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Abstract
Single molecule fluorescence microscopy is a relatively novel technique that is used, for example,
to study the behavior of individual biomolecules in cells. Since a single molecule can move in all
three dimensions in a cellular environment, the three dimensional tracking of single molecules can
provide valuable insights into cellular processes. It is therefore of importance to know the accuracy
with which the location of a single molecule can be determined with a fluorescence microscope. We
study this performance limit of a fluorescence microscope from a statistical point of view by deriving
the Fisher information matrix for the estimation problem of the location of the single molecule. In
this way we obtain a lower bound on the standard deviation of any reasonable (unbiased) estimation
method of the location parameters. This lower bound provides a fundamental limit on the accuracy
with which a single molecule can be localized using a fluorescence microscope and is given in terms
of such quantities as the photon detection rate of the single molecule, the acquisition time, the
numerical aperture of the objective lens etc. We also present results that show how factors such as
noise sources, detector size and pixelation deteriorate the fundamental limit of the localization
accuracy. The present results can be used to evaluate and optimize experimental setups in order to
carry out three dimensional single molecule tracking experiments and provide guidelines for
experimental design.
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1. INTRODUCTION
Single molecule microscopy is a technique that can be used to study the behavior of individual
biomolecules in biological specimen such as cells. This technique provides information that is
seldom available through bulk studies due to averaging effects.1,2 Hence it holds the promise
to provide new insights into biological processes. One of the fundamental issues in single
molecule data analysis concerns the accuracy with which the location of a single molecule can
be determined. This not only gives the level of accuracy that can be obtained in an experimental
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setup, but it also helps in determining the nature and type of studies that can be carried out.
Since the movement of a single molecule can be imaged in all three dimensions, for example,
in a cellular environment,3 it is therefore important to determine the three dimensional
localization accuracy of a single molecule that can be attained in a given experimental setup.

In this paper, we use the tools of statistical estimation theory4,5 to derive an analytical
expression for the fundamental limit to the three dimensional localization accuracy of a single
molecule. We also derive expressions that show how experimental factors such as pixelation
and noise sources affect the fundamental limit. The novel aspect of this apporach is that the
limit of the localization accuracy for a given experimental condition cannot be surpassed by
any unbiased estimation technique that is used to determine the single molecule location from
the acquired data. In the past, there have been reports that have addressed the three dimensional
localization accuracy problem of a single molecule by analyzing the performance of a specific
estimation procedure.6-8 Hence the scope of these reports is limited to the particular estimation
technique used. In constrast, our approach provides a performance limit to determining the
location of a single molecule. Recently, a limit to the localization accuracy of the z coordinate
of a point source was reported9 in the context of axial tracking of a fluorescent nano-particle.
This report assumed that the x and y coordinates of the point source are known. Further, the
report considered a pixelated detector and evaluated the limit of the localization accuracy for
different values of signal to noise ratio, which was assumed to be the same for all values of
defocus distance. In the present work, we assume that all the three coordinates of the single
molecule are unknown, and consider a pixelated and a non-pixelated detector. We note that
the results for the non-pixelated detector provide insight into how pixelation affects the limit
of the localization accuracy. Moreover, we consider a detailed noise model for the acquired
data by taking into account measurement and scattering noise, which, for example, arise due
to the readout process in a CCD camera10 and autofluorescence from the sample, respectively.
We note that the present results are extensions of our recently published results11 that address
the problem of the two dimensional localization accuracy of a single molecule.

2. FUNDAMENTAL LIMIT TO THE LOCALIZATION ACCURACY
We consider a basic optical setup in which a single molecule located in the specimen space is
imaged by the microscope lens system, and the image of the single molecule is captured by a
detector that is located in the image space (see Fig. 1). Here, the detector collects photons from
the single molecule during a fixed time interval [t0, t]. Since the photon emission process is
inherently a random phenomenon,12 the acquired image is stochastic in nature. By using a
specific estimation technique the 3D location of the single molecule can be determined from
the acquired image. In an estimation problem it is important to know whether the estimation
technique used to determine the unknown parameter comes close to a performance limit. This
can be determined by calculating the Fisher information matrix4, 5 for the underlying stochastic
process that describes the acquired data. The Fisher information matrix plays a crucial role in
evaluating the performance of estimation algorithms. A classical result of estimation theory,
namely the Cramer-Rao inequality,4, 5 states that the (co)variance (matrix) of any unbiased
estimator θ ̂ of an unknown (vector) parameter θ is bounded from below by the inverse of the
Fisher information matrix I(θ), i.e.,

Since the accuracy of an estimator is typically given in terms of the standard deviation of its
estimates, the square root of the inverse Fisher information matrix provides a lower bound to
the best possible accuracy. In the present context this implies that for any unbiased estimator
of the single molecule location, the square root of the inverse Fisher information matrix
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provides a limit to the accuracy with which the location of a single molecule can be determined.
We note that the Fisher information matrix is independent of estimation techniques used to
determine the unknown parameter and only depends on the statistical nature of the acquired
data.

Due to its stochastic nature, the acquired data is modeled as a space-time random process.13

The temporal part describes the time points of the detected photons and is modeled as a temporal
Poisson process with intensity function Λθ. The spatial part describes the spatial coordinates
of the arrival location of the detected photons and is modeled as a family of independent and
identically distributed random variables with probability density given by

(1)

where Θ denotes the parameter space, M denotes the lateral magnification of the microscope
lens system, (x0, y0, z0) denotes the 3D location of the single molecule in the object space and
qz0 denotes the image function of a single molecule. The image function qz0 describes the image
of a single molecule on the detector plane at unit lateral magnification when the single molecule
is located on the z axis in the object space (see Fig. 1). We assume that the probability density
function fθ satisfies certain regularity conditions4 that are necessary for the calculation of the
Fisher information matrix.

According to scalar diffraction theory, the image of a single molecule that is located at (0, 0,
z0) in the object space and imaged by a fluorescence microscope can be modeled as14-17

(2)

where (x, y) ∈ ℝ2 denotes an arbitrary point on the detector plane, zd denotes the axial distance
of the detector from the back focal plane of the microscope lens system, C is a constant with
complex amplitude, k = 2π/λ, λ denotes the wavelength of the detected photons, a denotes the
radius of the limiting aperture of the microscope projected onto the back focal plane of the lens
system, J0 denotes the zeroth order Bessel function of the first kind and Wz0 (ρ) denotes the
phase aberration term. We note that eq. 2 provides a general expression for several 3D point
spread function models,14 which describe the image of a point-source/single-molecule and are
based on scalar diffraction theory.

Rewriting eq. 2 as an image function, the image of a single molecule is given by

(3)

where

(4)
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The term Cz0 is the normalization constant, and the 1/Cz0 scaling in eq. 3 ensures that

.

From eq. 3 we see that the image function qz0 is laterally symmetric for every z0 ∈ ℝ, i.e.,
qz0 (x, y) = qz0 (−x, y) = qz0 (x, −y), (x, y) ∈ ℝ2, z0 ∈ ℝ. By definition ∂fθ(r)/∂Λ0 = 0, r ∈
ℝ2, θ ∈ Θ and it can be easily shown that ∂fθ(r)/∂x0 = ∂fθ(r)/∂x, ∂fθ(r)/∂y0 = ∂fθ(r)/∂y for r =
(x, y) ∈ ℝ2, θ ∈ Θ. Here we assume that ∂Λθ(τ)/∂ζ0 = 0 for τ ≥ t0 and ζ0 ∈ {x0, y0, z0}. Further,
we also assume that the partial derivative ∂qz0/∂z0 is laterally symmetric, i.e., ∂qz0 (x.y)/∂z0 =
∂qz0 (−x, y)/∂z0 = ∂qz0 (x, −y)/∂z0, (x, y) ∈ ℝ2 and z0 ∈ ℝ. This assumption is typically satisfied
for most 3D point spread function models14 that are based on scalar diffraction theory. For the
above conditions, the Fisher information matrix for the space-time random process that
describes the acquired image captured during the time interval [t0, t] is given by

(5)

where

(6)

The detailed derivation of the above result has been omitted due to space limitations, but can
be found in a forthcoming publication.18 In deriving eq. 5, we have assumed that the unknown
parameter vector is given by θ = (x0, y0, z0, Λ0). Here, Λ0 denotes a scalar parameter that
parameterizes the intensity function Λθ, which, for example, could be the photon detection rate
of the single molecule. For the image function given in eq. 3, the partial derivatives of qz0 (x,
y) with respect to x, y and z0 are given by

(7)

where
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Inverting the Fisher information matrix given in eq. 5 and taking the square root of the leading
diagonal elements, the fundamental limit to the 3D localization accuracy of the location
coordinates (x0, y0, z0) of the single molecule are given by

(8)

(9)

and the fundamental limit to the accuracy of Λ0 is given by

We refer to the above results as fundamental, since the model that is used to derive the above
expressions does not take into account deteriorating factors such as pixelation and noise
sources. Moreover, the model is such that all photons originating from the single molecule that
reach the detector plane are detected by the detector. Note that the expressions for the
fundamental limit to the 3D localization accuracy that are given in eqs. 8 and 9 depend on the
z coordinate of the single molecule z0, which we refer to as the defocus distance. As a special
case, consider the in-focus scenario where z0 is known and is equal to 0 (i.e., the plane
containing the single molecule coincides with the design focal plane; see Fig. 1). For this case,
the image function given in eq. 3 reduces to the classical Airy profile that is given by

, where α := (2πNA/λ) and NA denotes the
numerical aperture of the objective lens. Substituting this in eq. 8, we obtain the fundamental
limit to the 2D localization accuracy of the single molecule that is given by

(10)

which was reported elsewhere.11
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We now illustrate the results derived in this section by considering the phase aberration term
Wz0 to be

(11)

where NA denotes the numerical aperture of the objective lens, and noil denotes the refractive
index of the immersion oil. The above expression for Wz0 describes the phase aberration that
arises when the point source is ‘out of focus’ with respect to the detector, and corresponds to
the classical ‘Born and Wolf’ 3D point spread function model.17 When analyzing data from
single molecule experiments, the intensity function Λθ is typically assumed to be a constant.
Hence in the present context, the intensity function is given by Λθ(τ) := Λ0, τ ≥ t0 where Λ0
denotes the photon detection rate of the single molecule.

Figure 2A shows the behavior of the fundamental limit of the 3D localization accuracy 

( ) of the x0 (y0) coordinate as a function of the defocus distance z0. From the figure we see
that at z0 = 0,  coincides with the 2D fundamental limit  that is given by eq. 10. This is
expected, since at zero defocus distance the image of the single molecule that is given by eq.
2 reduces to the Airy profile. As the value of z0 increases (decreases), the 3D fundamental limit

 deteriorates monotonically up to z0 = ±1000 nm. For defocus distances greater (smaller)
than 1000 nm (-1000 nm),  deteriorates with an oscillatory behavior. Note that the behavior
of  is symmetric about z0 = 0. This is expected, since the image function qz0 corresponding
to the phase aberration term Wz0 given in eq. 11 is symmetric with respect to z0 = 0.

Figure 3A shows the behavior of the fundamental limit of the 3D localization accuracy  of
the z0 coordinate as a function of z0. Unlike  the 3D fundamental limit  becomes infinitely
large as z0 approaches zero. From eq. 9, we see that the term (∂qz0(x, y)/∂z0) appears in the
denominator of the expression for the fundamental limit . Further, for the phase aberration
term Wz0 given in eq. 11, it can be shown that as z0 approaches 0, (∂qz0(x, y)/∂z0) tends to 0
for every (x, y) ∈ ℝ2 (see eq. 7), thereby explaining the observed behavior of  at z0 = 0. As
z0 increases (decreases), first decreases but then increases monotonically up to z0 = ±1000
nm. For z0 values greater (smaller) than 1000 nm (-1000 nm),  deteriorates with an oscillatory
behavior, which is analogous to the behavior of the 3D fundamental limit of the x0 coordinate.
Note that here also the behavior of  is symmetric about z0 = 0.

3. EFFECTS OF PIXELATION AND NOISE SOURCES
In deriving the fundamental limit of the localization accuracy, we assumed that the acquired
data consists of the time points and the spatial coordinates of the detected photons. However,
current imaging detectors contain (finite sized) pixels and the acquired data consists of the
number of detected photons at each pixel. For a pixelated detector {C1,…,CNp} the number of
detected photons (from the single molecule) at the kth pixel Ck can be shown18 to be

independently Poisson distributed with mean , k = 1,
…,Np. Here we make no assumptions about the specific shape, size or orientation of the pixels.
We only assume that the pixels do not overlap. We consider two additive noise sources, namely
Poisson and Gaussian noise sources, which are commonly encountered in experimental data.
Poisson noise is used to model the effect of scattered photons, which, for example, arise due
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to cellular autofluorescence and scattering. Gaussian noise is used to model the effect of
measurement noise, which, for example, arises during the readout process in the detector.
Therefore the acquired data in a pixelated detector can be modeled as a sequence {Iθ,1,…,Iθ,
Np} random variables given by

where Sθ,k (Bk) is an independent Poisson random variable with mean μθ(k, t) (β(k, t)) and

Wk Gaussian random variable with mean ηk and variance , k = 1,…,Np. We assume that
{Sθ,1,…,Sθ,Np}, {B1,…,BNp} and {W1,…,WNp} are mutually independent, and that β(k, t), ηk
and σw,k are independent of θ, k = 1,…,Np.

In the absence of noise sources, the Fisher information matrix for the data acquired in a
pixelated detector during the fixed time interval [t0, t] is given by18

where μθ is defined above,

(12)

and fθ is given in eq. 1 with qz0 given by eq. 3. Here also we assume that the phase aberration
term is given by eq. 11. In the presence of both Poisson and Gaussian noise, the Fisher
information matrix for the data acquired in a pixelated detector during the fixed time interval
[t0, t] is given by18

where ∂μθ(k,t)/∂θ is given by eq. 12, νθ(k,t) := μθ(k,t) + β(k,t), k = 1,…,Np and

To calculate the limit of the 3D localization accuracy in the presence/absence of noise for a
pixelated finite detector, we invert the corresponding Fisher information matrix I(θ) and take
the square root of the appropriate term in the main diagonal.
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Fig. 2B (Fig. 3B) shows the behavior of the limit of the 3D localization accuracy of the x0/y0
(z0) coordinate for a pixelated finite detector in the absence of noise sources. From the figure
we see that the limit of the 3D localization accuracy of x0 (z0) exhibits a behavior that is
analogous to the fundamental limit ( ). Note that the limit of the 3D localization accuracy
of x0 (z0) for the pixelated finite detector is greater than the fundamental limit ( ) for all
values of the defocus distance. This can be explained by noting that in a pixelated finite detector,
due to its finite size, not all the photons that reach the detector plane are detected (see Fig. 1),
and that the spatial coordinates of the detected photons are known only up to a pixel. Note that
for large defocus distances, the oscillatory behavior of the limit of the 3D localization accuracy
for a pixelated detector becomes prominent when compared to the fundamental limit.

Fig. 2C (Fig. 3C) shows the dramatic effect of noise on the behavior of the limit of the 3D
localization accuracy of the x0/y0 (z0) coordinate for a pixelated finite detector. We see that the
limit of the 3D localization accuracy in the presence of noise shows significant deterioration
when compared to the noise free case, especially for defocus distances greater (smaller) than
1 μm (−1 μ m). Note that in the presence of noise, the oscillatory behavior of the limit of the
3D localization accuracy also becomes more pronounced, when compared to the noise free
case.

The results presented in this paper provide insight into the extent to which single molecules
can be accurately tracked in three dimensions. Since these results provide a limit to the
localization accuracy, they can be used as a benchmark to compare the performance of different
algorithms that are used to estimate the 3D location of a single molecule from experimental
data. The present results can be used in several ways in the context of single molecule
microscopy, such as in the design of an experimental setup for tracking single molecules.
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Figure 1.
The schematic shows the main components of a fluorescence microscope imaging setup. Here,
a single molecule is located at (x0, y0, z0) in the object space and the image of the single molecule
is captured by a detector that is located in the image space.
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Figure 2.
The figure shows the behavior of the limit of the localization accuracy of the x0 (y0) coordinate
of a single-molecule/point-source as a function of defocus distance. Panel A shows the
fundamental limit of the 3D localization accuracy  that is given in eq. 8 (●). The fundamental
limit of the 2D localization accuracy  that is given in eq. 10 is also shown for reference (—).
Panel B shows the limit of the 3D localization accuracy for x0 (y0) for a pixelated detector in
the absence of noise sources (○), and panel C shows the same in the presence of noise sources
(◇). Panels B and C also show the 3D fundamental limit  (●) and the limit of the 3D
localization accuracy of z0 in the absence of noise sources (○), respectively for reference. In
all the plots the photon detection rate is set to be Λ0 = 5000 photons/s, the acquisition time is
set to be t = 0.1 s (with t0 = 0), the numerical aperture is set to be NA = 1.3, the magnification
is set to be M = 100, the wavelength of the detected photons from the single molecule is set to
be λ = 520 nm, the pixel array size is set to be 5 × 5, the pixel size is set to be 13μm × 13μm,
the mean of the Poisson noise component is set to be β(k, t) = 25 photons/pixel, and the mean
and the standard deviation of the Gaussian noise component are set to be ηk = 0 and σw,k =
8e− rms, respectively. The noise statistics are assumed to be the same for all the pixels and the
image of the single molecule is assumed to be centered on the pixel array.
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Figure 3.
The figure shows the behavior of the limit of the localization accuracy of the z0 coordinate of
a single-molecule/point-source as a function of defocus distance. Panel A shows the
fundamental limit of the 3D localization accuracy (●)  that is given in eq. 9. Panel B shows
the limit of the 3D localization accuracy for z0 for a pixelated detector in the absence of noise
sources (○), and panel C shows the same in the presence of noise sources (◇). Panels B and
C also show the 3D fundamental limit  (●) and the limit of the 3D localization accuracy of
z0 in the absence of noise z0 sources (○), respectively for reference. Note that unlike the x0
coordinate (see Fig. 2), the limit of the 3D localization accuracy for the z0 coordinate becomes
infinitely large as the defocus distance approaches zero. The numerical values for generating
the above plots are identical to those used in Fig. 2.

Ram et al. Page 12

Proc SPIE. Author manuscript; available in PMC 2010 May 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


