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Abstract
We consider the problem of model selection and estimation in situations where the number of
parameters diverges with the sample size. When the dimension is high, an ideal method should have
the oracle property (Fan and Li, 2001; Fan and Peng, 2004) which ensures the optimal large sample
performance. Furthermore, the high-dimensionality often induces the collinearity problem which
should be properly handled by the ideal method. Many existing variable selection methods fail to
achieve both goals simultaneously. In this paper, we propose the adaptive Elastic-Net that combines
the strengths of the quadratic regularization and the adaptively weighted lasso shrinkage. Under weak
regularity conditions, we establish the oracle property of the adaptive Elastic-Net. We show by
simulations that the adaptive Elastic-Net deals with the collinearity problem better than the other
oracle-like methods, thus enjoying much improved finite sample performance.
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1. Introduction
1.1. Background

Consider the problem of model selection and estimation in the classical linear regression model

(1.1)

where y = (y1,…,yn)T is the response vector and xj = (x1j,…,xnj)T, j = 1,…,p, are the linearly
independent predictors. Let X = [x1, ···, xp] be the predictor matrix. Without loss of generality
we assume the data are centered, so the intercept is not included in the regression function.
Throughout this paper, we assume the errors are identically and independent distributed with
zero mean and finite variance σ2. We are interested in the sparse modeling problem where the
true model has a sparse representation, i.e., some components of β* are exactly zero. Let
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 In this work we call the size of  the intrinsic dimension of the
underlying model. We wish to discover the set  and estimate the corresponding coefficients.

Variable selection is fundamentally important for knowledge discovery with high-dimensional
data (Fan & Li 2006) and it could greatly enhance the prediction performance of the fitted
model. Traditional model selection procedures follow best-subset selection and its step-wise
variants. However, best-subset selection is computationally prohibitive when the number of
predictors is large. Furthermore, as analyzed by Breiman (1996), subset selection is unstable,
thus the resulting model has poor prediction accuracy. To overcome the fundamental
drawbacks of subset selection, statisticians have recently proposed various penalization
methods to perform simultaneous model selection and estimation. In particular, the lasso
(Tibshirani 1996) and the SCAD (Fan & Li 2001) are two very popular methods due to their
good computational and statistical properties. Efron, Hastie, Johnstone & Tibshirani (2004)
proposed the LARS algorithm for computing the entire lasso solution path. Knight & Fu
(2000) studied the asymptotic properties of the lasso. Fan & Li (2001) showed that the SCAD
enjoys the oracle property, that is, the SCAD estimator can perform as well as the oracle if the
penalization parameter is appropriately chosen.

1.2. Two fundamental issues with the ℓ1 penalty
The lasso estimator (Tibshirani 1996) is obtained by solving the ℓ1 penalized least squares
problem

(1.2)

where  is the ℓ1-norm of β. The ℓ1 penalty enables the lasso to simultaneously
regularize the least squares fit and shrink some components of β̂(lasso) to zero for some
appropriately chosen λ. The entire lasso solution paths can be computed by the LARS algorithm
(Efron et al. 2004). These nice properties make the lasso a very popular variable selection
method.

Despite its popularity the lasso does have two serious drawbacks: namely the lack of oracle
property and instability with high-dimensional data. First of all, the lasso does not have the
oracle property. Fan & Li (2001) first pointed out that asymptotically the lasso has non-
ignorable bias for estimating the nonzero coefficients. They further conjectured that the lasso
may not have the oracle property because of the bias problem. This conjecture was recently
proven in Zou (2006). Zou (2006) further showed that the lasso could be inconsistent for model
selection unless the predictor matrix (or the design matrix) satisfies a rather strong condition.
Zou (2006) proposed the following adaptive lasso estimator

(1.3)

where  are the adaptive data-driven weights and can be computed by  where
γ is a positive constant and β̂ini is an initial root-n consistent estimate of β. Zou (2006) showed
that with an appropriately chosen λ, the adaptive lasso performs as well as the oracle. Candes,
Wakin & Boyd (2007) used the adaptive lasso idea to enhance sparsity in sparse signal recovery
via the reweighted ℓ1 minimization.
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Secondly the ℓ1 penalization methods can have very poor performance when there are highly
correlated variables in the predictor set. The collinearity problem is often encountered in high-
dimensional data analysis. Even when the predictors are independent, as long as the dimension
is high, the maximum sample correlation can be large, as shown in Fan & Lv (2007).
Collinearity can severely degrade the performance of the lasso. As shown in Zou & Hastie
(2005), the lasso solution paths are unstable when predictors are highly correlated. Zou &
Hastie (2005) proposed the Elastic-Net as an improved version of the lasso for analyzing high-
dimensional data. The Elastic-Net estimator is defined as follows:

(1.4)

If the predictors are standardized (each variable has mean zero and L2-norm one), then we

should change  to (1 + λ2) as in Zou & Hastie (2005). The ℓ1 part of the Elastic-Net
performs automatic variable selection while the ℓ2 part stabilizes the solution paths and hence
improves the prediction. In an orthogonal design where the lasso is shown to be optimal
(Donoho, Johnstone, Kerkyacharian & Picard 1995), the Elastic-Net automatically reduces to
the lasso. However, when the correlations among the predictors become high, the Elastic-Net
can significantly improve the prediction accuracy of the lasso.

1.3. The adaptive Elastic-Net
The adaptively weighted ℓ1 penalty and the Elastic-Net penalty improve the lasso in two
different directions. The adaptive lasso achieves the oracle property of the SCAD and the
Elastic-Net handles the collinearity. However, following the arguments in Zou & Hastie
(2005) and Zou (2006), we can easily see that the adaptive lasso inherits the instability of the
lasso for high-dimensional data, while the Elastic-Net is lack of the oracle property. Thus, it
is natural to consider combining the ideas of the adaptively weighted ℓ1 penalty and the Elastic-
Net regularization to obtain a better method which can improve the lasso in both directions.
To this end, we propose the adaptive Elastic-Net that penalizes the squared error loss using a
combination of the ℓ2 penalty and the adaptive ℓ1 penalty. Since the adaptive Elastic-Net is
designed for high-dimensional data analysis, we study its asymptotic properties under the
assumption that the dimension diverges with the sample size.

Pioneering papers on asymptotic theories with diverging number of parameters include Huber
(1988) and Portnoy (1984) which studied the M-estimators. Recently, Fan, Peng & Huang
(2005) studied a semi-parametric model with a growing number of nuisance parameters,
whereas Lam & Fan (2007) investigated the profile likelihood ratio inference for the growing
number of parameters. In particular, our work is influenced by Fan & Peng (2004) who studied
the oracle property of nonconcave penalized likelihood estimators. Fan & Peng (2004)
provocatively argued why it is important to study the validity of the oracle property when the
dimension diverges. We would like to know whether the adaptive Elastic-Net enjoys the oracle
property with a diverging number of predictors. This question will be thoroughly investigated
in this paper.

The rest of the paper is organized as follows. In Section 2 we introduce the adaptive Elastic-
Net. Statistical theory, including the oracle property, of the adaptive Elastic-Net is established
in Section 3. In Section 4 we use simulation to compare the finite sample performance of the
adaptive Elastic-Net with the SCAD and other competitors. Section 5 discusses how to combine
SIS of Fan & Lv (2007) and the adaptive Elastic-Net to deal with the ultra-high dimension
cases. Technical proofs are presented in Section 6.
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2. Method
The adaptive Elastic-Net can be viewed as a combination of the Elastic-Net and the adaptive
lasso. Suppose we first compute the Elastic-Net estimator β̂(enet) as defined in (1.4), and then
we construct the adaptive weights by

(2.1)

where γ is a positive constant. Now we solve the following optimization problem to get the
adaptive Elastic-Net estimates

(2.2)

From now on, we write β̂ = β̂(AdaEnet) for the sake of convenience.

If we force λ2 to be zero in (2.2), then the adaptive Elastic-Net reduces to the adaptive lasso.
Following the arguments in Zou & Hastie (2005), we can easily show that in an orthogonal
design the adaptive Elastic-Net reduces to the adaptive lasso, regardless the value of λ2. This
is desirable because in that setting the adaptive lasso achieves the optimal minimax risk bound
(Zou 2006). The role of the ℓ2 penalty in (2.2) is to further regularize the adaptive lasso fit
whenever the collinearity may cause serious trouble.

We know the Elastic-Net naturally adopts a sparse representation. One can use ŵj = (|β̂j(enet)|
+ 1/n)−γ to avoid dividing zeros. We can also define ŵj = ∞ when β̂j(enet) = 0. Let ̂enet =

{j : β̂j (enet) ≠ 0} and  denotes its complement set. Then we have  and

(2.3)

where β in (2.3) is a vector of length | ̂enet|, the size of ̂enet.

The ℓ1 regularization parameters,  and λ1, are directly responsible for the sparsity of the
estimates. Their values are allowed to be different. On the other hand, we use the same λ2 for
the ℓ2 penalty component in the Elastic-Net and the adaptive Elastic-Net estimators, because
the ℓ2 penalty offers the same kind of contribution in both estimators.

3. Statistical Theory
In our theoretical analysis, we assume the following regularity conditions throughout.

(A1) We use λmin (M) and λmax (M) to denote the minimum and maximum eigenvalues
of a positive definite matrix M, respectively. Then we assume

where b and B are two positive constants.
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(A2)

(A3) E[|ϵ|2+δ] < ∞ for some δ > 0.

(A4)

To construct the adaptive weights (ŵ), we take a fixed γ such that  In our numerical

studies we let  to avoid the tuning on γ. Once γ is chosen, we choose the
regularization parameters according to the following conditions

(A5)

and

(A6)

Conditions (A1) and (A2) assume the predictor matrix has a reasonably good behavior. Similar
conditions were considered in Portnoy (1984). Note that in the linear regression setting,
condition (A1) is exactly condition (F) in Fan & Peng (2004). Condition (A3) is used to
establish the asymptotic normality of β̂ (AdaEnet).

It is worth pointing out that condition (A4) is weaker than that used in Fan & Peng (2004) in
which p is assumed to satisfy p4/n → 0 or at most p3/n → 0. It means their results require

 Our theory removes this limitation. For any 0 ≤ ν < 1, we can choose an appropriate γ to

construct the adaptive weights and the oracle property holds as long as . Also note that
in the finite dimension setting ν = 0, thus any positive γ can be used, which agrees with the
results in Zou (2006).
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Condition (A6) is similar to condition (H) in Fan & Peng (2004). Basically, condition (A6)
allows the nonzero coefficients to vanish but at a rate that can be distinguished by the penalized
least squares. In the finite dimension setting the condition is implicitly assumed.

THEOREM 3.1
Given the data (y, X), let ŵ = (ŵ1, …, ŵp) be a vector whose components are all non-negative
and can depend on (y, X). Define

for non-negative parameters λ2 and λ1. If ŵj = 1 for all j, we denote β̂ŵ(λ2, λ1) by β̂(λ2, λ1) for
convenience.

If we assume the model (1.1) and condition (A1), then

In particular, when ŵj = 1 for all j, we have

It is worth mentioning that the derived risk bounds are non-asymptotic. Theorem 3.1 is very
useful for the asymptotic analysis. A direct corollary of Theorem 3.1 is that, under conditions
(A1)–(A6), β̂(λ2, λ1) is a root-(n/p)-consistent estimator. This consistent rate is the same as the
result of SCAD (Fan & Peng 2004). The root-(n/p) consistency result suggests that it is
appropriate to use the Elastic-Net to construct the adaptive weights.

THEOREM 3.2

Let us write  and define

(3.1)

Then with probability tending to 1,  is the solution to (2.2).

Theorem 3.2 provides an asymptotic characterization of the solution to the adaptive Elastic-
Net criterion. The definition of  borrows the concept of “oracle” (Donoho & Johnstone
1994, Fan & Li 2001, Fan & Peng 2004, Zou 2006). If there was an oracle informing us the
true subset model, then we would use this oracle information and the adaptive Elastic-Net
criterion would become that in (2.3). Theorem 3.2 tells us that asymptotically speaking, the
adaptive Elastic-Net works as if it had such oracle information. Theorem 3.2 also suggests that
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the adaptive Elastic-Net should enjoy the oracle property, which is confirmed in the next
theorem.

THEOREM 3.3
Under conditions (A1)–(A6), the adaptive Elastic-Net has the oracle property, that is, the
estimator β̂(AdaEnet) must satisfy:

1. Consistency in selection : Pr ({j : β̂(AdaEnet)j ≠ 0} = ) → 1,

2.

Asymptotic normality :  where

 and α is a vector of norm 1.

By Theorem 3.3 the selection consistency and the asymptotic normality of the adaptive Elastic-
Net are still valid when the number of parameters diverges. Technically speaking, the selection
consistency result is stronger than that Theorem 3.2 implies, although Theorem 3.2 plays an
important role in the proof of Theorem 3.3. As a special case, when we let λ2 = 0, which is a
choice satisfying conditions (A5) and (A6), Theorem 3.3 tell us that the adaptive lasso enjoys
the selection consistency and the asymptotical normality:

4. Numerical Studies
In this section we present simulations to study the finite sample performance of the adaptive
Elastic-Net. We considered five methods in the simulation study: the lasso(Lasso), the Elastic-
Net(Enet), the adaptive lasso(ALasso), the adaptive Elastic-Net(AEnet) and the SCAD. In our
implementation, we let λ2 = 0 in the adaptive Elastic-Net to get the adaptive lasso fit. There
are several commonly used tuning parameter selection methods, such as cross-validation,
generalized cross-validation(GCV), AIC and BIC. Zou, Hastie & Tibshirani (2007) suggested
using BIC to select the lasso tuning parameter. Wang, Li & Tsai (2007) showed that for the
SCAD, BIC is a better tuning parameter selector than GCV and AIC. In this work, we used
BIC to select the tuning parameter for each method.

Fan & Peng (2004) considered simulation models in which  and | | = 5. Our
theory allows pn = O(nν) for any ν < 1. Thus, we are interested in models in which pn = O

(nν) with  In addition, we allow the intrinsic dimension ( ) to diverge with the sample
size as well, because such designs make the model selection and estimation more challenging
than in the fixed | | situations.

Example 1
We generated data from the linear regression model,

where β* is a p-dim vector and ε ∼ N(0, σ2), σ = 6 and x follows a p-dim multivariate normal
distribution with zero mean and covariance Σ whose (j, k) entry is Σj,k = ρ|j−k| 1 ≤ k, j ≤ p. We
considered ρ = 0.5 and ρ = 0.75. Let p = pn = [4n1/2] − 5 for n = 100,200,400. Let 1m/0m denote
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a m-vector of 1s/0s. The true coefficients are β* = (3 · 1q, 3 · 1q, 3 · 1q, 0p−3q)T and | | = 3q

and q = [pn/9]. In this example  hence we used γ = 3 for computing the adaptive weights
in the adaptive Elastic-Net.

For each estimator β̂, its estimation accuracy is measured by the mean squared error (MSE)
defined as E[(β̂ − β*)T Σ(β̂ − β*)]. The variable selection performance is gauged by (C, IC),
where C is the number of zero coefficients that are correctly estimated by zero and IC is the
number of nonzero coefficients that are incorrectly estimated by zero.

Table 1 documents the simulation results. Several interesting observations can be made.

1. When the sample size is large (n = 400), the three oracle-like estimators outperform
the lasso and the Elastic-Net which do not have the oracle property. That is expected
according to the asymptotic theory.

2. The SCAD and the adaptive Elastic-Net are the best when the sample size is large
and the correlation is moderate. However, the SCAD can perform much worse than
the adaptive Elastic-Net when the correlation is high (ρ = 0.75) or the sample size is
small.

3. Both the Elastic-Net and the adaptive lasso can do significantly better than the lasso.
What is more interesting is that the adaptive Elastic-Net often outperforms the Elastic-
Net and the adaptive lasso.

Example 2
We considered the same setup as in example 1, except that we let p = pn = [4n2/3] − 5 for n =

100,200,800. Since  we used γ = 5 for computing the adaptive weights in the adaptive
Elastic-Net and the adaptive lasso. The estimation problem in this example is even more
difficult than that in example 1. To see why, note that when n = 200 the dimension increases
from 51 in example 1 to 131 in this example, and the intrinsic dimension (| |) is almost tripled.

The simulation results are presented in Table 2 from which we can see that the three
observations made in example 1 are still valid in this example. Furthermore, we see that for
every combination of (n,p, | |,ρ), the adaptive Elastic-Net has the best performance.

5. Ultra-high dimensional data
In this section we discuss how the adaptive Elastic-Net can be applied to ultra-high dimensional
data in which p > n. When p is much larger than n, Candes & Tao (2007) suggested using the
Dantzig selector which can achieve the ideal estimation risk up to a log(p) factor under the
uniform uncertainty condition. Fan & Lv (2007) showed that the uniform uncertainty condition
may easily fail and the log(p) factor is too large when p is exponentially large. Moreover, the
computational cost of the Dantzig selector would be very high when p is large. In order to
overcome these difficulties, Fan & Lv (2007) introduced the Sure Independence Screening
(SIS) idea which reduces the ultra-high dimensionality to a relatively large scale dn but dn <
n. Then, the lower dimension methods such as the SCAD can be used to estimate the sparse
model. This procedure is referred to as SIS+SCAD. Under regularity conditions, Fan & Lv
(2007) proved that SIS misses true features with an exponentially small probability and SIS
+SCAD holds the oracle property if  Furthermore, with the help of SIS, the Dantzig
selector can achieve the ideal risk up to a log(dn) factor, rather than the original log(p).
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Inspired by the results of Fan & Lv (2007), we consider combining the adaptive Elastic-Net
and SIS when p > n. We first apply SIS to reduce the dimension to dn and then fit the data by
using the adaptive Elastic-Net. We call this procedure SIS+AEnet.

THEOREM 5.1
Suppose the conditions for Theorem 1 in Fan and Lv (2007) hold. Let dn = O(nν), ν < 1, then
SIS+AEnet produces an estimator that holds the oracle property.

We make a note here that Theorem 5.1 is a direct consequence of Theorem 1 in Fan & Lv
(2007) and Theorem 3.3, thus its proof is omitted. Theorem 5.1 is similar to Theorem 5 in Fan
& Lv (2007), but there is a difference. SIS+AEnent can hold the oracle property when dn

exceeds  while Theorem 5 in Fan & Lv (2007) assumes .

To demonstrate SIS+AEnet, we consider the simulation example used in Fan & Lv (2007)

(Section 3.3.1). The model is y = xT β* + 1.5N(0,1), where  with | | = ∀. Here
β1 is a 8-dim vector and each component has the form (−1)u (an + |z|), where

, u is randomly drawn from Ber(0.4) and z is randomly drawn from the standard
normal distribution. We generated n = 200 data from the above model. Before applying the
adaptive Elastic-Net, we used SIS to reduce the dimensionality from 1000 to

 The estimation problem is still rather challenging, as we need to estimate 188
parameters by using only 200 observations. From Table 3 we see that SIS+AEnet performs
favorably compared to SIS+SCAD.

6. Proofs
PROOF OF THEOREM 3.1

We write

By the definition of β̂ŵ(λ2, λ1) and β̂(λ2, 0), we know

and

From the above two inequalities, we have
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(6.1)

On the other hand, we have

and

Note that λmin(XTX + λ2I) = λmin(XTX) + λ2. Therefore, we end up with

(6.2)

which results in the following inequality

(6.3)

Note that

which implies that

(6.4)
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Combing (6.3) and (6.4), we have

(6.5)

(6.6)

We have used condition (A1) in the last inequality. When ŵj = 1 for all j, we have

PROOF OF THEOREM 3.2

We show that  satisfies the Karush-Kuhn-Tucker (KKT) conditions of (2.2) with
probability tending to 1. By the definition of  it suffices to show

or equivalently

Let  and  We note that

Then by Theorem 3.1 we obtain

(6.7)
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Moreover, let  and we have

(6.8)

where we have used Theorem 3.1 in the last step. By the model assumption, we have

which gives us the below inequality

(6.9)

We now bound  Let

Then by using the same arguments for deriving (6.1), (6.2) and (6.3), we have

(6.10)

Note that  and  Following the
rest arguments in the proof of Theorem 3.1, we obtain
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(6.11)

The combination of (6.7), (6.8), (6.9) and (6.11) yields

We have chosen , then under conditions (A1)–(A6) it follows that

(6.12)

Thus the proof is completed.

PROOF OF THEOREM 3.3
From Theorem 3.2 we have shown that with probability tending to 1 the adaptive Elastic-Net

estimator is equal to  Therefore, in order to prove the model selection consistency

result, we only need to show  By (6.10) we have

Note that

Following (6.6) it is easy to see that
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Moreover,  and

In (6.12) we have shown  Thus

(6.13)

Hence, we have

and 

We now prove the asymptotic normality. For convenience write

Note that

In addition, we have

Therefore, by Theorem 3.2 it follows that with probability tending to 1, zn = T1 + T2 + T3,
where

Zou and Zhang Page 14

Ann Stat. Author manuscript; available in PMC 2010 May 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We now show that T1 = o(1), T2 = oP (1) and T3 → N(0, σ2) in distribution. Then by Slutsky’s
theorem we know zn →d N(0, σ2). By (A1) and αTα = 1, we have

Hence it follows by (A6) that T1 = o(1). Similarly, we can bound T2 as follows

where we have used (6.10) in the last step. Then (6.13) tells us that . Next we
consider T3. Let X [i,] denote the ith row of the matrix X . With such notation we can write

 where . Then it is easy to see that

(6.14)

Furthermore, we have for k = 2 + δ, δ > 0

Note that . Hence,

(6.15)
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From (6.14) and (6.15) Lyapunov conditions for the central limit theorem are established. Thus,
T3 →d N(0, σ2). This completes the proof.

Acknowledgments
We sincerely thank an associate editor and referees for their help comments and suggestions.

REFERENCES
Breiman L. ‘Heuristics of instability and stabilization in model selection’. The Annals of Statistics

1996;24:2350–2383.
Candes E, Tao T. ‘The dantzig selector: statistical estimation when p is much larger than n’. The Annals

of Statistics, to appear. 2007
Candes, E.; Wakin, M.; Boyd, S. California Institute of Technology; 2007. Enhancing sparsity by

reweighted ℓ1 minimization, Technical report.
Donoho D, Johnstone I. ‘Ideal spatial adaptation via wavelet shrinkage’. Biometrika 1994;81:425–455.
Donoho D, Johnstone I, Kerkyacharian G, Picard D. ‘Wavelet shrinkage: asymptopia? (with discussion)’.

Journal of Royal Statistical Society, Series B 1995;57:301–337.
Efron B, Hastie T, Johnstone I, Tibshirani R. ‘Least angle regression’. The Annals of Statistics

2004;32:407–499.
Fan J, Li R. ‘Variable selection via nonconcave penalized likelihood and its oracle properties’. Journal

of the American Statistical Association 2001;96:1348–1360.
Fan J, Li R. ‘Statistical challenges with high dimensionality: Feature selection in knowledge discovery’.

Proceedings of the Madrid International Congress of Mathematicians 2006 2006;Vol. III:595–622.
Fan, J.; Lv, J. Department of Operations Research and Financial Engineering, Princeton University; 2007.

Sure independence screening for ultra-high dimensional feature space, Technical report.
Fan J, Peng H. ‘Nonconcave penalized likelihood with a diverging number of parameters’. The Annals

of Statistics 2004;32:928–961.
Fan J, Peng H, Huang T. ‘Semilinear high-dimensional model for normalization of microarray data: a

theoretical analysis and partial consistency (with discussion)’. Journal of the American Statistical
Association 2005;100:781–813.

Huber P. ‘Robust regression: Asymptotics, conjectures and monte carlo’. The Annals of Statistics
1988;1:799–821.

Knight K, Fu W. ‘Asymptotics for lasso-type estimators’. The Annals of Statistics 2000;28:1356–1378.
Lam C, Fan J. ‘Profile-kernel likelihood inference with diverging number of parameters’. The Annals of

Statistics. 2007 to appear.
Portnoy S. ‘Asymptotic behavior of M-estimatiors of p regression parameters when p2/n is large. I.

consistency’. The Annals of Statistics 1984;12:1298–1309.
Tibshirani R. ‘Regression shrinkage and selection via the lasso’. Journal of the Royal Statistical Society,

Series B 1996;58:267–288.
Wang H, Li R, Tsai C. ‘Tuning parameter selectors for the smoothly clipped absolute deviation method’.

Biometrika 2007;94:553–568. [PubMed: 19343105]
Zou H. ‘The adaptive lasso and its oracle properties’. Journal of the American Statistical Association

2006;101:1418–1429.
Zou H, Hastie T. ‘Regularization and variable selection via the elastic net’. Journal of the Royal Statistical

Society, Series B 2005;67:301–320.
Zou H, Hastie T, Tibshirani R. ‘On the degrees of freedom of the lasso’. The Annals of Statistics

2007;35:2173–2192.

Zou and Zhang Page 16

Ann Stat. Author manuscript; available in PMC 2010 May 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zou and Zhang Page 17

TA
B

LE
 1

Si
m

ul
at

io
n 

I: 
m

od
el

 se
le

ct
io

n 
an

d 
fit

tin
g 

re
su

lts
 b

as
ed

 o
n 

10
0 

re
pl

ic
at

io
ns

.

ρ 
= 

0.
5

n
p n

|
|

M
od

el
M

SE
C

IC

10
0

35
9

Tr
ut

h
26

0

La
ss

o
7.

57
 (0

.3
1)

24
.0

8
0.

01

A
La

ss
o

6.
78

 (0
.4

2)
25

.5
0

0.
42

En
et

5.
91

 (0
.2

9)
24

.0
6

0.
00

A
En

et
5.

07
 (0

.3
5)

25
.4

7
0.

15

SC
A

D
10

.5
5 

(0
.6

8)
22

.5
4

0.
35

20
0

51
15

Tr
ut

h
36

0

La
ss

o
6.

63
 (0

.2
4)

33
.3

2
0.

00

A
La

ss
o

3.
78

 (0
.1

8)
35

.4
6

0.
02

En
et

4.
86

 (0
.1

9)
33

.3
6

0.
00

A
En

et
3.

46
 (0

.1
7)

35
.4

7
0.

01

SC
A

D
4.

76
 (0

.3
3)

34
.6

3
0.

10

40
0

75
24

Tr
ut

h
51

0

La
ss

o
4.

99
 (0

.1
5)

47
.3

1
0.

00

A
La

ss
o

2.
76

 (0
.0

9)
50

.3
3

0.
00

En
et

3.
37

 (0
.1

2)
48

.0
0

0.
00

A
En

et
2.

47
 (0

.0
8)

50
.4

5
0.

00

SC
A

D
2.

42
 (0

.0
9)

50
.8

8
0.

00

ρ 
= 

0.
75

n
p n

|
|

M
od

el
M

SE
C

IC

10
0

35
9

Tr
ut

h
26

0

La
ss

o
5.

93
 (0

.2
6)

24
.8

0
0.

14

A
La

ss
o

8.
49

 (0
.3

9)
25

.7
6

1.
84

En
et

4.
18

 (0
.2

4)
24

.7
7

0.
05

A
En

et
5.

24
 (0

.3
2)

25
.7

0
0.

74

SC
A

D
11

.5
9 

(0
.5

6)
22

.4
6

1.
34

20
0

51
15

Tr
ut

h
36

0

Ann Stat. Author manuscript; available in PMC 2010 May 4.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zou and Zhang Page 18

ρ 
= 

0.
5

n
p n

|
|

M
od

el
M

SE
C

IC

La
ss

o
5.

10
 (0

.1
8)

34
.6

6
0.

02

A
La

ss
o

5.
32

 (0
.3

1)
35

.7
0

0.
87

En
et

3.
79

 (0
.1

7)
34

.7
9

0.
00

A
En

et
3.

32
 (0

.1
7)

35
.8

0
0.

19

SC
A

D
5.

99
 (0

.3
1)

33
.1

0
0.

35

40
0

75
24

Tr
ut

h
51

0

La
ss

o
3.

83
 (0

.1
2)

49
.0

3
0.

00

A
La

ss
o

2.
85

 (0
.1

2)
50

.5
3

0.
09

En
et

3.
24

 (0
.1

1)
49

.0
7

0.
00

A
En

et
2.

71
 (0

.0
9)

50
.5

4
0.

03

SC
A

D
3.

64
 (0

.1
7)

48
.4

3
0.

09

Ann Stat. Author manuscript; available in PMC 2010 May 4.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zou and Zhang Page 19

TA
B

LE
 2

Ex
am

pl
e 

2:
 m

od
el

 se
le

ct
io

n 
an

d 
fit

tin
g 

re
su

lts
 b

as
ed

 o
n 

10
0 

re
pl

ic
at

io
ns

.

ρ 
= 

0.
5

n
p n

|
|

M
od

el
M

SE
C

IC

10
0

81
27

Tr
ut

h
54

0

La
ss

o
31

.7
3 

(1
.0

6)
47

.0
6

0.
19

A
La

ss
o

28
.7

8 
(1

.2
2)

53
.0

1
2.

12

En
et

27
.6

1 
(1

.0
4)

46
.3

5
0.

13

A
En

et
20

.2
7 

(0
.9

4)
53

.0
0

1.
15

SC
A

D
44

.8
8 

(2
.6

5)
47

.7
9

2.
37

20
0

13
1

42
Tr

ut
h

89
0

La
ss

o
23

.4
1 

(0
.6

7)
80

.5
1

0.
00

A
La

ss
o

12
.7

0 
(0

.4
8)

87
.9

9
0.

14

En
et

18
.9

4 
(0

.6
1)

80
.2

7
0.

00

A
En

et
10

.6
8 

(0
.3

7)
87

.9
7

0.
00

SC
A

D
14

.1
4 

(0
.6

4)
87

.4
2

0.
25

80
0

33
9

11
1

Tr
ut

h
22

8
0

La
ss

o
13

.7
2 

(0
.2

3)
21

2.
10

0.
00

A
La

ss
o

6.
44

 (0
.1

2)
22

6.
61

0.
00

En
et

11
.0

2 
(0

.1
8)

21
3.

91
0.

00

A
En

et
6.

00
 (0

.1
0)

22
6.

75
0.

00

SC
A

D
7.

79
 (0

.3
0)

22
8.

00
0.

33

ρ 
= 

0.
75

n
p n

|
|

M
od

el
M

SE
C

IC

10
0

81
27

Tr
ut

h
54

0

La
ss

o
22

.0
4 

(0
.7

3)
50

.7
4

0.
71

A
La

ss
o

33
.9

8 
(1

.0
8)

53
.7

3
7.

19

En
et

17
.3

7 
(0

.6
2)

50
.8

2
0.

46

A
En

et
16

.1
8 

(0
.8

0)
53

.6
7

2.
36

SC
A

D
31

.8
4 

(1
.7

7)
50

.5
5

4.
74

20
0

13
1

42
Tr

ut
h

89
0

Ann Stat. Author manuscript; available in PMC 2010 May 4.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zou and Zhang Page 20

ρ 
= 

0.
5

n
p n

|
|

M
od

el
M

SE
C

IC

La
ss

o
16

.7
1 

(0
.5

0)
85

.1
7

0.
06

A
La

ss
o

20
.9

8 
(0

.9
2)

88
.6

4
3.

98

En
et

14
.1

2 
(0

.4
8)

85
.3

5
0.

05

A
En

et
11

.1
6 

(0
.4

6)
88

.6
0

0.
87

SC
A

D
15

.2
7 

(0
.6

1)
87

.2
0

1.
33

80
0

33
9

11
1

Tr
ut

h
22

8
0

La
ss

o
10

.0
1 

(0
.1

6)
22

1.
74

0.
00

A
La

ss
o

6.
39

 (0
.1

2)
22

6.
89

0.
00

En
et

8.
01

 (0
.1

3)
22

2.
74

0.
00

A
En

et
6.

23
 (0

.1
1)

22
6.

94
0.

00

SC
A

D
6.

62
 (0

.1
7)

22
8.

00
0.

29

Ann Stat. Author manuscript; available in PMC 2010 May 4.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zou and Zhang Page 21

TABLE 3

A demonstration of SIS+AEnet: model selection and fitting results based on 100 replications.

dn = [5.5n2/3] Model MSE C IC

188 Truth 992 0

SIS+AEnet 0.71 (0.18) 987.45 0.05

SIS+SCAD 1.48 (0.90) 982.20 0.06
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