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ABSTRACT A method is presented for protein secondary
structure prediction based on a neural network. A training
phase was used to teach the network to recognize the relation
between secondary structure and amino acid sequences on a
sample set of48 proteins ofknown structure. On a separate test
set of 14 proteins of known structure, the method achieved a
maximum overall predictive accuracy of 63% for three states:
helix, sheet, and coil. A numerical measure of helix and sheet
tendency for each residue was obtained from the calculations.
When predictions were riltered to include only the strongest
31% of predictions, the predictive accuracy rose to 79%.

Accurate prediction of protein secondary structure is a step
toward the goal ofunderstanding protein folding. A variety of
methods have been proposed that make use of the physico-
chemical characteristics of the amino acids (1), sequence
homology (2-4), pattern matching (5), and statistical analyses
(6-11) of proteins ofknown structure. In a recent assessment
(12) of three widely used methods (1, 6, 9), accuracy was
found to range from 49% to 56% for predictions of three
states: helix, sheet, and coil. The limited accuracy of the
predictions is believed to be due to the small size of the data
base and/or the fact that secondary structure is determined
by tertiary interactions not included in the local sequence.

In this paper* we describe a secondary structure prediction
method that makes use of neural networks. The neural
network technique has its origins in efforts to produce a
computer model of the information processing that takes
place in the nervous system (13-16). A large number of
simple, highly interconnected computational units (neurons)
operate in parallel. Each unit integrates its inputs, which may
be both excitatory and inhibitory, and according to some
threshold generates an output, which is propagated to other
units. In many applications, including the present work, the
biological relevance of neural networks to nervous system
function is unimportant. Rather, a neural network may
simply be viewed as a highly parallel computational device.
Neural networks have been shown to be useful in a variety of
tasks including modeling content-addressable memory (17),
solving certain optimization problems (18), and automating
pattern recognition (19).
The neural networks used here for secondary structure

prediction are of the feed-forward variety. These networks
are organized into layers as shown in Fig. 1. Values of the
input layer are propagated through one or more hidden layers
to an output layer. Specialization of a neural network to a
particular problem involves the choice ofnetwork topology-
that is, the number of layers, the size of each layer, and the
pattern of connections-and the assignment of connection
strengths to each pair of connected units and of thresholds to
each unit. Interest in such networks has been stimulated by
the recent development of a learning rule for the automatic
assignment of connection strengths and thresholds (20). In a
"training" phase, initially random connection strengths

(weights) and thresholds (biases) are modified in repeated
cycles by use of a data set, in this case known protein
structures. In each cycle adjustments are made to the weights
and biases to reduce the total difference between desired and
observed output. At the end of the training phase, the
"knowledge" in the network consists of the connection
strengths and thresholds that have been derived from the
training data. This may be contrasted to pattern recognition
by expert systems (5), in which "knowledge" of the problem
domain lies in the rules that are supplied by the "expert."

METHODS
Data. The secondary structure assignment used is based on

the work of Kabsch and Sander (21). Their program, DSSP, is
used to classify known structures in the Brookhaven Protein
Data Bank (22) as helices (H) and sheets (E); residues that are
neither H nor E are classified as "coil." To facilitate a
comparison with other prediction methods, the 62 proteins
listed in table 1 of ref. 12 are used. The first 48 in the list (8315
residues) are taken as the training set and the last 14 (2441
residues) as the test set. The training set has a composition
of 26% helix, 20%o sheet, and 54% coil; the test set has a
composition of 27% helix, 20% sheet, and 53% coil.
Network Formulation and Calculation. The network used

for most of the calculations consists ofan input layer, a single
hidden layer, and an output layer (Fig. 1). The input layer
encodes a moving window in the amino acid sequence and
prediction is made for the central residue in the window. An
initial window size of 17 is used based on evidence of
statistical correlation with secondary structure as far as 8
residues on either side of the prediction point (9).
A binary encoding scheme is used for network input. In this

scheme each amino acid at each window position is encoded
by a group of 21 inputs, one for each possible amino acid type
at that position and one to provide a null input used when the
moving window overlaps the amino- or carboxyl-terminal
end of the protein. In each group of 21 inputs, the input
corresponding to the amino acid type at that window position
is set to 1 and all other inputs are set to 0. Thus, the input layer
consists of 17 groups of 21 inputs each and for any given 17
amino acid window, 17 network inputs are set to 1 and the rest
are set to 0.
The hidden layer consists of two units. The output layer

also consists of two units. Secondary structure is encoded in
these output units as follows: (1,0) = helix, (0,1) = sheet, and
(0,0) = coil. Actual computed output values are in the range
0.0-1.0 and are converted to predictions with the use of a
threshold value, t. Helix is assigned to any group of four or
more contiguous residues, the minimum helix in Kabsch and
Sander classifications, having helix output values greater
than sheet outputs and greater than t. p-Strand is assigned to
any group of two or more contiguous residues, the minimum
a-strand, having sheet output values greater than helix
outputs and greater than t. Residues not assigned to helices

*A preliminary report of this work was presented at the Second
Symposium of the Protein Society, August 13, 1988, San Diego, CA,
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FIG. 1. Neural network topology. Each of the 17 blocks shown
in the input layer represents a group ofnetwork inputs used to encode
the amino acid at the corresponding window position. Each group
consists of21 inputs, one for each possible amino acid at that position
plus a null input used when the moving window overlaps the end of
the amino acid sequence. Thus, for a given window in the amino acid
sequence, 17 of the 357 network inputs are set to 1 and the remainder
are set to 0. A block in the hidden layer or in the output layer
represents a single unit. Prediction is made for the central residue in
the input window.

or p-strands are considered coil. The value of the threshold
parameter, t, is adjusted by maximizing the accuracy of
secondary structure assignment for the training set.
For both training and prediction, inputs are propagated

forward through the network as illustrated in Fig. 2. (See ref.
20 for additional discussion.) The rule of Fig. 2 together with
the network topology, the input encoding and output decod-

ing described above, and the set of weights and biases
produced by network training constitute a complete descrip-
tion of the prediction scheme.
The training procedure used is that described by Rumelhart

et al. (19, 20). Network weights are initially assigned random
values in the range -0.1 to 0.1. In each cycle, all of the
training proteins are presented to the network and the input
window moves through the amino acid sequences one residue
at a time. At the end of the cycle, weights are adjusted and
the procedure is repeated. The adjustments in network
weights result in a gradient descent in the total output error
defined by

[1]E = (°j c-Djc)c,
c j

where Oj,, is the observed output on unit ] for training case
c and Dj,c is the desired output. Training is halted when the
reduction in E becomes asymptotic (in practice when the
fractional change in E per cycle is less than 2 x -10-4).

Evaluation ofResults. To obtain suitable quality indices (23)
for the comparison of secondary structure prediction algo-
rithms, we consider the percent of total correct predictions
and the correlation coefficients for each state: helix, sheet,
and coil (24). The latter avoid the exaggeration of results due
to overprediction when a single figure of merit is used. In
addition, we report for each state S the percent ofthe residues
that are correctly predicted to be in state S, PC(S). This
quality index (12) is a direct measure of the probability that
a given prediction is correct.

RESULTS

The neural network shown in Fig. 1 was trained for 100 cycles
over the 48 proteins. Training and prediction results are
summarized in Table 1. A threshold value of t = 0.37 was
found to produce a maximum percent correct for the training
set (data not shown); this threshold value was used through-
out. In Table 2 the results for the 14 proteins are compared
with predictions from the methods of Chou and Fasman (6),
Gamier et al. (9), and Lim (1) as reported by Kabsch and
Sander (12).
A number of tests were made to determine the dependence

of the accuracy of predictions on the network parameters.
Table 3 shows the effect ofvarying window size on prediction
accuracy. The optimum window size depends on the quality
index chosen. Thus, although the output error reaches a
minimum for a window size of 15, the correlation coefficients
are somewhat better for a window size of 17. In general,
prediction accuracy is a slowly increasing function ofwindow
size, confirming the importance of nearest-neighbor interac-
tions.
Table 4 shows the effect of varying hidden-layer size.

Unit k

FIG. 2. Network computation. During foward propagation through each layer of the neural network, the computation illustrated above takes
place at each hidden unit and at each output unit. The products of outputs from the preceding layer, Yi, with the connection strengths, Wik, are
summed over all inputs to the unit. The resulting sum is adjusted by the bias for the unit, bk. The output of unit k is then generated according
to the given formula and propagated to the next layer of the network. Unit outputs are in the range 0-1. Connection strengths may be either
positive or negative.
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Table 1. Summary of neural network training and prediction
Training set Prediction set

Quality index (48 proteins) (14 proteins)
Percent correct (three-state total) 68.5 63.2
Correlation coefficients
C. 0.49 0.41
Cal 0.47 0.32
CCOiI 0.43 0.36

Percent correct of predicted
PC(a) 65.3 59.2
PC(J) 63.4 53.3
PC(coil) 71.1 66.9

Substantially longer training was required for the larger
networks; networks with 5, 10, or 20 hidden units were
trained for 500 cycles. After training, the network with 20
hidden units achieved an accuracy on the training set ofabout
91%, but prediction accuracy fell to 59%. A 20-hidden-unit
network involves over 7000 weights and biases. Since there
are only 8315 residues in the training set, the free variables in
the network are sufficient for it to learn to reproduce most of
the "idiosyncratic" aspects ofthe training set. In the process,
however, the network loses some of its ability to generalize,
and prediction accuracy goes down. This potential for a loss
of correlation between training accuracy and predictive
accuracy is a fundamental limitation of neural networks.
The results with 0 hidden units are especially interesting.

In this case the neural network has only two layers with
inputs directly connected to outputs. It can be shown that
there are pattern recognition problems that require at least
one layer of hidden units (25). These are problems in which
similarity clustering of inputs is not necessarily reflected in
similarity of outputs. In our case, however, a neural network
without hidden units is able to achieve a predictive accuracy
that is close to optimal. The weights and biases for this
0-hidden-unit network are shown in Table 5. In this simple
network the effect of any input sequence may be easily
computed. From the formulae of Fig. 2 and the biases given
in the footnote to Table 5, a helix output of 0.40, near the
threshold value, requires a sum of weights from part A of
Table S for the sequence to be about 0.46. To produce a helix
output greater than 0.70, the sum from part A ofTable S must
be at least 1.72. To produce a sheet output of 0.40, the sum

Table 2. Neural network predictive accuracy compared to
other methods

Brookhaven No. of
Percent correct predictions

identification residues Chou Robson Lim Neural net

1GPD 333 47 55 58 66
4ADH 374 39 44 52 53
2GRS 461 45 49 48 65
2SOD 151 56 72 64 69
lLHl 153 52 69 50 71
1CRN 46 37 33 44 54
lOVO 56 48 54 77 65
2SSI 107 51 63 54 65
1CTX 71 68 65 69 72
1MLT 26 42 42 46 27
1NXB 62 50 61 60 71
2ADK 194 52 73 65 69
1RHD 293 55 54 54 65
2PAB 114 46 42 40 44
Total 2441 48 55 54 63

Comparative data are taken from table lb of ref. 12. Totals are
computed by weighting each protein by the number of residues. All
coordinate sets are from the Brookhaven Protein Data Bank (22).
Coordinate set 1LHl is substituted for the obsolete 1HBL in the
earlier work.

Table 3. Effect of input window size on prediction accuracy

Window Output Percent Correlation coefficients

size error (E) correct Ca Ca CCOii
3 392.7 60.0 0.34 0.21 0.29
5 377.5 60.6 0.32 0.29 0.33
7 371.9 59.6 0.31 0.27 0.32
9 365.8 62.3 0.37 0.33 0.35
11 362.2 61.6 0.38 0.31 0.33
13 360.6 62.7 0.38 0.33 0.37
15 359.4 62.9 0.41 0.32 0.35
17 366.8 63.2 0.41 0.32 0.36
19 371.8 62.6 0.39 0.33 0.35
21 376.0 62.9 0.39 0.31 0.35
Neural networks are as shown in Fig. 1 except that input window

sizes are those given in column 1. The total output error (E) is defined
in Eq. 1.

of weights from part B of Table 5 for the sequence must be
about 1.26; a sheet output of 0.70 requires a sum of 2.52.
The weights in Table 5 show, as expected, that glutamic

acid, alanine, and leucine are favorable for helix prediction,
whereas proline and glycine are unfavorable. Proline reaches
an unfavorable peak at position +1 downstream from the
prediction site and thus influences most strongly the preced-
ing residue. Charged residues show an asymmetrical distri-
bution with a helical preference for positive charge on the
carboxyl side (arginine, lysine, and histidine) and negative
charge (glutamic and aspartic acids) on the amino side of the
prediction point. This is consistent with the hypothesis of
stabilizing interactions between charged residues and the
helix dipole (26). For sheet prediction it can be seen in part
B of Table 5 that most hydrophobic residues are favorable
around the center of the window. As one moves outward
from the center of the window in part B of Table 5, the
weights for many residues switch signs. This may reflect the
fact that the majority of (3-strands are shorter than 5 residues,
in the Kabsch and Sander classifications (21). Tryptophan
and methionine are interesting in that they have significantly
larger weights away from the center of the window for both
helix and sheet. Weights for the null input used to pad
sequences at the chain termini (dashes in "Amino acid"
column in Table 5) show that proximity to either the amino
or the carboxyl terminus is unfavorable for both helix and
sheet.

Correlates of Prediction Accuracy. The predictive accuracy
for the first 20 residues from the amino terminus is 71% with
Ca = 0.43, C13 = 0.56, and Ccoil = 0.54, in accord with earlier
observations (27). Prediction accuracy drops to approxi-
mately average values when the first 50 residues are consid-
ered. No such trend is observed at the carboxyl terminus.
Interior residues of helices and sheets (that is, excluding the
first and last residue) are predicted more accurately. For
interior helical residues C, = 0.44 and for helical termini Ca,
= 0.14; for interior 3-strand residues Cal = 0.34 and for strand
termini C13 = 0.19. We have calculated solvent-accessible
surface areas for the 14-protein test set to see whether core
helical or B-strand residues are predicted more accurately
than other residues. (-Strand residues that are less than 5%

Table 4. Effect of hidden-layer size

Hidden-layer Percent correct
size Training Prediction

0 68.4 62.3
2 68.5 63.2
5 81.5 60.9
10 89.9 59.5
20 90.9 59.3

Proc. Natl. Acad. Sci. USA 86 (1989)
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Table 5. Weights and biases* on a trained neural network with no hidden units

Amino Weight at window position
acid -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Part A. Input layer to helix output
- 0.10 0.20 -0.33 0.02 -0.27 -1.42 -1.56 -1.22 0.04 -1.39 -0.81 -0.45 -0.80 -0.39

ALA 0.02 0.09 0.10 0.16 0.28 0.46 0.58 0.56 0.65 0.63 0.43 0.42 0.41 0.28

ARG 0.11 -0.05 -0.06 -0.04 -0.10 0.01 0.45 0.43 0.45 0.45 0.46 0.52 0.17 0.03
ASN -0.11 -0.15 -0.01 -0.05 -0.17 -0.14 -0.30 -0.25 -0.55 -0.23 -0.29 -0.28 -0.17 -0.13

ASP -0.04 -0.05 -0.05 -0.07 0.04 0.06 -0.04 -0.06 -0.14 -0.18 -0.50 -0.45 -0.24 0.02

CYS 0.08 -0.15 -0.01 -0.19 -0.20 -0.04 -0.13 -0.54 -0.24 -0.02 -0.43 -0.60 -0.33 -0.43

GLN 0.21 -0.03 -0.09 -0.26 -0.25 -0.18 -0.34 0.08 0.29 0.49 0.37 0.42 0.23 0.04
GLU 0.45 0.41 0.48 0.51 0.53 0.62 0.59 0.68 0.76 0.69 0.25 -0.15 0.02 -0.24

GLY 0.15 0.12 0.07 -0.08 -0.19 -0.26 -0.68 -1.00 -1.26 -0.80 -0.60 -0.62 -0.51 -0.58
HIS 0.05 0.06 0.11 0.16 0.19 0.12 -0.03 0.22 0.25 0.54 0.43 0.61 0.59 0.58

ILE -0.07 -0.13 -0.20 0.02 0.11 0.25 0.18 0.24 0.26 0.24 0.10 0.20 0.04 0.22
LEU -0.23 -0.18 -0.04 0.13 -0.02 0.38 0.29 0.36 0.43 0.45 0.41 0.64 0.36 0.30

LYS -0.22 -0.24 -0.05 -0.07 -0.14 -0.00 0.07 0.10 0.09 0.27 0.38 0.42 0.45 0.35

MET -0.17 -0.21 0.04 -0.16 0.30 -0.05 0.33 0.34 0.27 0.58 0.64 0.66 0.45 0.40

PHE -0.26 -0.17 -0.13 -0.05 -0.02 0.05 0.33 0.40 0.32 0.35 0.30 0.37 0.07 0.19

PRO -0.53 -0.58 -0.57 -0.61 -0.58 -0.77 -0.66 -0.84 -1.15 -2.07 -1.27 -1.11 -1.02 -0.99
SER -0.20 -0.14 0.01 0.02 -0.11 -0.05 -0.22 -0.29 -0.63 -0.24 -0.38 -0.37 -0.24 -0.21

THR -0.20 -0.41 -0.30 -0.38 -0.36 -0.36 -0.28 -0.28 -0.37 -0.33 -0.42 -0.25 -0.19 -0.21
TRP 0.37 0.50 0.28 0.08 -0.00 0.22 0.13 0.05 -0.20 -0.39 -0.55 -0.51 -0.14 -0.02

TYR -0.00 0.05 0.04 -0.03 0.03 0.07 0.07 -0.22 -0.21 -0.03 0.00 0.12 0.04 0.13

VAL 0.08 -0.04 0.01 -0.06 -0.10 -0.01 -0.08 0.09 0.16 0.19 0.20 0.06 0.04 0.12

0.10 -0.19 0.82
1 0.12 0.16 0.14

-0.17 0.05 -0.21
-0.18 -0.06 -0.09
-0.02 -0.03 0.08
-0.38 -0.48 -0.64
-0.27
-0.33
-0.49
0.51
0.29
0.24
0.24
0.21
0.26
-0.95
-0.34
-0.25
0.12
0.14
0.18

-0.38 -0.39
-0.29 -0.26
-0.46 -0.50
0.62 0.63
0.33 0.19
0.23 0.19
0.30 0.41
0.43 0.23
0.03 0.17
-0.61 -0.62
-0.40 -0.37
-0.21 -0.20
0.34 0.34
-0.06 -0.45
0.13 0.14

- 0.07 -0.32
ALA -0.13 -0.14
ARG -0.45 -0.30
ASN 0.20 0.38

0.98 0.05
-0.25 -0.33
0.03 0.02
0.38 0.24

ASP -0.12 -0.13 -0.07 -0.01
CYS -0.28 0.22 0.00 -0.32
GLN 0.38 0.36 0.26 0.23
GLU -0.36 -0.48 -0.21 -0.17
GLY 0.15 0.15 0.24 0.47
HIS 0.03 0.07 -0.33 0.00
ILE -0.43 -0.20 -0.50 -0.16
LEU -0.31 -0.35 -0.24 -0.34
LYS -0.34 -0.39 0.13 0.13
MET 0.01 -0.39 -0.60 .0.70
PHE -0.23 -0.28 -0.50 -0.33
PRO 0.35 0.39 0.33 0.61
SER 0.37 0.23 0.18 0.19
THR -0.08 0.07 0.31 0.41
TRP -0.07 -0.52
TYR 0.05 0.12
VAL -0.47 -0.33

-0.94 -1.12
-0.30 -0.31
-0.24 -0.08

Part B. Input layer to sheet output
-0.22 -1.41 -1.41 -1.50 0.10 -1.39 -0.42
-0.21 -0.18 -0.16 -0.15 -0.40 -0.27 -0.10
-0.01 -0.05 -0.23 -0.27 -0.28 -0.28 -0.19
0.26 0.10 -0.57 -1.09 -0.74
0.04 -0.19 -0.66 -1.21 -1.31
-0.58 -0.81 -0.40
0.08 0.02 -0.02
-0.14 -0.13 -0.55
0.45 0.35 0.24
0.10 0.23 -0.23
0.00 0.19 0.52
-0.43 -0.29 0.27
0.08 0.17 -0.21
-0.73 0.07 0.26
-0.21 -0.23 0.35
0.24 0.12 -0.17
0.26 0.09 -0.17
0.29 0.23 0.37
-0.86 0.10 0.01
-0.16 -0.10 0.55
-0.10 0.07 0.57

*Biases in the output layer are -0.87 for helix and -1.67 for sheet.

exposed, 45% of strand residues, are predicted with Ca =
0.33 versus Ca = 0.23 for more exposed residues.
To test whether the magnitude of the network outputs is

any guide to the accuracy of predictions, we filtered the
predictions by excluding those whose outputs fall into a range
centered near the threshold, 0.37. Only helix or sheet
predictions with network outputs greater than the upper
bound ofthe excluded range were considered. Similarly, only
coil predictions with both outputs below the lower bound of
the excluded region were considered. Table 6 shows that
there is a significant improvement in prediction accuracy for
strong predictions. Indeed, the method rises to an overall
accuracy of 79% for the strongest 31% of the database.

Physicochemical Encoding. An alternative is to encode
amino acid sequence according to the physicochemical prop-

0.07 0.20
0.11 0.05
-0.53 -0.61
-0.52 -0.92
-0.52 -0.34
0.99 1.02
0.50 0.52
-0.32 -0.56
0.49 0.67
0.69 0.82
-0.81 -2.08
-0.26 -0.29
0.60 0.31
0.36 0.49
0.60 0.60
0.94 1.19

-0.05 -0.08
-0.67 -0.48
0.37 0.09
-0.23 -0.18
-0.36 -0.31
-0.24 0.23
-0.32 -0.43
0.86 0.21
0.50 0.21
-0.72 -0.66
0.20 -0.69
0.52 0.00
-2.30 -0.59
-0.04 0.25
0.13 0.26
0.69 0.48
0.31 0.19
1.21 0.61

-0.13 0.32 0.29 0.37 0.16 -0.78
0.01 -0.09 -0.11 -0.15 -0.24 -0.25
-0.50 -0.69 -0.60 -0.08 0.36 0.51
0.07 0.15 0.10 0.37 0.36 0.21
-0.25 -0.01 -0.04 -0.03 -0.14 -0.20
-0.29 -0.25 -0.06 -0.21 -0.37 -0.37
-0.07 0.14 -0.11 -0.24 0.08 0.24
-0.14 -0.30 -0.14 0.00 -0.34 -0.25
0.42 0.51 0.36 0.47 0.12 0.22
0.25 0.17 0.11 0.11 -0.31 -0.11
-0.22 -0.43 -0.66 -0.51 -0.83 -0.23
-0.08 -0.33 -0.23 -0.20 -0.19 -0.13
-0.42 -0.44 -0.66 -0.68 -0.39 -0.34
-1.53 -1.13 -0.35 -0.50 -0.21 -1.18
0.15 0.31 -0.01 -0.39 -0.61 -0.04
0.12 0.20 0.24 -0.04 -0.22 -0.21
0.38 0.42 0.48 0.51 0.34 0.27
0.39 0.08 0.22 0.34 0.37 0.36
0.04 0.12 -0.22 -0.36 -0.03 0.29
0.12 -0.17 -0.09 0.27 0.27 0.16
0.18 0.15 -0.06 -0.20 -0.14 -0.13

erties of the side chains. To test this idea a network was
trained on the 48-protein training set with each amino acid
categorized by hydrophobicity, charge, and backbone flexi-
bility (that is, proline and glycine were treated as special
cases). This network achieved a predictive accuracy on the
14-protein test set of 61.1% with correlation coefficients Ca
- 0.37, Ca = 0.27, and Ccoil = 0.37.

DISCUSSION

It can be seen that the neural network method is generally
more accurate than prior methods when compared on iden-
tical proteins. The neural network method achieves this
accuracy despite the fact that the method is naive in the sense
that it does not rely on any theory of secondary structure

Biophysics: Holley and Karplus
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Table 6. Effect of prediction strength on accuracy

Excluded Database Percent Correlation coefficients
range percent correct C., Ca Ccoi1

None 100.0 63.2 0.41 0.32 0.36
0.30-0.50 80.9 67.0 0.45 0.37 0.43
0.20-0.60 59.9 71.5 0.51 0.44 0.49
0.10-0.70 31.4 78.5 0.63 0.56 0.62
0.05-0.75 13.3 84.0 0.75 0.71 0.78
Shown are predictions on the 14-protein test set for the neural

network trained as described in results for Table 1. In computing
quality measures, coil predictions are included only when network
outputs are below the lower bound of the excluded range. Helix and
sheet predictions are included only if the corresponding network
output is above the upper limit of the excluded range. Shown in
column 2 is the fraction of predictions included. Thus, the 31.4%
strongest predictions are 78.5% accurate.

formation [e.g., the method of Lim (1)], nor does it require a
sophisticated treatment of the data from which it is derived
[e.g., advanced statistical methods (10, 11)].
An important observation from this method is that predic-

tion strength is correlated with prediction accuracy. This
observation was confirmed in predictions on an additional 20
proteins drawn from a database screened to include only
structures with resolution better than 2.8 A, crystallographic
R factor less than or equal to 0.25, and sequence homology less
than 50%o (11). For this database the overall predictive accu-
racy is 63% and the 34% strongest predictions are 78%
accurate (detailed data not shown). These strong predictions
are distributed throughout the set of proteins. Thus, in appli-
cations of the method it may be useful to screen predictions
using the magnitudes of network output to establish the
presence of helix, a-strand, and coil with higher confidence
without knowing the precise boundaries ofthese regions. Such
predictions may be sufficient to determine that a protein
belongs to a particular known class of chain fold (28, 29).

It is striking to observe the number of secondary structure
methods that, although very different, are able to achieve
about 60% accuracy. Although the present method is an
incremental improvement, accuracy is still well below what
is required for many applications, such as tertiary structure
prediction, unless information concerning long-range inter-
actions is available (30). It is tempting to suggest that these
methods are approaching a limit dictated by the physics of
protein structure, though database limitations may be in-
volved as well. If the local sequence contributes only an
approximately 60% tendency toward the formation of sec-
ondary structural units, dramatic improvement in predictions
will require the introduction of information related to tertiary
structure.

This work shows that neural networks can be applied to
secondary structure prediction in proteins. It is likely that
such networks will be useful in recognizing other structural
motifs in protein and DNA sequences where only homology
searching is currently employed.

Note. After the work reported here was completed, an independent
study of the use of neural networks in secondary structure prediction
was published (31). Although there are some significant differences
in detail, the methodology and results are very similar.
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