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Abstract
The environmental determinants of vector- and host-borne diseases include time-varying components
that modify key transmission parameters, resulting in transient couplings between environmental
phenomena and transmission processes. While some time-varying drivers are periodic in nature,
some are aperiodic, such as those that involve episodic events or complex patterns of human behavior.
Understanding these couplings can allow for prediction of periods of peak infection risk, and
ultimately presents opportunities for optimizing intervention selection and timing. Schistosome
macroparasites of humans exhibit multiple free-living stages as well as intermediate hosts, and are
thus model organisms for illustrating the influence of environmental forcing on transmission. Time-
varying environmental factors, termed gating functions, for schistosomes include larval response to
temperature and rainfall, seasonal water contact patterns and snail population dynamics driven by
weather variables. The biological bases for these modifiers are reviewed, and their values are
estimated and incorporated into a transmission model that simulates a multi-year period in two
schistosomiasis endemic regions. Modeling results combined with a scale dependent correlation
analysis indicate the end effect of these site-specific gating functions is to strongly govern worm
burden in these communities, in a manner particularly sensitive to the hydrological differences
between sites. Two classes of gating functions were identified, those that act in concert to modify
human infection (and determine worm acquisition late in the season), and those that act on snail
infection (and determine early season worm acquisition). The importance of these factors for control
programs and surveillance is discussed.
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Introduction
A common feature of vector- and host-borne diseases is their dependence on free-living and
in-host/in-vector life stages subject to dynamic climactic, ecological, hydrological and other
environmental variables. These time-varying factors govern the development, maturation,
reproduction and survival of free-living stages, and also affect disease vectors and intermediate
hosts whose life cycles are sensitive to heterogeneous and dynamic environmental phenomena.
Human schistosomes exhibit multiple free-living stages as well as transmission by intermediate
hosts, and are thus model organisms for illustrating the influence of environmental forcing on
infectious disease systems.

Here, using schistosomes as a model system we explore the time-varying determinants of
Schistosoma japonicum transmission, the causative agent of schistosomiasis in east and
southeast Asia. Key determinants of infection in western China have been identified, including
dynamic agricultural (Spear, Seto et al. 2004), ecological (Remais, Hubbard et al. 2007) and
hydrological (Remais, Liang et al. 2008) factors. However, the ways in which they modulate
infection risk over time have not been explored. A better understanding of the mechanisms
underlying the observed temporal dynamics can allow for prediction of periods of peak
infection risk, and ultimately presents opportunities for interventions, such as reducing the
intermediate host population or human water contact, in order to dampen human infection risk
during these periods. West Nile virus presents an example where simulation studies have
suggested that concentrating pesticide spraying efforts during the spring, when most
transmission occurs among birds, could be more effective than the current practice of spraying
in response to human cases in the late summer and early fall when mosquito numbers are
already in decline (Altizer, Dobson et al. 2006).

We use the term ‘time-varying’ to describe the dynamic agricultural, ecological and
hydrological factors, some of which have been described as ‘seasonal.’ While some time-
varying factors are periodic in nature (and thus ‘seasonal’), some are aseasonal, such as those
which involve episodic events (e.g. heavy rainfall) or complex patterns of human behavior
(e.g. anthropogenic intervention to achieve disease control). Periodic factors have been shown
to influence the dynamics of interacting ecological populations in a manner particularly
dependent on the phase of the forcing function. An example is when a prey population oscillates
sinusoidally with the same period and amplitude as, and in phase with, an external force on
predation. The resultant effect is to aid invasion through an enhanced average predator per
capita birth rate (Greenman and Norman 2007). Both seasonal and episodic climate events
have been shown to play a role in forcing infectious disease outbreaks. In Bangladesh, cholera
incidence exhibits strong seasonal dynamics as well as interannual variability. Dynamic models
that account for host susceptibility and average seasonal transmission patterns have show that
interannual deviations from the seasonal pathogen transmission rates correlate with northeast
Indian rainfall and river discharge. Additionally, short-term interannual variability has been
shown to couple with sea surface temperature 2 to 3 months prior (Koelle, Rodo et al. 2005).

Mathematical models are useful for exploring these environment-disease interactions (Remais
2008), yet seasonality is commonly implemented phenomenologically, using simple
mathematical functions that are periodic in time and therefore describe in a generic way the
seasonal variation in a parameter – a sinusoidal function is common. Few examples exist where
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seasonal factors describe the actual processes underlying the intensity of disease transmission
(Kendall, Briggs et al. 1999). Because models that incorporate time variable parameters are
sensitive to which parameters vary with time as well as their functional form, there is a pressing
need to identify the actual mechanisms at play.

In the case of S. japonicum, transmission processes that are time-varying determine what is
colloquially referred to as the transmission season, a period between March and October in
western China. These influences are tacitly acknowledged by public health officers who
generally limit surveillance and control activities to these months. In addition, however, recent
results indicate infection risk may vary within the infection season, as exposure to potentially
contaminated water sources during certain months appears to confer a greater risk of infection
than in other months (Sudat, Carlton et al. 2009). This is consistent with reports that both larval
and intermediate host populations also fluctuate within the infection season (Spear, Zhong et
al. 2004). Here, we review in detail the mechanistic basis of time-varying modifiers of
transmission, estimate their values for two regions in western China, and explore their dynamic
influence using a mathematical transmission model. Ultimately, we seek to understand the role
of the time-varying parameters as they modify stable site-specific determinants of the force of
infection, like irrigation system characteristics or fertilizer usage (Liang, Seto et al. 2007). In
some cases this knowledge could inform opportunistic interventions during a transmission
season and in other cases it might allow the assessment of longer term trends in local
development or weather conditions that may have implications for control initiatives.

Study sites
Two endemic regions were examined in this study, the Xichang study area (E102°18′ N27°
52′) in southern Sichuan, and the Changqiu study region (E103°36′ N30°12′), approximately
400 km north of Xichang and 100 km southwest of the capital city of Chengdu (Figure 1). The
regions share similar, subtropical climates, with average annual temperatures of 18.0°C and
16.4°C respectively in Xichang and Changqiu. Total annual rainfall is similar in both regions
at about 1000 mm, and both are mountainous zones dominated by irrigated agriculture, but the
availability of water in irrigation channels has been shown to differ between the sites (Remais,
Liang et al. 2008). Farming is the primary occupation of over 80% of adult men and women
in these regions. Rice, vegetables, fruit trees and, in Xichang, tobacco are the primary crops
that are fertilized using a combination of chemical fertilizers and human and animal waste.
Historically, both regions have had high infection prevalence and morbidity. Over the past
decade, control efforts focusing primarily on diagnosis and treatment with praziquantel have
been implemented throughout the province, including in these regions. A cross sectional survey
of 20 villages in Xichang in 2000 (Spear, Seto et al. 2004) found infection prevalence was 29%
(village range 3% to 73%). In Changqiu infection prevalence was 26%in 2004 in 9 villages
(village range 9–39%).

Ethical permission
Ethical permission for this study was obtained from the Committee for the Protection of Human
Subjects of the University of California at Berkeley and the Institutional Review Board of the
Sichuan Centers for Disease Control and Prevention, in accordance with the principles and
practice of the Helsinki Declaration.

Environmental data
To characterize ambient environmental conditions, daily precipitation and mean water
temperature data were collected from rain gauges and continuously logging thermocouples
(Hobo Onset U22-001) in 3 villages in each study region. To estimate channel flows, pressure
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transducers (Hobo Onset U20-001-01), compensated for temperature drift and barometric
pressure, measured channel stage in 3 channels in each region in 2005–06 as described in detail
elsewhere (Remais, Liang et al. 2008). Stage was converted into flow using a rating curve
constructed from channel flow measurements (Grant and Dawson 1997). Where data were
missing due to equipment or staff error (accounting for <0.1 percent of data points in the study),
data were obtained from nearby weather stations (World Meteorological Organization IDs
56571, 562870, 563850 and 562940). Where water temperature was not directly measured, it
was estimated from air temperature using a standard, simple linear model (Stefan and
Preud’homme 1993):

(1)

where Tw= water temperature, Ta= air temperature and δ1 and δ2 are fit parameters estimated
from the available data. Time lags were excluded from the model as the observed lags (<4
hours) were much shorter than the averaging period (1 day), as is typical for temperature
predictions in shallow channels (Erickson and Stefan 2000).

Model framework
Multiple time-varying processes act simultaneously on multiple phases of S. japonicum
transmission. Parasites enter the environment as eggs that hatch in water into a free-swimming
miracidium that seeks a snail of the appropriate species to infect. Asexual reproduction in the
snail produces cercariae, another free-swimming aquatic stage with a lifespan on the order of
a day, which penetrate the intact skin of a definitive host and mature into adult worms. Eggs
are excreted in feces, which find their way into the environment in the absence of basic
sanitation or through the use of human waste as fertilizer, and the cycle begins again. The
intermediate host, a freshwater snail, and the two free-living aquatic stages are known to be
subject to environmental stresses such as temperature (Anderson, Mercer et al. 1982) and shear
forces present in the water column (Upatham 1973). Additionally, exposure to cercariae is
strongly determined by water contact activities closely aligned with the annual agricultural
cycle. Here, we represent these processes using a mathematical model, grouping time-varying
parameters into two classes, those that act in concert to modify human infection, and those that
act on snail infection. We normalize these parameters, and explore their influence on
transmission.

A previously described deterministic dynamical model is used here, structured as coupled
differential equations for two state variables describing the changes in the mean worm burden
in the human population (w) and the average infected snail density (z) in the village environment
(Liang, Seto et al. 2007). The model is expressed as:

(2)

(3)

where w(t) is the mean worm burden in the human population, z(t) is the average infected snail
density in the village environment, τw is the developmental delay of the parasite in humans,
τz is the developmental delay of the parasite in snails, μw is the mortality rate of worms in
vivo, and μz is the mortality rate of infected snails. The time invariant parameters a11 and a21
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contain terms that range from the mortality of adult worms in vivo to the area of snail habitat
in the village (Liang, Seto et al. 2007). The composite terms α11(t − τw) and α21(t − τz) represent
the time-variable phenomena we term gating functions. All are described further below.

Time-dependent parameters
Each time-dependent parameter is expressed as the product of a time-varying profile and a
time-independent scalar, the latter set to the annual maximum values of each time-dependent
parameter. Thus the time-independent constant parameters include the maximum value of the
time variable parameters. For instance, s(t), the time-variable water contact parameter is
redefined as s(t) = Ssn(t), where 0 ≤ sn(t) ≤ 1, and sn(t) is an element of αij(t) while S, the annual
maximum, becomes a factor in aij. With specific reference to the time-varying parameters
operating on S. japonicum transmission in western China, the α terms are defined as follows:

(4)

where s is the index of water contact described below, Ic is the temperature-dependent cercarial
infectivity and rc the precipitation-dependent fraction of shed cercariae entering the village
irrigation system as governed by rainfall and channel baseflow, and τw is the constant
developmental delay of worms in vivo. The normalization noted above insures that 0 ≤ αi1 (t
− τ) ≤ 1.

The time-varying influences on snail infection are defined as:

(5)

where x is the susceptible snail density, rm the precipitation-dependent fraction of shed eggs
entering the village irrigation system and hatching to miracidia also as governed by rainfall
and channel baseflow, and Im is the temperature-dependent miracidial infectivity. Parameter
τz is the time-dependent delay between snail infection and parasite maturation in snails
expressed as a degree-day function of environmental temperature (Liang 2003; Liang, Spear
et al. 2005), during which intermediate host mortality occurs (e−μzτz).

Time-invariant parameters
The parameters that compose the aij terms have been specified elsewhere (Liang, Seto et al.
2007), and represent various factors conceptualized as constants in the system (Table 1). In
brief, they are defined as:

(6)

(7)

These definitions include three types of constant parameters, the first being the normalization
parameters S and X, which are the maximum annual water contact and uninfected snail density
respectively. Ah, As, γ, ξ and the combination βhg0ni are site-specific parameters that include
the area of snail habitat, factors relating to the inhomogeneous distribution of water contact
and of infected snails, and the amount of internally generated human waste used for crop
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fertilization. The parameters α, σ, ρ, and μw are termed biological parameters and include the
rate of cercarial production per infected snail, miracidial infectivity, and the death rate of worms
in vivo. These parameters are assumed to be regionally invariant beyond the village scale.

Estimating the time-varying modifiers of transmission
Given the model described above, we now summarize the combination of field data,
environmental measurements and literature values specific to S. japonicum transmission in this
region to estimate the αij terms in the two study regions, illustrating their annual cycle for
representative years.

Free-living stages and ova
Cercariae are highly susceptible to environmental stressors, their host-seeking, surface seeking,
host penetration and survival are known to be strongly temperature sensitive (Radke, Ritchie
et al. 1961; Webbe 1966; Upatham 1973; Upatham, Kruatrachue et al. 1984; Jewsbury 1985;
Lowe, Xi et al. 2005). Experiments have examined the influence of temperature on successful
penetration and establishment in animal hosts, revealing the combined effect of temperature
on multiple cercarial activities (Upatham, Kruatrachue et al. 1984). Temperatures between 15
and 30 degrees C show the highest worm recovery rates from mouse hosts. Above and below
this range, recovery rates decrease. Similarly, optimal miracidial activity occurs at water
temperatures between 20 and 30 degrees C (Shao and Xu 1956; Chu, Massoud et al. 1966;
Upatham 1973; Anderson, Mercer et al. 1982). Previous work fitting simple linear and non-
linear models to experimental viability data and temperature data can be used as a basis for
estimating miracidial and cercarial viability (Anderson, Mercer et al. 1982; Upatham,
Kruatrachue et al. 1984). Here, these relationships are used to calculate daily viability for each
study region using the daily temperature data described above.

Figure 2 shows normalized daily cercarial and miracidial infectivity estimates for Xichang
using measured water temperature; the rise in the spring, and subsequent decline in the fall is
consistent with the accepted transmission season described above.

Shedding and hatching of the larval stages is also conditioned by the availability of water in
channels. Therefore, we define rc(t) and rm(t) elsewhere (Remais, Liang et al. 2008) as the
precipitation-and/or irrigation-dependent modulation of the average daily cercarial production
and miracidial hatching at time t, driven by the flow regime in channels. S. japonicum ova are
persistent, and viable eggs are thus able to accumulate on fields. Their inactivation on fields
is modeled as a first-order decay process, with viable eggs expressed as a function of the sum
of decaying eggs contributed since the last rain event.

Water availability is quite different in Xichang and Changqiu because of episodic precipitation
patterns in the latter, and continuous precipitation and an irrigation system in the former that
ensure suitable water flows year round. As a consequence both rc(t) and rm(t) are set to unity
in the model for Xichang, while rainfall drives these terms in Changqiu. Channel flow was
modeled using a conceptual rainfall-runoff model (Jakeman, Littlewood et al. 1990; Jakeman
and Hornberger 1993), and rc(t) and rm(t) were estimated daily based on published flow/
infectivity relationships (Webbe 1966; Webbe 1966; James and Prah 1978; Jewsbury 1985).
Figure 3 shows rc(t) for a representative year in Changqiu.

Intermediate host snail
Temperature and rainfall strongly influence the development and survival of intermediate
hosts, the number of host generations, host abundance, as well as parasite development within
hosts. These rates have been modeled as functions of temperature and rainfall for the
Bulinusglobosus host of African schistosomes (Woolhouse and Chandiwana 1990; Woolhouse
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and Chandiwana 1990; Woolhouse 1992), while mark-recapture experiments have indicated
a bimodal annual population cycle of the Oncomelania hupensis host of S. japonicum driven
by temperature and heavy precipitation (Remais, Hubbard et al. 2007). The model estimates
snail population densities, reproducing the characteristic bimodal annual cycles observed in
both sites and apparent in model predictions in Figure 4 (Remais, Hubbard et al. 2007). Spring
temperature rise occurs later in Changqiu, delaying the early summer snail population peak.

Exposure
Human contact with cercariae-contaminated water is modified by climatological, agricultural
and recreational timelines, which vary over the year (Spear, Seto et al. 2004). Thus, exposure
in the time-domain can be viewed as a composite of various time-varying processes that govern
water contact activities. An individual’s exposure to cercariae occurs when they come in
contact with contaminated water. Thus, the pertinent data are the time spent in water per
contact, frequency of contacts, and the body surface area contacting water. This measure of
exposure can be related to various water contact activities by the expression:

(8)

where for all water contact activities, k, νk is the frequency of activity k(d−1), τ̄k is the mean
duration of activity k (min), and Āk is the mean fraction of body surface area wetted during
activity k (unitless). The latter was estimated using standard techniques (Lund and Browder
1944; Mosteller 1987), while the frequency and duration of activities was estimated in the two
study regions by questionnaire that asked residents about water contact related to 8 activities
each month. The Xichang questionnaire, administered to a 25% sample of residents in 20
villages in 2000, has been described elsewhere (Spear, Seto et al. 2004; Seto 2007). In
Changqiu, the same questionnaire was administered to residents in 7 villages in 2006 (total
surveyed populations nXC=968 and nCQ=360). Within each population, we account for the
differing water contact patterns (si) and different population sizes (ni) of the three dominant
population groups, farmers, students and others (Spear, Seto et al. 2004), i, using a population
weighted average water contact profile:

(9)

Unlike the other time-varying parameters that vary not only across the infection season, but
from year to year, average water contact varies within the infection season, but as it is closely
tied to agricultural and, in the case of children, academic calendars, it is assumed to be stable
year to year. Figure 5 shows monthly estimates of normalized water contact, s(t), in the two
study regions, reflecting both a spring planting season that occurs one-month later in Changqiu
than in Xichang, as well as a shorter summer season in the former, overall.

Quantifying the influence of time-varying factors on transmission
The first set of comparisons between the behavior of the model in the two settings was carried
out by parameterizing the model using a Bayesian melding calibration procedure, described
fully elsewhere (Spear and Hubbard 2008). Briefly, data on state variables is used to establish
goodness-of-fit criteria (Poole and Raftery 2000; Spear, Hubbard et al. 2002), and the set of
priors these criteria represent is combined with the prior on the model output induced by
simulating the model on prior information on input parameters. The priors are “melded” and
inverted to the input parameter space, accumulating a posterior space with reduced parametric
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uncertainty. The model expressed by equations (2) and (3) was calibrated over a 2 year
simulation period using six years of field data in the Xichang region and a calibration procedure
described previously (Liang, Spear et al. 2005); Validation of model predictions in Xichang is
provided elsewhere (Liang, Seto et al. 2007). The same set of constant parameters was then
applied in the Changqiu region except for the maxima of the time variable parameters that were
specific to each setting. We then use the time-varying parameter sets αij estimated separately
for the Xichang and Changqiu study regions for 4 years as described above. To facilitate
comparison, the same initial values of the states are assigned to each site. The outputs are then
compared.

Because the calibration process results not in a single set of constant parameters, but in posterior
distributions of the constant parameters of the model, an output time series can be produced
for any randomly selected parameter set from these posterior distributions. One thousand
matched realizations were run, producing w time series for Xichang and Changqiu over a 4
year simulation period.

These realizations, site-specific solutions of equations (2) and (3), depend on the magnitude
of a11, a21, μw and μz, on the time-varying parameters, and on the magnitude of the time lags
τw and τz. This complexity precludes a simple analytical determination of the influence of the
α terms beyond the comparisons of the state variables at various points in time. We apply a
second level approach to sensitivity analysis using scale-dependent correlation (SDC), which
can reveal sensitivity to transient effects in time series such as those produced by non-
autonomous models as used here (Rodriguez-Arias and Rodo 2004). For the most part,
sensitivity analysis performed on non-autonomous systems have concerned themselves with
the sensitivity of model output to the time-invariant, scalar component rather than the time-
varying component of the parameter (Seefeld and Stockwell 1999). Here, our interest is on the
latter.

To explore the influence of the α terms in determining model output, transient correlations
between αij and the derivative of model predicted worm burden (w′; termed worm
acquisition) for each region were identified using the SDC procedure. The technique estimates
correlations locally in time among time fragments of a particular size (θ), at all locations
between two series (Rodriguez-Arias and Rodo 2004). For two series w′i and αj, two subseries
of size θ are drawn (w′[i+k] and α[j+k] where k=0, 1, …, θ −1)and the correlation ri,j=r(w′[i +
k], α[j + k])is calculated. The significance of ri,j is estimated using a randomization test where
control datasets, assembled through the random rearrangement of the original data, are
produced to test the null hypothesis that the observed correlation between two fragments is due
to chance. The procedure is repeated for every possible subseries of size θ. Larger θ values
lead to smoothing the time-variable phenomena while smaller θ values have low signal-to-
noise ratios and thus lead to noisy SDC patterns (Rodó and Rodríguez-Arias 2006). Multiple
window sizes were explored and θ =120 days was selected because correlations at intra-annual,
seasonal scales are of interest here. The SDC analysis, coded in C and Matlab (Mathworks Inc.
2008), was carried out between αij and w′ for each site.

Results
As noted above, 1000 matched realizations of the model, with the constant parameters drawn
from the posterior distributions after calibration, were conducted for Xichang and Changqiu,
but with the single set of normalized gating functions defined by equations (4) and (5) for each
site comprised of the time-variable components summarized in Figures 2 to 4. These gating
functions are exemplified by the patterns shown in Figure 6 for 2002 in both sites. The Xichang
gating functions clearly engage in the spring and disengage in the late fall, driven largely by
temperature. Notable is the pronounced influence of episodic water availability in channels in
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Changqiu, which significantly dominates the αij signals, and thus limits transmission outside
periods with suitable flow.

The end effect of these site-specific gating functions is shown in Figure 7, which is the
distribution of the ratio of the Changqiu-to-Xichang village average worm burdens at the end
of the four-year simulation period in 2006. Recall that each value is the result of matched
constant parameters and site-specific time variable parameters. As can be seen, in all cases the
Xichang worm burden is at least three-fold greater than the corresponding Changqiu value.

To further explore the factors underlying the forgoing differences between sites, SDC analysis
was conducted on a model output series for each site comprised of the daily mean w′ value
from the 1000 realizations. Figure 8 shows the results of the SDC analyses for Xichang and
Changqiu between daily α11 and α21 estimates and the mean model-predicted daily rate of
change of worm burden in humans. Significant correlations between fragments (θ = 120)
accounting for at least 50 percent of total variance are plotted as colored markers and overlaid
on the predicted worm acquisition curve at the central value of the fragment. Because some
lagged correlations are biologically implausible (worm acquisition that precedes exposure, for
instance), a further complication arises owing to the biological delays between cercarial
penetration and worm maturation in humans, and between miracidial penetration and cercarial
shedding in snails. For α11 analyses, a lag of +30 to +49 days is used here, consistent with the
developmental delay period from cercarial penetration to egg excretion from definitive hosts
(Anderson and May 1991). For α21, a lag of +60 to +95 days is used accounting for the
additional time required for sporocyst development within snails (Guo 1991). Marker colors
represent the time lag between the correlated fragments.

Figure 8 (top) shows that, for Xichang, significant correlations at P < 0.01 are common between
αij and w′ terms, including occasional values greater than 0.90. Coupling between α21 and w′
tends to explain early season worm acquisition (early summer), while α11 strongly predicts
mid- to late-season acquisition (late summer, early fall).

The α21 term represents processes that govern snail infections, and Figure 8 indicates that the
availability of infected snails can limit early season transmission. The values of α21 are typically
too low in early spring to incite significant snail infections and thus worm acquisition in early
summer (delayed owing to the action of developmental delays). The years 2004 and 2005 in
Figure 8 (top) are examples of this, where low α21 values are highly correlated with low worm
acquisition in early summer. In contrast in 2003, warm temperatures in early spring led to a
pronounced increase in α21 values, which led to (delayed) worm acquisition in early summer
of that year (the first w′ peak), several months earlier than typical worm acquisition peaks in
late summer and early fall.

Intervals where transient correlations are low indicate that the αij in question does not dominate.
Periods of low transmission like the winter season are a prime example of a time when both
αij parameters are disengaged, and thus any small fluctuations in worm acquisition during those
periods are not strongly attributed to one alpha parameter set nor the other, and thus appear as
intervals of low correlation in the SDC record for both sets. What is more, in Changqiu, Figure
8 (bottom) shows weaker correlations between αij and w′ overall. To some extent, weaker
correlations are expected because of the seasonal fragment size used in this analysis (θ =120)
is longer than the time-span of αij-w′ coupling in Changqiu. When the fragment size is larger
than the scale of the signal, segments oversample the transitory couplings, resulting in a
smoothing of significant correlations between fragments, a process that has been described
elsewhere (Rodriguez-Arias and Rodo 2004). What is more, α21 is less influential in Changqiu
in part because early season water contact is uncommon as is early season availability of water
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in channels. Thus α21 is less effective at regulating early season infections, jointly governing
this period with α11, both exhibiting low bivariate correlations with w′

The seasonal influence of the alpha terms is made more clear in Figure 9, where daily SDC
correlations (P<0.01) accounting for at least 50 percent of total variance are assigned to the
central date of their fragment and pooled by month for Xichang α21 and α11, and Changqiu
α21 and α11, revealing the annual distribution of each set of correlations. The intensity and
extent of transitory correlations fluctuate through the year, confirming α21 to be a strong driver
of early summer worm acquisition, while α11 terms govern acquisition in late summer/early
fall. The influence of time-varying parameters is strong but transient, occurring during specific
intervals determined by the action of developmental delays and interactions among multiple
drivers.

Discussion
In this simulation study, it has been demonstrated that the time variable modifiers of
schistosomiasis transmission intensity can have a substantial influence on the force of infection.
The analysis here was both motivated by and is consistent with epidemiological findings in
the areas studied. The mechanistic basis of the time-varying modifiers of S. japonicum
transmission in the models reflects patterns of larval stage viability and snail dynamics that are
strongly governed by temperature and precipitation differences between the two sites.
Moreover, water contact also varies seasonally according to site-specific agricultural and
recreational cues. Together, these time-varying phenomena serve as a major source of seasonal
limitation of transmission in both study regions.

Larval stages exhibit synchronized viability trends under the annual water temperature cycle,
providing an example of a classical seasonal effect that disengages in the winter and re-engages
in the summer. Both water contact and susceptible snail dynamics contribute to more
complicated seasonal dynamics, and both have the benefit of being directly measureable. The
time-varying effects were grouped into two parameter classes, those that govern snail infection
and those that govern human infection, and their effect on variability in worm acquisition was
explored. Time-varying determinants of snail infection governed early season worm
acquisition among definitive hosts, while time-varying modifiers of human transmission were
most influential in driving worm acquisition in late summer and early fall, which accounted
for the majority of acquired worms. This is consistent with recent findings based on
epidemiological data that summer water contact confers greater infection risk than water
contact in other months in this region (Sudat, Carlton et al. 2009).

Of particular importance among the time-varying variables is the role of hydrology. Most
gating effects, being temperature driven, engage in the spring and disengage in the fall,
establishing classical, seasonal profiles over the annual cycle. This analysis highlights the
importance of hydrological dynamics in irrigation channels. Schistosomiasis has long been
associated with water projects and their associated irrigation infrastructure, including major
outbreaks in Egypt, Ethiopia, Cote d’Ivoire, Senegal and Mali (WHO 1993). The underlying
mechanisms shaping this relationship are unclear. The creation of new or more hospitable snail
habitat has been proposed, as have other mechanisms (WHO 1993;Vercruysse, Southgate et
al. 1994), but the current work suggests a potentially new insight into the action of dams and
irrigation projects.

In the Changqiu setting episodic precipitation acts to attenuate transmission by limiting
available surface water (Remais, Liang et al. 2008). In environments such as this that only
marginally support transmission, new irrigation systems and other water projects can serve to
bridge episodic flow events, providing surface water between precipitation-driven flows, and
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allowing human exposure, snail exposure, and ova transport and hatching to occur. This in
effect can release the system from the constraint of short, but relevant, dry periods. This
mechanism suggests a possible intervention approach in irrigated agricultural settings:
instituting periodic drying down of irrigation systems, an approach that has been used to control
snail hosts to some effect (Watts and El Katsha 1997). An irrigated surface water system can
be engineered to periodically dry down, returning the system to regulation by reviving an
episodic mode of reduced transmission. Future theoretical work exploring the effect of dry
downs in mechanistic models is warranted.

Identifying the role of time variable parameters in determining the temporal variability of
schistosomiasis infection risk within a season may allow for predictions of periods of peak
infection risk and corresponding interventions. If, for example, it was predicted that a period
of a few weeks would account for a substantial portion of the annual cercarial exposure among
farmers, the use of artemether, which targets immature parasites in vivo, would be a viable
option. This strategy has been used in China among military personnel engaged in flood relief
work in endemic areas. Health education interventions to minimize water contact among
children during these high risk periods provides another example. Similarly, targeting snail
populations (with molluscicide, for instance) such as to suppress snail numbers during those
periods, accounting for lags, where α21 is strongly correlated with worm acquisition may offer
a novel approach to timing an intervention that is conventionally timed to minimize snail
densities without quantitative regard for when densities contribute most to infection risk, given
environmental constraints. Further work to examine the role of specific events such as episodic
rainfall or spikes in water contact (for example, during rice planting season) on temporal
heterogenetity in infection risk is needed in order to identify time periods that warrant
heightened surveillance and intervention. Indeed, measuring and formalizing patterns of
human behavior and episodic environmental phenomena remain formidable challenges
(Grassly and Fraser 2006).

In the context of changing environments, the mechanisms reviewed in the present work are
useful for estimating the influence of long term climate change on infectious disease spread.
Current projections are, to a large extent, empirically-based, and it has been argued in the case
of malaria, for example, that models which are mechanistic, based on plausible underlying
drivers of the system and basic biology, rather than empirical relationships, are more useful
for predicting, and responding to, the influence of climate change (Thomas and Hay 2005). A
major deficit in our knowledge of environmentally determined diseases is the impact of local
environmental changes like informal irrigation networks on transmission. While these
influences might seem marginal at first glance, ignoring small scale environmental changes
can lead to an underestimation of the population at risk of disease. In arid and semi-arid climate
zones, for example, where agriculture relies heavily on small-scale, informal irrigation, large
populations at risk of malaria are overlooked by analyses that consider only macro-projects
such as large dams (Keiser, De Castro et al. 2005). In China, small dams and other local water
projects outnumber large dams perhaps by as much as a factor of 100 (Fuggle, Smith et al.
2000), and recent estimates suggest that, globally, approximately three to four times more
reservoir area lies behind small dams than behind large ones (Rosenberg, McCully et al.
2000; St. Louis, Kelly et al. 2000). There is clearly a need to account for and respond to the
impact of aggregated, small-scale environmental changes on disease incidence. The
exploration here of the contribution of key hydrological and exposure parameters to seasonal
limitation of transmission is one such step.
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Figure 1.
Location of the two study regions in Sichuan Province, China, in relation to the provincial
capital city, Chengdu. Counties are classified as endemic (black) or non-endemic (grey) based
on the most recent data available (Liang, Yang et al. 2006).
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Figure 2.
Daily cercarial (Ic) and miracidial (Im) infectivity for 2004 in Xichang as estimated using
measured water temperature, loess smoothed (span=0.25) to highlight differences between
larval stages.
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Figure 3.
Daily, normalized values of rc(t) for Changqiu in 2004 estimated using a rainfall-runoff model
driven by measured precipitation and temperature.
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Figure 4.
Daily, predicted snail density (x) for Xichang (XC) and Changqiu (CQ) for 2002 estimated
using a semi-mechanistic temperature and rainfall -driven population model.
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Figure 5.
Seasonal water contact for Xichang (XC) and Changqiu (CQ) measured retrospectively in 2002
as min-m2 based on duration and frequency of various activities weighted by the fraction of
body surface area in contact with water. Results are shown as a composite of three occupational
groups, farmers, students and others, normalized as a population weighted average.
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Figure 6.
Plots of annual α21 (upper) and α11 (lower) terms estimated for Xichang (XC) and Changqiu
(CQ) for 2002 using daily measured temperature and precipitation.
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Figure 7.
The distribution of the ratio of Changqiu to Xichang village average worm burdens at the end
of the four-year simulation period in 2006. Each value is the result of simulations using matched
constant parameters and site-specific time variable parameters.

REMAIS et al. Page 21

Epidemics. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Xichang (Top) and Changqiu (Bottom): Four years of median predicted worm acquisition rate
(day−1), w′, solid line, and results of two-way SDC analysis of the influence of α11 (time lag
from +30  to +49  days) and α21 (time lag from +50 × to +85 × days) on w′ (θ =120, p<0.01).
Colored boxes represent significant correlations of fragments accounting for at least 50 percent
of total variance; these are overlaid on the predicted worm acquisition curve at the central value
of the fragment. Box colors represent the time lag between the correlated fragments. Note
differing worm acquisition y-axes.
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Figure 9.
Box plots showing the distribution of significant SDC correlations (θ =120, p<0.01) for
Xichang α11 (A) and α21 (D) versus w′, and Changqiu α11 (B) and α21 (C) versus w′, by month
over the four year SDC analysis period. Boxes show interquartile ranges and whiskers indicate
the 95th and 5th percentiles.
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Table 1

Constant parameter αij definitions and units.

Parameter Definition and unit

τw Development time of worms in human host (day)

μw Worm natural mortality (/day)

h Eggs excreted (/worm pair/gram feces)

μz Patent and latent snail death rate (/day)

σ Cercarial production (/sporocyst/day)

α Schistosome acquired (/cercaria/m2 contact)

ρ Snail infection (/miracidium/m2 surface water)

γ Spatial index representing the degree to which water contact and cercarial distribution converge

ξ Spatial index representing the degree to which susceptible snail and miracidial distribution converge

g0 Mean fecal output (g)

β Fraction of eggs entering the environment due to agricultural fertilization practice

Ah Snail habitat (m2)

As Surface water area (m2)

ni Number of people in group i
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