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Introduction

The ability of individuals with type 1 diabetes to 
monitor blood glucose levels has improved tremendously 
over the past four decades. The use of self-monitoring 
of blood glucose (SMBG) meters certainly has led to 
a tremendous improvement in glucose monitoring 
compared to urine strips. Continuous glucose monitoring 
(CGM) has the potential to further reduce mean glucose 
levels while avoiding the risk of hypoglycemia. It is 
also a necessary component of a closed-loop artificial 
pancreas.

A goal of this article is to review mathematical algorithms 
that have been proposed for use in CGM technology. 
Because our focus is on minimally invasive, subcutaneous 
sensors, we do not include an analysis of algorithms for 
noninvasive glucose sensors. Our primary interest is in 
algorithms proposed for hypoglycemic and hyperglycemic 

alarms, but a number of other important algorithms 
must be used for a successful alarm strategy. Thus, 
algorithms used for calibration, filtering raw current  
signals, handling of signal artifacts, compensation of the 
lag between blood and interstitial fluid, and hypo- and 
hyperglycemic alarms are discussed. Closed-loop control 
algorithms are not discussed; reviews of algorithms for a 
closed-loop artificial pancreas are discussed elsewhere.1–4 

Background
There have been a number of reviews of sensor and 
related technologies for continuous glucose monitoring 
for diabetes applications. Klonoff5,6 provided reviews of 
the state of continuous glucose monitoring technology, 
circa 2004. At that time, the only real-time device 
approved by the Food and Drug Administration (FDA) 
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for the U.S. market was the GlucoWatch G2 Biographer. 
An article by the JDRF CGM Study Group7 summarized 
the design and methods used to test the three continuous 
glucose monitoring systems (CGMS) currently approved 
by the U.S. FDA for the U.S. market. 

Skyler8 provided a comprehensive history of CGM 
development as an editorial introduction to a special issue 
on CGM. A tutorial overview of current CGM technology 
was provided by Kerr and Fayers,9 while Oliver and 
colleagues10 provided a more comprehensive review of 
noninvasive glucose sensor technology. Cox11 provided 
a head-to-head comparison of the currently available 
CGM systems. 

A CGM Standards report12 provided consensus guidelines 
on how CGM data should be presented and compared 
between CGM devices, and different glucose measurement  
methods. Important topics included the evaluation of 
threshold alarms, calibration, and sensor and physiological 
lag times. Lodwig and Heinemann13 discussed a number 
of important topics related to CGM calibration.  
Hayter and associates14 proposed performance standards 
of CGM devices, including methods of data analysis  
and acceptable rates of false alarms for hypoglycemia. 

Calibration 
Although an objective in diabetes management is 
to control blood glucose to near euglycemic levels, 
minimally invasive continuous glucose sensors output a 
signal that is proportional to the interstitial glucose 
value. A calibration algorithm is used to convert the raw 
sensor signal, typically in nanoamps, to a blood glucose 
estimate (milligrams per deciliter in the United States).  
In most cases, a simple linear equation is used

y = mx + b, (1)

where x is the independent variable (usually reference 
blood glucose) and y is the dependent variable (usually 
the sensor current). If the y intercept is assumed to be 
known (usually b = 0), then a one-point calibration 
can be used to find the sensor sensitivity (or slope, m), 
where

m =  (y – b)/x (2)

and only one sensor signal (y) – blood glucose (x) pair is 
used.

A two-point calibration is based on the two sensor/
glucose pairs, where the subscripts 1 and 2 represent the 
first and second calibration data points, respectively,

  

y1 = mx1 + b
y2 = mx2 + b

. (3)

The slope and intercept are estimated from

  
m =

y2 − y1( )
x2 − x1( )

b = y2 − mx2 . (4)

Further, when multiple data points are available, then 
linear regression can be used to fit slope and intercept to 
data. The assumption is that there is uncertainty in the 
output measurement, and the equation has the form15

yi = mxi + b + ei, (5)

where the subscript i represents the ith data point. 
Standard linear regression techniques find the slope (m) 
and intercept (b) that minimize the sum of the squares 
of the errors (differences between measurements and 
model predictions, where   ŷi = mxi + b) over N data points

  
min
m,b

ei
2

i=1

N

∑ = min
m,b

yi − ŷi( )2

i=1

N

∑ . (6)

Once the sensor is calibrated, the estimated glucose 
concentration is obtained from the sensor current from

  
x̂ =

y − b( )
m

. (7)

The correlation coefficient is a measure of the quality 
of the model fit; if the correlation coefficient is too low, 
the calibration may be deemed unacceptable, requiring 
additional reference glucose measurements, as discussed 
in the patent by Goode and colleagues.16 Further, the 
patent by Feldman and McGarraugh17 discussed criteria 
for calibration acceptance. 

Linear regression analysis assumes that the independent 
variable is known and that the dependent variable is 
uncertain. If Yellow Springs Instruments glucose data 
are used for sensor calibration, this may be a good 
assumption, but standard reference glucose test meters  
have substantial error.18 Panteleon and colleagues19 
obtained better sensor calibration results (lower mean 
average deviation of blood and subcutaneous glucose) 
when the raw glucose current signal is used as the 
independent variable in linear regression analysis

  xi = m ' yi + b '+ ei , (8)

where the parameters   m ' and   b ' are found by minimizing 
the objective function (where   x̂i = m ' yi + b ')

  
min
m ',b '

ei
2

i=1

N

∑ = min
m ',b '

xi − x̂i( )2

i=1

N

∑ . (9)

Deming regression is an “error in variables” technique  
that assumes uncertainty in both independent and 
dependent variables. Panteleon and associates19 noted 
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that the two different calibration procedures (reference 
blood glucose vs sensor current signal as independent 
variables) provide bounds on the results that would be 
obtained using Deming regression. 

The findings by Panteleon and colleagues19 were also 
demonstrated by Choleau and associates,20 who showed, 
via simulation, that errors in the reference glucose and 
continuous sensor can cause the slope and intercept to 
be correlated. In a related paper, Choleau and colleagues21 
used error grid analysis22 to show that the one-point 
calibration method is superior to the two-point calibration, 
based on rat studies. They also found that two one-
point calibrations yielded nearly as good calibration 
as three one-point calibrations. The use of multiple  
sensor–glucose data pairs and linear regression was not 
discussed, however.

Usually the time lag between the capillary blood glucose 
and the raw sensor signal is neglected by the calibration 
algorithm, so it is important to calibrate when the sensor 
glucose signal is relatively constant, assuring that the 
interstitial fluid glucose concentration is in equilibrium 
with the capillary blood. Aussedat and colleagues23 
proposed an automated calibration request that detects  
a “plateau” when the sensor signal has not changed by 
more than 1% over a 4-minute window and when the 
sensor current for the second calibration point differs 
from the first by 2 nA or greater. Studies were conducted 
in rats.

Errors in glucose meter reading, in addition to lags 
between blood and interstitial glucose, make it necessary 
that the two reference blood glucose values differ 
significantly when using a two-point calibration. King and 
colleagues24 showed how sensor performance varies 
as a function of the difference in the reference blood 
glucose values used for calibration, suggesting that they 
differ by >30 mg/dl. Indeed, they found that using two 
values separated by 40 mg/dl led to nearly the same 
performance as a retrospective calibration over a large 
number of glucose values. 

The DirecNet Study Group25 evaluated factors affecting 
calibration of the Medtronic CGMS. Sensor accuracy was 
improved slightly with more calibrations per day; also, 
accuracy was degraded when calibrating with glucose 
rates of change ±1.5 mg/dl/min. Another finding was 
that overnight sensor accuracy was improved if only 
overnight calibrations were used; it is suggested that a 
separate calibration algorithm be used for overnight 
reading. Finally, it should be noted that the calibrations 
were retrospective, but the authors suggested that similar 
improvements would be expected from prospective 
calibration. 

Discussion
Basing glucose sensor calibration on SMBG meter readings 
remains a major weakness of CGM technology. Errors in 
the reference glucose can lead to substantial bias in the 
calibrated CGM signal, having an effect for much of a  
24-hour period, depending on the frequency of calibration. 
It is difficult to incorporate SMBG uncertainty into the 
calibration, based on statistical techniques, because of the 
small set of data (only a few finger stick measurements 
each day). 

Filtering Raw Sensor Signals
Virtually all sensors have signal noise that must be “filtered” 
before the signals can be used by any computational 
algorithm or real-time display. Continuous glucose sensors 
have analog filters to smooth the current output to the 
analog-to-digital (A to D) converter, but even these sensor 
signals are noisy and must be filtered. It is particularly 
important to use filtered glucose values for applications 
based on the rate of change of glucose, particularly 
as these computations are based on differences in  
successive measurements. This section focuses on digital 
filtering and does not cover the analog filters that are in  
the sensor hardware. 

Median Filters
A median filter takes the median value of a window of 
N past glucose values

  ŷk = median yk , yk−1 , ..., yk− N +1( )  (10)

and has the advantage of discarding the effect of 
anomalous values due to “spikes” in the signal. Poitout 
and colleagues26 used a median filter based on the 
median of the past five sensor current values. 

Finite and Infinite Impulse Response Filters
The most common filtering algorithms are finite and infinite 
impulse response filters. A finite impulse response (FIR) 
filter has the form

  ŷk = a0 yk + a1yk−1 ++ aM yk− M , (11)

where y represents the measured glucose value and   ŷ 
the filtered value. A simple example is a moving average 
filter, with all data points in the data window weighted 
equally. For example, with a window of five samples,  
the following fifth-order filter

  ŷk = 0.2yk + 0.2yk−1 + 0.2yk− 2 + 0.2yk−3 + 0.2yk− 4  (12)

would create an effective delay of the order of 2.5 sample 
times. Panteleon and colleagues19 cited use of a seventh-
order FIR filter for signals sampled at a 1-minute interval. 
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Medtronic patents27,28 show raw signals being obtained 
at 10-second intervals. At the end of each 1-minute 
interval, the lowest and highest values are removed, and 
the remaining four are averaged to obtain the 1-minute 
average. Similarly, every 5-minute interval removes 
the lowest and highest 1-minute averages and averages 
the remaining three data points for the 5-minute average. 
Removing the highest and lowest values has a similar 
effect to median filtering. “Clipping limits” can be applied 
to limit the rate of change of either the raw signal 
or calibrated glucose values. Keenan and associates29 
noted that the Medtronic CGMS Gold and Guardian RT 
have different filtering algorithms. 

An infinite impulse response (IIR) filter has the form

  ŷk = −a1 ŷk−1 −− aN ŷk− N + b0 yk + b1yk−1 ++ bM yk− M, (13)

where the current filtered value of the output is a function 
of N previously filtered values, as well as current and M 
previous measurements. A patent assigned to Dexcom16 
suggests the use of IIR filters for raw signal filtering, 
with an example of N = 3 and M = 3. It should be 
noted that filters can also be applied to the derivative 
of the glucose (or its change between two successive 
measurements); this approach is cited in the Medtronic 
patent of Steil and Rebrin30 and is particularly useful 
as part of a closed-loop algorithm based on the rate of 
change of glucose. 

Optimal Estimation Theory
The optimal estimation theory approach of Knobbe 
and Buckingham31 and Knobbe and associates,32 based 
on use of a continuous-discrete extended Kalman filter,  
explicitly accounts for both sensor noise and uncertainty 
in reference glucose (finger stick) measurements. Based on  
use of a discrete dual-rate Kalman filter, a similar 
approach was used by Bequette and colleagues33 and 
Kuure-Kinsey colleagues.34 The next section provides a 
tutorial overview of Kalman filtering. 

Glucose Estimation and Prediction for 
Hypoglycemic and/or Hyperglycemic 
Alarms
One of the major motivations for the use of continuous 
glucose monitoring is to detect or predict the onset 
of hypoglycemia. Heise and colleagues35 provided an 
overview of requirements for a successful alarm system 
based on CGM. CGM alarms can be based on either 
threshold (limit exceeded by the current glucose 
measurement) or projected (a limit is expected to be 
exceeded at some point in the future, usually 10–45 
minutes) alarms. Currently, Dexcom sensors use a threshold 

alarm, whereas the Medtronic Guardian RT and  
Abbott Navigator systems have both a threshold and a 
projected alarm.36 

Linear Regression and Linear-in-Time Projections
Perhaps the most intuitive (and most common) method of 
predicting glucose values is to perform linear regression 
using a “window” of recent glucose measurements 
(filtered, raw, or estimates of glucose) and assuming 
that the slope remains constant into the future. As an 
example, consider the simulated set of glucose sensor 
measurements shown in Figure 1, where t = 0 is the current 
time. Standard linear regression analysis yields not  
only an estimate of the slope and intercept parameters 
but confidence intervals as well. These confidence intervals 
can also be used in the future prediction, yielding a 
region of possible glucose values, as shown 30 minutes  
into the future in Figure 1.

Figure 1. Continuous glucose (G) measurements are plotted as (+) 
from t = –15 to t = 0 minute. Linear regression is used to fit data to 
the solid line, retrospectively, from t = –15 to 0 minute. Dashed lines 
represent ±95% confidence intervals. Note that confidence intervals 
grow for predictions from t = 0 to t = 30 minutes into the future.

G
, m

g
/d

l

t, min

Past and future glucose

The equation used for linear regression is a first-order 
“polynomial-in-time” model

yk = atk + b, (14)

where the subscript k represents the kth sample time, 
a is the estimated slope, and b is the estimated intercept. 

Noujaim and colleagues37 performed simulation studies, 
similar to that shown in Figure 1, for a glucose rate of 
change of –5 mg/dl/min. Based on metrics proposed in 
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their paper, they showed that achieving false negative 
and false positive ratios of <5 and <10%, respectively, 
would require a CGM to have an mean absolute relative 
deviation of ≤7.5%. Brauker38 suggested a “zone” of future 
glucose possibilities, which is the same idea as that shown 
in Figure 1.

The Abbott FreeStyle Navigator continuous glucose 
monitoring (FSN-CGM) system has both threshold and 
projected alarms. McGarrough and Bergenstal39 presented 
in-clinic and in-home results for the FSN-CGM.  
For projected alarms, a window of 15 minutes of sensor 
data is used to estimate the rate of change of glucose 
and its uncertainty. If the uncertainty is below a certain 
value and the projected glucose is below a threshold of  
85 mg/dl within 10, 20, or 30 minutes, for low, medium,  
and high sensitivity alarms, respectively (as selected by 
the patient), an alarm is activated. 

Another linear projection method (used in the voting 
method presented by Cameron and colleagues40 and 
Dassau and colleagues41 and the pump shutoff studies 
of Buckingham and associates42) is to consider the end 
points of a data window

  
ratek =

yk − yk− N
NΔt

 (15)

and find the mean squared error of the rate based on 
single sample times over the same interval

. (16)

The standard deviation of the rate estimate is

  
σ ratek( ) =

MSEratek

N − 1
. (17)

Further, this can be scaled by the absolute value of the 
rate of change

  
unck =

σ ratek( )
ratek

 (18)

and if the scaled uncertainty is greater than some 
threshold value, the prediction is not accepted. 

Choleau and associates43 used a window of 10 minutes, 
with a sensor sample time of 0.5 minute, and linear 
regression to estimate the slope (glucose rate of change) 
and to project the glucose concentration 20 minutes 
into the future. If the projected glucose is 70 mg/dl or less,  
the alarm is triggered. Experimental data are presented 
based on rat studies. 

Cameron and colleagues44 developed a similar approach 
in their development of a statistical-based hypoglycemic 
alarm. Their technique, however, involves the consideration 

of multiple window lengths of past data for multiple 
linear regressions. In addition, they considered several 
different prediction horizons. A similar approach is 
proposed in the patent by Dunn and colleagues,45 
who suggested a “mixture of experts” based on the 
superposition of multiple linear regressions. 

The previous methods require that filtered glucose 
concentrations be used to develop the models for future 
projections. The theory of optimal estimation and prediction, 
however, combines signal filtering with model-based 
estimation and is discussed in the following subsection. 

Optimal Estimation and Prediction Theory
Palerm and colleagues46 developed a Kalman filter-based 
approach to estimate the future values of blood glucose. 
They explored the effect of sample time, hypoglycemic 
threshold, and prediction horizon on the sensitivity and 
specificity of the predictions and discussed how the 
optimal estimators can be tuned to trade-off the false 
alarm rate with the rate of missed hypoglycemic 
episodes; this suggests that an individual can tune the  
alarm depending on their personal risk for hypoglycemia. 
Palerm and Bequette47 validated this approach to data 
obtained from hypoglycemic clamp studies. Buckingham36 
also recommended that the hypoglycemic alarm threshold 
be tunable to meet an individual’s particular needs.

The underlying model is

  

xk +1 = Φxk + Γwwk

yk = Cxk + vk
, (19)

where x is a vector of states and y is measured output, 
wk is process noise (covariance Q), and vk is measurement 
noise (covariance R). If it is assumed that process noise 
drives the first derivative of glucose with time, then the 
following relationships result

  

gk + 1 = gk + dk

dk + 1 = dk + w k

yk = gk + vk

, (20)

where g and d represent the glucose and the change in 
glucose from step to step, respectively. The state space 
model corresponding to Equation (20) is

  

g
d

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥k +1

xk +1

  

= 1 1
0 1

⎡

⎣
⎢

⎤

⎦
⎥

Φ
  

g
d

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥k

xk

 

+ 0
1

⎡

⎣
⎢

⎤

⎦
⎥

Γw


wk

yk = 1 0⎡⎣ ⎤⎦
C

  

g
d

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥k

xk

 

+ vk . (21)
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Process and measurement noise are considered stochastic 
processes, and the process noise covariance (Q) is known 
only approximately and is often used as a tuning parameter. 
The states are estimated using predictor–corrector equations 
of the form:

  
x̂k |k −1 = Φx̂k −1|k −1  predictor  (time update) (22)

and the glucose sensor measurement is used to update 
the state estimate

  
x̂k |k = x̂k |k −1 + Lk yk − Cx̂k |k −1( )  

		  corrector  (measurement update) (23)

where   x̂ represents an estimate of the states and the 
subscript k|k – 1 means the estimate at step k is based 
on measurements up (and including) step k – 1. Note that 
a model is used to propagate the state estimate from the 
previous time step (k – 1) to the current time step (k). 
The measurement at the current time step is then used  
to update the state estimate based on Kalman gain (Lk).

The state estimate covariance is determined by solving

  
Pk = ΦPk−1ΦT + ΓwQΓwT − ΦPk−1CT CPk−1CT + R( )−1

CPk−1ΦT, (24)

where the first two terms on the right-hand side of the 
equals sign represent the propagation of state covariance 
and process noise, while the third term represents a 
correction due to the measurement update (including the 
effect of measurement noise)

  
Lk = PkCT CPkCT + R( )−1

. (25)

Essentially, the Kalman filter provides a trade-off between 
the likelihood that a change in a sensor reading is due 
to a real effect (such as capillary blood glucose changing) 
and sensor noise. For more background on Kalman 
filtering and optimal estimation, see Stengel.48 

Future glucose predictions from the most recent 
measurement at time step k to step k + j are given by

  
x̂k+ j|k = Φ j x̂k|k . (26)

For the two-state model in Equation (21), this is 
equivalent to assuming that the rate of change of glucose  
is constant in the future. That is, for the jth future time 
step

  
ĝk+ j|k = ĝk|k + jd̂k|k , (27)

where   d̂k|k is the estimated change in glucose from step 
k – 1 to step k (the current measurement). Uncertainty 
in the future grows as [Equation (24) without the 
measurement feedback term]

  Pk = ΦPk−1ΦT + ΓwQΓwT . (28)

For this problem, the confidence interval grows with 
each step not followed by a measurement update as 
there are two “integrators” in the glucose model; this 
behavior is demonstrated in the simulations that follow.

Consider the simulated noise sequence presented in 
Figure 1 where Kalman filtering is used to obtain 
glucose and rate of change of glucose, in real time, 
despite substantial measurement noise. The state vector 
estimate is initialized with the measured glucose at 
t = –15 minutes, with an assumed rate of change of 
0 mg/dl/min. Figure 2 displays real-time estimates of 
glucose (top) and its rate of change (bottom) along with 
the uncertainty bounds of each. Although the actual 
rate of change was –2 mg/dl/min, the Kalman filter 
converges to this value within 15 minutes. Figure 3 
shows predicted glucose values based on measurements 
available until t = 0 minute. Because of the uncertainty 
about future rates of change, confidence intervals of the 
glucose predictions increase each step into the future; 
simulation details are provided in the Appendix. 
The increase in uncertainty bounds in Figure 3 
(based on Kalman filtering), compared to Figure 1 
(based on linear regression analysis), is an artifact of 
assumptions used in the simulation. The smaller linear 
regression confidence bounds are due to the fact that the 
real underlying signal has a constant slope, while the 
Kalman filter “recognizes” that the slope may change in  
the future.

Figure 2. Glucose (G; top) and rate of change of glucose (Dg; bottom). 
Actual (black), Kalman filter (KF) estimate (blue), and uncertainty 
(unc) bounds (-  -  -). The Kalman filter was initialized at t = –15 
minutes, with uncertainty in the glucose and rate-of-change states. 
The estimated error variance improves with measurement (meas) 
updates. Q = 0.01, R = 4.
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Facchinetti and colleagues49 presented a two-state 
Kalman filter that has identical behavior to our two-state 
model shown in Equation (21). Their integrated random 
walk model is presented in the form

  

gk+1 = 2gk − gk−1 + wk

yk = gk + vk
, (29)

which has the state space form

  

x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

k+1
xk +1

  

= 2 −1
1 0

⎡

⎣
⎢

⎤

⎦
⎥

Φ
  

x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

k
xk

 

+ 1
0

⎡

⎣
⎢

⎤

⎦
⎥

Γw


wk

yk = 1 0⎡⎣ ⎤⎦
C

  

x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

k
xk

 

+ vk , (30)

where the first state is the glucose and the second 
state is the value of glucose at the previous time step. 
Although the performance of the resulting Kalman filter 
is equivalent to results shown in Figures 2 and 3, we 
feel that our formulation is more natural, as our second 
state is the rate of change of glucose, which is applied 
directly to future predictions. Facchinetti and associates49 
developed a nice procedure for tuning the Kalman filter 
based on data from individual subjects. 

The Kalman filter estimates shown in Figures 2 and 3 
are based on a second-order (two-state) model. However, 
if it is assumed that process noise drives the second 
derivative of glucose with time, the following third-order 
(three-state) model can be used:

  

Φ =
1 1 0
0 1 1
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, Γw =
0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,

C = 1 0 0⎡⎣ ⎤⎦ , x =
g
d
f

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, y = G, (31)

where g, d, and f represent glucose, rate of change of 
glucose, and the second derivative of glucose with 
respect to time, respectively. The advantage of the 
three-state model is that it captures dynamics near the 
maximum (peak) and minimum (valley) values of glucose. 
While the three-state model yields better estimates for 
previous and current glucose estimates, Palerm and 
Bequette47 found that the assumption of a constant 
first derivative (two state) for future predictions led to 
better performance for multistep-ahead predictions on 
clinical data than assuming a constant second derivative  
(three state). 

Autoregressive (AR) Model Prediction
Bremer and Gough50 applied AR models to blood glucose 
data available at 10-minute sample times and compared 
predictions for 10, 20, and 30 minutes ahead. An AR model 
has the form

  
yk = ai yk− i

i=1

n

∑ + wk , (32)

where y is the glucose value, w is a white noise sequence, 
and there are n coefficients, ai (i.e., the model is nth order). 
An autoregressive moving average model has a more 
general form with n ai coefficients and m ci coefficients

  
yk = ai yk− i

i=1

n

∑ + ciwk− i
i=0

m−1

∑ . (33)

Reifman and colleagues51 studied a sensor with a sample 
time of 1 minute and used 2000 data points (2000 minutes) 
to “train” a 10th-order AR model (n = 10); that is, they fit 
the 10 model parameters to data. The performance of this 
model is based on the ability to match 4000 additional 
minutes of data. They found that a prediction horizon of  
30 minutes yields a root mean square error of 22 mg/dl, 
with a prediction delay. In order to reduce the prediction 
delay, Gani and colleagues52 used a smoothing procedure 
and regularization to minimize changes in the glucose 
first derivatives. This approach, with a 30th-order model, 
reduces the prediction lag compared to the results of 
Reifman and associates.51 

Sparacino and colleagues53 used an adaptive first-order 
model, where the parameter is updated at each time 
step to estimate future glucose values and compared 
this with a first-order “polynomial-in-time” approach. 

Figure 3. Actual glucose (G; black), measured (+), estimated (blue), and 
uncertainty bounds (-  -). The Kalman filter was initialized at t = –15 
minutes. After t = 0 the estimated error variance grows as there are 
no measurements to improve the estimates.
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Zanderigo and associates assessed the accuracy using 
a continuous glucose error-grid analysis. Sparacino and 
colleagues provided a tutorial overview of algorithms for 
continuous glucose monitoring and glucose prediction 
for use in hypo/hyperglycemic alarms. They noted that 
a limitation to the approach of Reifman and colleagues51 
is the substantial amount of training data required for 
estimation of a large number of parameters in a fixed-
parameter formulation. Gani and colleagues addressed 
this criticism by showing that a model could be produced 
once for a particular individual and then used on other 
individuals. 

Eren-Oruklu and associates57,58 developed a more general 
approach, including real-time adaptation of parameters, 
and found that the best model is second order, with the 
form

  yk = a1yk−1 + a2 yk−1 + wk + c1wk−1 , (34)

while Sparacino and colleagues53 used a first-order model

  yk = a1yk−1 + wk . (35)

In these studies, model coefficients are estimated recursively, 
using weighted least squares, where data further in  
the past have less of an impact than more recent 
data. That is, the parameters are found to solve the 
optimization problem

  
min m i yk− i − ŷk− i( )2

i=0

N −1

∑ , (36)

where m is a “forgetting factor,” with values between 
0 and 1. The forgetting factor57,58 is adapted based on a 
change detection method that reduces m during periods 
of rapid glucose change. Further, statistical process 
monitoring techniques58 (control charts) are used to 
activate hypoglycemic alarms. 

Combined Methods
Recognizing that each of the hypoglycemic prediction 
methods has strengths and weaknesses, a voting method40,41 
was used to determine when hypoglycemia is likely to occur. 
The algorithms employed include Kalman filtering,47 
hybrid adaptive IIR, linear polynomial in time, statistical 
hypoglycemia prediction,44 and a numerical logical 
algo-rithm. Two of these approaches (linear polynomial  
in time and statistical hypoglycemia prediction) have 
been used in a clinical pump shutoff study.42 

Artificial Neural Networks (ANN)
Artificial neural networks and other nonlinear models can 
be used for glucose prediction. Pappada and colleagues59 
used an ANN, based on CGM and additional patient diary 
information (meals and insulin infusion), to predict 
glucose values; they do not propose hypoglycemic 

prediction alarms, however. A number of different 
structures and training procedures can be used for 
artificial neural networks. Kuure-Kinsey and associates60 
presented a process application of a feed-forward ANN, 
while Kuure-Kinsey and Bequette61 showed that a 
recurrent ANN yields better future predictions. A major 
disadvantage to nonlinear techniques, such as ANN,  
is that much training data are needed (for model 
parameter estimation).

Discussion
Gani and colleagues52 stated that a disadvantage to 
Kalman filtering is that it requires a high-fidelity, first-
principles model for meals and physical activity, but it 
should be clear from Equations (20), (21), and (31) that 
this is not the case. The two- and three-state models 
of Equations (21) and (31) are nothing more than basic 
principles of differential calculus applied to glucose; that 
is, the two-state model related “distance” (glucose) and 

“velocity” (rate of change) of glucose, whereas the three-
state model relates distance, velocity and “acceleration” 
(second derivative of glucose). These models are exact, 
with the only uncertainties being the distribution of 
process noise (perturbations to either the first or second 
derivatives of glucose) and sensor noise. A major advantage 
to the Kalman filtering approach is that it, unlike 
empirical modeling, does not require much data for 
parameter estimation. Depending on what is known, 
or assumed, about the process and sensor noise variances,  
a single tuning parameter, the Q/R ratio, can be used to 
change Kalman filter estimator performance. 

Blood and Interstitial Fluid Glucose 
Dynamics and Sensor Lag
Many papers have stressed the importance of the lag 
between capillary blood and interstitial fluid glucose 
levels. In practice the interstitial fluid glucose is not 
measured directly; the subcutaneous sensor current is 
assumed to be proportional to it. Weinstein and associates62 
noted that the mean average relative deviation between 
venous glucose (based on a laboratory reference reading) 
and sensor glucose is minimized when data are time 
shifted by 12.6 minutes. Voskanyan and colleagues63 
noted that sensor filtering algorithms can add a significant 
lag when high rates of glucose change are being studied, 
and the physiological blood/interstitial fluid lag may  
have been overestimated in several articles based on the 
Medtronic CGMS. 

Keenan and colleagues29 provided an overview of delays 
in continuous glucose sensor devices. For common 
transcutaneous sensors on the market, the physiologic 
lag is 3–12 minutes, the electrochemical sensor lag is  
1–2 minutes, and there can be additional lags due to filtering 
algorithms. In an in vitro study of the Medtronic CGMS, 
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Keenan and associates29 found that a substantial time 
delay can be induced by the sensor noise filtering 
algorithm under conditions of glucose rate of change 
that are not physiologic. 

A number of investigators64,65 have approximated the 
dynamics between capillary blood glucose and interstitial 
fluid as a first-order differential equation with the form

  
dy
dt

= ay + bg = −
1
t

y +
k
t

g, (37)

where g and y represent perturbations of the capillary 
blood glucose and sensor signal, respectively, from 
steady-state (basal) conditions, and k and t represent 
the gain and time constant. Schmidtke and colleagues64 
indicated that t ranged from 9 to 25 minutes in rats, 
whereas the dog studies of Rebrin and associates65 found 
that t ranged from 5 to 12 minutes. Steil and colleagues66 
studied humans and found t = 3 minutes. Kulcu and 
colleagues67 found the physiological lag in humans to be 
approximately 5 minutes. 

Consider now the simple simulation presented by  
Rebrin and associates65 for a capillary blood glucose 
decrease from 200 to 100 mg/dl, where a time constant 
(lag) of 12 minutes and a gain of 1 are assumed; the 
sensor sample time is 1 minute. The corresponding 
interstitial fluid glucose, with sensor noise (standard 
deviation = 1 mg/dl), is shown in Figure 4. While the 
measurement noise in Figure 4 does not appear too 
significant, it does have a strong effect on the ability to 
estimate blood glucose from subcutaneous measurements, 
as demonstrated in the simulations that follow. 

Rebrin and colleagues65 presented an intuitive estimation 
approach by rearranging Equation (37) to solve for blood 
glucose (g) from the subcutaneous sensor signal (y):

  
ĝ =

dy
dt

− ay

b
, (38)

where ^ is used to indicate an estimated value. A finite-
differences (FD) approximation for the derivative yields

. (39)

Rebrin and colleagues65 noted that this numerical 
derivative-based approach is very sensitive to measurement 
noise and also applied a three-point moving average 
filter to the derivative term. It should be made clear 
that Medtronic does not use this FD approach for lag 

compensation in their products; it is used here merely to 
show the major advantages of optimal estimation-based 
techniques for this type of problem. The Medtronic patent 
by Steil and Rebrin30 cites the use of a Weiner filter for 
lag compensation, but no technical details are provided. 
The Abbott patent by Feldman and McGarraugh17 describes 
a lag compensation procedure identical to Equation (39), 
when y is a calibrated sensor value (and thus a/b = –1). 

Bequette68 developed a Kalman filter-based algorithm 
to compensate for the blood glucose to interstitial fluid 
transport lag, even when there is substantial sensor noise. 
A formulation that assumes that the stochastic noise 
term perturbs the glucose rate of change is shown in the 
following equation
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+ vk , (40)

where s is the subcutaneous glucose concentration, g is 
the capillary blood glucose, and d is the rate of change 
of blood glucose. The time lag of 12 minutes and the 
gain of 1 result in values of   Φ = exp −Δt t( ) = 0.92 and 
 Γ = 1 − Φ = 0.08. The state estimates are obtained solving 
Equations (22) and (23) as before. For these simulation 
studies, the steady-state Kalman gain is obtained by 
iterating Equations (24) and (25) until they converge to 
constant values. 

Figure 4. Simulated change in capillary blood glucose (G) and the 
corresponding interstitial fluid sensor signal. A lag of 12 minutes 
between capillary blood and interstitial fluid is assumed, and sensor 
noise with a standard deviation of 1 mg/dl is used. s.c., subcutaneous.
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A comparison of FD with Kalman filter estimates is 
shown in Figure 5, where the Kalman filter is designed 
based on Q = 0.005 and R = 1 and on the steady-state 
Kalman gain (Lss). Clearly the Kalman filter estimates 
are insensitive to sensor noise, with the downside of 
a slight lag in the estimates when glucose begins to 
decrease. This lag can be reduced by using a larger 
Q value in the design, with a slight increase in noise 
sensitivity.

blood glucose and the subcutaneous sensor signal, which 
may actually be time varying. Another limitation is the 
static calibration curve relating the subcutaneous signal to 
the capillary blood glucose; this is strongly dependent  
on the quality of the calibration, which is dependent on the 
glucose meter variability as well as the “human element.”

Signal Dropouts and Related Artifacts
A simple way to detect signal dropouts is to set a bound 
on allowable measurement changes. That is, a measurement  
is invalid if

  

yk − yk−1 > d

yk < ε
, (42)

where d is a rate-of-change threshold. Because the rate 
of change is sensitive to noise, consider the use of a 
Kalman filter, with glucose rate of change as the second 
state

  
x̂k|k =

ĝ

d̂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

k|k

. (43)

If 
  
d̂k|k > d, then a revised glucose estimate could be 

  ĝk|k = ĝk −1|k −1 ± d. This prediction could be carried out for 
j time steps of an invalid signal using

  
x̂k+ j|k = Φ j x̂k|k . (44)

An alarm could be activated after a certain number 
of steps without a valid signal or when “open-loop” 
covariances indicate that an individual is possibly 
entering an unsafe condition. 

Bondia and colleagues70 discussed the use of support 
vector machines to detect incorrect measurements; their 
method is based on retrospective analysis, but note that 
a real-time approach is desirable. Monitoring techniques 
for fault detection and abnormal situation management 
are often used in the chemical process industries, and it 
is likely that these techniques could be used successfully 
for CGM fault detection. For example, Juricek and 
associates71 presented a Kalman filter-based approach 
to predict whether a process variable will violate an 
emergency limit in the future. 

It is also standard in the chemical process industries 
to use redundant measurements to reconcile errors and 
detect gross errors and failures. Ward and colleagues72 
proposed a similar idea, but developed a sensor array 
with four implantable sensors. They used a median-
based algorithm to detect when one of the sensor signals 
is inconsistent with the other sensors. 

Figure 5. Comparison of estimated blood glucose (G) from a Kalman 
filter (KF; top), with the FD estimator (bottom), based on the simulated 
sensor signal in Figure 4. While there is a slight lag immediately after 
the initial decrease in blood glucose using the Kalman filter, much 
less noise propagates into the estimate compared to the FD approach.
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Another approach that can be used to estimate capillary 
blood glucose from noisy subcutaneous sensor signals  
is Phillips–Tikhonov regularization, as shown by Freeland 
and Bonnecaze.69 Essentially their method involves an 
analytical integration of Equation (37) to the form of

  
y t( ) = y θ( )exp − t − θ( ) t( ) +

g γ( )
t

exp t − γ( )/t( )dγ
θ

t

∫ , (41)

where θ is the initial time for a window of data that 
includes the current time, t. Discretization and inversion 
methods are then used to solve for the unknown glucose  
as a function of time, g(t). This method appears to be more 
sensitive to measurement noise than Kalman filtering, 
however.

Discussion
There are a number of limitations to the performance 
of a blood glucose estimator, no matter which approach is 
used. One is the dynamic relationship between capillary 
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Conclusions 
A concise review of many of the published algorithms 
proposed for CGM calibration, filtering, hypo- and 
hyperglycemia prediction, and fault detection has been 
conducted. A tutorial exposition on the use of Kalman 
filtering for improved glucose (and rate of change) 
estimation and prediction is provided. Significant progress 
needs to be made in sensor fault detection, as well 
as integration of all of the components into a robust, 
reliable hardware and software platform.
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Appendix: Simulation Parameters

A1. Linear Decrease in Glucose Example
The simulation shown in Figure 1 is based on a glucose rate of change (slope) of –2 mg/dl/min, starting at 150 mg/dl, 
with random sensor noise with a standard deviation of 2 mg/dl.

A2. Kalman Filter Applied to Linear Decrease in Glucose Example
Simulation details for Figures 2 and 3 are provided next. The state and measurement variances are

Q = 0.12	 mg2/dl2/min2

R = 22	 mg2/dl2 .

The following initial conditions are used for the state vector and the state covariance

  
P0 = 22 0

0 22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

Thus there is significant initial uncertainty in the states, as the actual initial condition is

  
x0 =

g0

do

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 150
−2

⎡

⎣
⎢

⎤

⎦
⎥ .

The Kalman gain (L) at the end of 15 minutes of measurements is

  
Lk=15 = 0.5371

0.0436
⎡

⎣
⎢

⎤

⎦
⎥ ,

which eventually converges to the steady-state Kalman gain of

  
Lss = 0.2716

0.0427
⎡

⎣
⎢

⎤

⎦
⎥ .

The state covariance matrix of

  
Pk=15 = 4.6415 0.3770

0.3770 0.1025
⎡

⎣
⎢

⎤

⎦
⎥

eventually converges to a steady-state value of

  
Pss = 1.4914 0.2343

0.2343 0.0736
⎡

⎣
⎢

⎤

⎦
⎥ .

That is, eventually (with continued measurement updates), variances of the glucose and rate-of-changes estimates 
are 1.49 and 0.0736 mg2/dl2/min2, respectively, yielding long-term confidence intervals of ±1.22 mg/dl and ±0.27 mg/dl/min 
for glucose and its rate of change. 
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A3. Estimation of Capillary Blood Glucose from Noisy Subcutaneous Sensor Example
Simulation details for Figures 4 and 5 are presented here. The process covariance, Q = 0.005, and the sensor noise, 
R = 1 (consistent with the measurement noise variance of 1 mg2/dl2). The steady-state Kalman gain is

  

Lss =
0.2522
0.7221
0.0611

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

and the steady-state state covariance matrix is

  

Pss =
0.3373 0.9656 0.0818
0.9656 3.4424 0.3781
0.0818 0.3781 0.064

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

That is, the steady-state variance of the estimate of subcutaneous glucose (measured) is 0.3373 mg2/dl2, capillary blood 
glucose (unmeasured) is 3.4424 mg2/dl2, and the rate of change of blood glucose (unmeasured) is 0.064 mg2/dl2/min2.


