which
the bases lacked global basis vectors. S-PCA performs similarly to LoCA for small values of
λ, in agreement with earlier S-PCA results [7]. However, S-PCA required a much larger basis–
more basis vectors for 10% reconstruction error– before the global basis vectors disappeared;
this is likely due to the very high spatial locality of S-PCA basis vectors. Also, more of them
were required to describe the deformation of any extended surface region.

Corpora callosa
55 healthy subjects and HIV/AIDS patients received high-resolution magnetic resonance brain
scans as part of a previously-described study [3]. The CC was manually traced on all scans
using a reliable, repeatable protocol, and sparse landmarks were placed on all traces using the
Witelson criteria [17]. 103 point correspondences were established between all CC traces based
on the Witelson landmarks using a sparse-to-dense correspondence algorithm [18].

Figure 3 compares the basis vectors from each method that captured the most shape variation.
PCA required 7 basis vectors for 90% of shape variation, while ICA required the most at 38.
Note the global effects of PCA vectors, the extreme locality of ICA and S-PCA, and the
spatially broader effects of LoCA. Major deformations of meaningful CC sub-regions, the genu

8Movies and larger images are at: http://idav.ucdavis.edu/~dfalcant/loca.html
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and splenium, are represented by the first four LoCA vectors, while the next six represent
deformations of the corpus callosum’s long central body.

Reconstruction error for all methods is graphed in Figure 4. ICA requires a large number of
components for accurate shape reconstruction, and PCA requires the fewest; S-PCA and LoCA
require more basis vectors for bases that are more local or sparse (i.e., higher λ). Note, however,
that for comparable reconstruction error curves, S-PCA bases tend to contain global shape
components while LoCA does not; for example, compare LoCA(26) and S-PCA(26) in Figures
4 and 2.

Humeri
3D surface models of human, gorilla, and chimpanzee humerus bones were obtained by
scanning the bones using a laser range scanner as part of a long-term project on of primate
evolutionary morphology. The 3D models were annotated by a single human operator (D.A.)
in a graphical interface by placing curves at anatomical landmarks on the shaft and proximal
and distal extremities of the bone. A curve on the proximal extremity followed the length of
the articular neck. Three curves were traced longitudinally along ridges that spanned the length
of the shaft. On the distal extremity, curves followed the ridge of the olecranon fossa, the ridge
along the medial limit of the trochlea, the ridge along the lateral limit of the capitulum, and the
ridge between the trochlea and capitulum. Surface points sampled from these curves were the
input to the shape parameterization methods.

The first few basis vectors of the results are shown in Figure 5. LoCA identified basis vectors
that intuitively describe deformations of the two joint surfaces at the extremities, as well as
deformations of sub-regions of the long body.

Colobine monkey crania
The shape space was built from a set of 235 crania from colobine monkeys (Subfamily
Colobinae, Family Cercopithecidae), from six Asian species. Each cranium was marked with
45 corresponding landmark points. Various comparative primate morphologists manually
marked each cranium with 45 landmark points using a Microscribe 3D digitizer [19], as part
of data collection for a long-term project on Old World monkey cranial evolution. Results are
shown in figure 6. The landmarks are shown on a Colobus guereza cranium, which is colored
as in 5.

The usefulness of the compatibility matrix B for creating localized bases with higher-order
characteristics is also illustrated in Figure 6. To encourage spatially symmetric components,
landmark points were reflected across the midsagittal plane; i.e. points were transformed across
the symmetry plane from the right to left side of the skull. Compatibility B[i, j] was computed
between the reflected points, so that two points at corresponding locations across the
midsagittal plane (e.g., right and left cheek) were highly compatible. The resulting “Symmetric
LoCA” basis intuitively captures shape variability in corresponding right and left skull features
in each component.

5 Discussion
LoCA provided a superior trade-off of conciseness and locality than ICA or S-PCA for a broad
range of data sets, at a cost of greater computation time. Future work will focus on designing
compatibility matrices for a wide range of shape applications, using non-geodesic distance
metrics and user-defined object regions of interest. We will also generate localized bases whose
vectors vary significantly in their spatial suppport; currently, the range of possible spatial
supports is limited to a degree by the distance modulating function f.
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Fig. 1.
Shape characteristics of corpora callosa captured by basis vectors generated with PCA and
LoCA. Arrows start at points tracing the average corpus callosum; their magnitudes indicate
the degree that points move when the corresponding shape parameter is varied. The PCA vector
represents a complex, global pattern of shape characteristics while the LoCA vector focuses
on the genu.
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Fig. 2.
Effect of λ on the first (top) and third (bottom) basis vectors, where vectors are ordered by the
amount of shape variation captured. As λ increases, the number of vectors required to capture
90% of the variation (in parentheses) increases. For small values of λ, vectors capturing
substantial variation represent a global deformation of the entire shape. As λ is increased, more
of the LoCA vectors become local deformations, until the entire basis consists of local vectors.
S-PCA becomes sparse more slowly, so that the first vector is still a global deformation on the
right. The third vector is sparse, but there is some perturbation across the entire shape. Each
vector is accompanied by a graph showing its locality, where every point in the graph represents
a point on the outline. The center point is defined as the point minimizing Eloc, as described
in Section 3.
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Fig. 3.
Corpora callosa basis comparison. Out of 54 basis vectors, the first few are shown. LoCA
successfully captures the major shape deformations of the genu and splenium in the first four
vectors, while both ICA and S-PCA spread this variation over several vectors.
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Fig. 4.
Reconstruction error when using only the first k vectors of the basis. The numbers in
parentheses denote the number of vectors required to capture 90% of variation in the data set.
LoCA bases are compared with S-PCA bases which have essentially the same reconstruction
error for 10, 15, or 26 vectors respectively. These choices correspond to the different λ settings
used in Figure 2. Using fewer vectors, S-PCA has lower reconstruction error because the first
few S-PCA vectors represent global deformations (as seen in Figure 2).
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Fig. 5.
Front and back views of displacements on primate humeri. Displacements of the landmark
points are computed using different methods, and then interpolated onto the mesh using a thin-
plate-spline. Darker locations indicate greater displacement magnitudes. LoCA components
describe the articular surfaces at the two extremities as well as deformations of the shaft.
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Fig. 6.
Cranial basis comparison, colored by displacement magnitude. Both S-PCA and ICA produce
vectors that move single teeth, while LoCA has vectors that move the entire jaw at once. The
side views of vectors A and B differentiate their effects: A represents prognathism (snout
elongation), while B represents facial kyphosis (teeth straightening). Note that since the crania
are shown from a single angle, vectors representing motion on the bottom of the cranium appear
completely white.
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