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Abstract
This paper presents a method for detection of cerebral white matter hyperintensities (WMH) based
on run-time PD-, T1-, and T2- weighted structural magnetic resonance (MR) images of the brain
along with labeled training examples. Unlike most prior approaches, the method is able to reliably
detect WMHs in elderly brains in the absence of fluid-attenuated (FLAIR) images. Its success is due
to the learning of probabilistic models of WMH spatial distribution and neighborhood dependencies
from ground-truth examples of FLAIR-based WMH detections. These models are combined with a
probabilistic model of the PD, T1, and T2 intensities of WMHs in a Markov Random Field (MRF)
framework that provides the machinery for inferring the positions of WMHs in novel test images.
The method is shown to accurately detect WMHs in a set of 114 elderly subjects from an academic
dementia clinic. Experiments show that standard off-the-shelf MRF training and inference methods
provide robust results, and that increasing the complexity of neighborhood dependency models does
not necessarily help performance. The method is also shown to perform well when training and test
data are drawn from distinct scanners and subject pools.

1 Introduction

Relevance of WMHs—White matter foci that are hyperintense on FLAIR images of the
human brain are indicative of focal dysfunction of underlying axonal tracts. Common in a
variety of clinical conditions, including multiple sclerosis, cerebrovascular disease, and
depression, WMHs are important clinical measures in the elderly because their prevalence is
strongly associated with cognitive function, longevity, disease progression, and the effects of
disease-modifying treatments [1][2][3]. Because semi-quantitative manual grading of WMH
severity is time-consuming and variable due to human subjectivity [4], a variety of fully
automated methods have been developed to detect WMHs on FLAIR images in a robust,
efficient, and objective manner [5][6].

Need for detecting WMH without FLAIR—However, while FLAIR images provide
optimal contrast between WMHs and all other tissues, the detection of WMHs when no FLAIR
is available is an increasingly important problem. Large-scale imaging studies are under
pressure to collect a wide range of MR imaging sequences, including T1, T2, proton density
(PD), diffusion tensor, functional, and perfusion MR, to capture the broadest possible range of
biological phenomena in the brains of participants. Simultaneously, the studies are under
pressure to scan each subject for the shortest amount of time possible due to scanner resource
costs and the increases in head motion and subject discomfort that occur over the course of the
scan session. Therefore, a growing list of large-scale imaging studies that have a strong interest
in white matter dysfunction have nonetheless chosen to forgo FLAIR acquisition [3][7][8].
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WMH detection without FLAIR using spatial and contextual priors—Because T1-
weighted and double echo PD/T2-weighted acquisitions are nearly ubiquitous in large-scale
imaging studies, we focus on WMH detection based solely on T1, T2, and PD input images.
We use FLAIR exclusively for training data and the validation of automated methods (Fig. 1).
WMHs are hyperintense on PD and T2, and hypointense on T1, but none of these modalities
provide sufficient contrast between normal white matter (WM) and WMHs (Fig. 1). Therefore,
we combine image intensity information with prior anatomical knowledge about where WMHs
are known to occur in the brain and how they progress over time from one part of the brain to
another. In particular, we employ a spatial prior– the prior probability of a WMH occurring
at a given pixel, irrespective of imaging data– and a contextual prior– the conditional
probability of a WMH occurring at a given pixel, given that WMHs have occurred at
neighboring pixels. In elderly subjects, the spatial and contextual priors are highly structured
and capture a characteristic spatial distribution of WMH occurrence and progression;
specifically, WMHs in Alzheimer’s Disease and healthy aging tend to begin in periventricular
zones and spread upward and outward (see Fig. 2 and [9]). The prior models that capture this
progression are learned from FLAIR-based ground-truth WMH detections in a training phase,
and are combined with intensity information at run-time in an MRF framework to detect WMHs
in novel sets of coregistered (PD, T1, T2) test image sets.

1.1 Prior Work
WMH detection without FLAIR—Few papers to date have dealt with the problem of
automated WMH detection in the absence of FLAIR images, each using a comparatively simple
model of WMH spatial distribution. One such method detected WMHs using a MRF system
with a 2D and spatially invariant isotropic smoothing prior [10]. In another, the authors detected
WMHs as outliers to models of other tissue classes instead of modelling them explicitly [11].
One method used boosted classifiers and Support Vector Machines to perform detection from
PD and T1 images using spatially invariant isotropic smoothing and radial distance from center
as a spatial prior. It also required separate training sets for mild, moderate, and severe WMH
cases [12]. Finally, another used several run-time steps, including segmentations of grey matter,
white matter, and CSF; segmentation of the thalamic nuclei; morphological post-processing
to fix segmentation problems; and separation of WMHs into sub-classes based on image
contrast [13]. The key difference between these methods and the current one is that the current
method uses training data to directly capture the anatomical distribution and progression of
WMHs in a model that allows spatial dependencies in WMH occurrence to vary arbitrarily
across the image. Our method leverages this additional prior knowledge to directly model
WMHs using a relatively straightforward run-time procedure that requires few steps or
arbitrary parameter settings since it only fits parameters to a 3D intensity distribution and runs
an existing, widely available MRF solver. Additionally, we focus on the elderly brain, whose
morphological characteristics can be highly heterogeneous across a population due to diverse
aging-related biological phenomena; the heterogeneity provides challenges to WMH detection
that may differ from those associated with multiple sclerosis [10] and [11].

Use of contextual cues in WMH detection—While little attention has been paid to WMH
detection in the absence of FLAIR, several methods have used neighborhood information
during FLAIR-based WMH detection (e.g., [6][5]). Usually the use of contextual information
amounts to fully-isotropic smoothing– that is, WMHs are considered more likely at a given
pixel if they occur at neighboring pixels, regardless of their absolute positions or the directions
in which neighboring WMHs do or do not occur. We extend these prior contextual methods
by allowing the associations between neighboring WMH detections to vary with pixel position
and direction of neighbors. As suggested above, the spatially-and directionally-variable nature
of associations between neighboring WMHs in our contextual model allows us to more
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accurately capture the neurobiological course of spreading WMHs over the course of brain
aging.

2 Methods
Data

We tested our method on a diverse pool of 114 elderly individuals who received a full clinical
workup and structural MR scans including T1-weighted, double-echo PD/T2 weighted, and
FLAIR scans at their times of enrollment into the University of California, Davis Alzheimer’s
Disease Center (ADC). Subjects were 70–90 years of age; the subject pool included individuals
with normal cognition, mild cognitive impairment, and dementia.

Pre-processing
All scans were pre-processed through a standardized pipeline. T1, T2, PD, and FLAIR were
rigidly coregistered using cross-correlation as a similarity measure and previously-presented
optimization methods [14]. Nonbrain tissues were manually separated from the brain on all
scans. A strongly-validated, semi-automated method was used to detect WMHs based solely
on the FLAIR scans and human input [15]. The skull-stripped T1-weighted image was then
nonlinearly aligned to a minimum deformation template (MDT) based on moving control
points in a multi-scale grid and using cubic spline interpolation to move image pixels between
the control points [16][17]. The warp is constrained such that no region is permitted to collapse
entirely. The T1, T2, PD, FLAIR, and map of ground-truth FLAIR-based WMH pixels were
then warped to the space of the MDT image using the nonlinear alignment.

MRF Approach
We take a Bayesian MRF approach to WMH detection. Let yi denote a vector of three image
intensities– PD, T1, and T2– associated with image pixel i. Our goal is to determine a binary
label xi for each image pixel i: xi = 1 denotes the presence of a WMH at pixel i and xi = 0 denote
the absence of WMH there, i.e. to find a set of labels X = {x1, x2, ··· xk} corresponding to image
intensity vectors Y = {y1, y2 ··· yk} that maximizes the posterior probability of the labels given
the image data, P(X|Y). By Bayes’ theorem, P(X|Y) ∝ Π(X) * L(Y|X), where Π(X) is the prior
probability of a particular set of labels X irrespective of imaging data and L(Y|X) is the
likelihood of observing image intensities Y given that the underlying labels are X. The prior
probability of a specific label xi depends on a spatial prior– the prior probability that WMHs
occur at pixel i– as well as a contextual prior– the conditional probability of xi given the labels
at neighbors of pixel i. The likelihood depends on the statistical distribution of the (PD, T1,
T2) image intensities Y relative to the underlying labels X.

MRF Prior: Π(x)
The MRF label prior involves spatial and contextual prior models whose parameters are learned
from training data. We write the MRF prior as a Gibbs field:

where Z, the partition function, is the sum of exp(−H(X)) over all possible labelings, and H
(X) is an energy function that takes on lower values when the label field X is more probable a
priori. This Gibbs prior is equivalent to an MRF prior under straightforward technical
restrictions [18]. The energy function is a sum of terms that represent energies from the spatial
and contextual priors: H(X) = Hs(X) + Hc(X). The spatial prior penalizes pixel i if it is labeled
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as WMH but WMHs are deemed unlikely there according to a prior probability, αi (see sec.
2), of a WMH occurring at pixel i:

The contextual prior Hc(X) penalizes a label xi when it differs from the labels of its neighbors.
Recall that the MRF formulation utilizes a graph in which all pixels in the image are attached
to some arbitrary set of their immediate spatial neighbors (see Sec. 3 for more information);
there is one term in Hc for each clique in this graph. Let δ be one such clique of nodes, Δ be
the set of all such cliques, and Xδ be the assignment of labels (i.e., WMH or non-WMH) that
X provides to the nodes of δ. Then, Hc is given by:

This is a Potts model in which neighboring labels within a group δ incur a fixed penalty of
βXδ [19]. Generally, these β parameters encourage neighboring pixels to have the same label,
but in some locations of the brain, they may actually be encouraged to be different. These β
parameters are calculated from the training data (Sec. 2).

MRF Likelihood
The likelihood of a given set of image intensity vectors, given the underlying labels, comes
from a tissue mixture model with one lognormal distribution for WM and one for WMH:

where π0 and π1 are mixture coefficients for non-WMH and WMH respectively, with π0 +
π1 = 1 and log(y) is the component-wise log of vector y. We estimate π1, by taking the proportion
of pixels in YH that are inliers to the distribution found for the pixels in YL.

A lognormal mixture model was chosen because the distributions of 3D intensity vectors for
WM and WMH empirically followed asymmetric, “comet-like” patterns (Fig. 3). A Gaussian
mixture model was initially tried without success, which led to adoption of this choice. As we
explain below, the μ and Σ parameters are estimated at run time by an unsupervised method
that fits the two lognormal distributions to (PD, T1, T2) triples sampled from a large number
of pixels.

Combining the equations for Π and L and taking the log, we have

In the following sections, we describe the Training phase that determines the values of α and
β, followed by the Inference phase where the best set of labels X is determined for an input
image Y.
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Training
In the training phase the parameters αi and βXδ governing Hs and Hc respectively are estimated
from the ground-truth FLAIR-based WMH detection. The αi values are the empirical
probabilities of WMHs at each pixel in labeled training examples, i.e. sets of (X, Y) pairs
gathered from ground-truth FLAIR-based WMH detection. That is, αi is the proportion of
training examples that have a WMH at pixel i.

The βXδ values are calculated using the same training data as the αi values using Iterative
Proportional Fitting (IPF) [20]. For each δ and for each possible label assignment to Xδ, IPF
iteratively computes an estimate for βXδ using the following fixed point equation:

where  is the value of βXδ at the nth iteration of IPF,  is the empirical marginal probability
of δ = Xδ calculated as the proportion of the training data in which that label configuration
occurred in δ, and  denotes the model marginal probability of Xδ: the integral of Π(X) over
all X in which the assignment Xδ occurs. The model marginal is calculated through Sum-
Product BP (Sec. 2). R(x) is a sigmoid regularization function that prevents divergence of the
fixed point iteration.

Run-time inference Fitting the MRF Likelihood Distributions
Run-time processing of a novel image set begins by using an MLESAC-based procedure to
robustly estimate the means and covariances of the lognormal distributions associated with the
WM and WMH classes [21]. Specifically, we generate k random samples of 10 pixels each
from among those pixels that are most likely to contain WMHs a priori, i.e. from among the
5% of pixels i with the highest αi. Similarly we generate k 10-pixel samples from among the
5% of pixels with the lowest αi. From each high-αi sample we estimate a candidate μ1 and
Σ1 from the corresponding yi, and similarly a candidate μ0 and Σ0 is estimated from each low-
αi sample. Let YL and YH be the yi corresponding to the low-αi pixels and high-αi pixels
respectively. Let XL contain a WM label for each low-αi pixel and XH contain a WMH label
for each high-αi pixel. Each candidate (μ0, μ1, Σ0, Σ1) is assigned a numerical score that
summarizes how well it fits the high-αi and low-αi yi, as well as how many of the yi ∈ {YL,
YH} are outliers. The score is

where ν is a fixed penalty for outliers and δ(i) indicates whether yi is an outlier, i.e. it is 1 when
f(yi; μxi, Σxi) > T and 0 when f(yi; μxi, Σxi) < T. In our experiments, we set k,T, and ν to 100,
10−6, and −0.1 respectively. The highest-scoring (μ0, μ1, Σ0, Σ1) are our parameter estimates
for the distributions. Given the parameters needed to calculate the likelihood and contextual
prior, we then use Belief Propagation to infer labels X that maximize log(P(X|Y)) [22].

MRF Inference
In Belief Propagation (BP), inference is performed by propagating local evidence (beliefs) as
messages. Here, we use the Factor Graph formulation of BP in order to simplify notation. Factor
Graphs represent undirected graphs in a bipartite fashion with two types of nodes: factor nodes
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and variable nodes. In our method, variable nodes directly correspond with pixel labels xi and
factor nodes each correspond to a δ ∈ Δ. In each BP iteration, each variable node sends a
message to each factor node that represents a clique it is a member of, and each factor node
sends a message to the variable nodes of the clique member nodes. These messages are called
variable messages xi → δ(x) and factor messages δ → xi(x) respectively. For Max-Product BP,
the version used to compute a set of maximum a posteriori labels, the messages are:

where x is a candidate label for xi, Δi denotes the set of δ containing i, the observation term

and the compatibility term C(Xδ) = S(βXδ) where S(u) is a regularization function that smoothes
across values of K to avoid numerical implementation issues introduced by extreme-valued
weightings. When computing the β terms using Sum-Product BP as referenced in Sec. 2, the
sums in the above terms are replaced with products, the max is replaced with a sum, and O
(x) = 1. The model marginals are then computed by:

for each possible configuration of labels Xδ for the given δ to form . [23]

3 Experiments
In this section, we test the method’s performance under varying training/inference conditions,
training set sizes, neighborhood connectivity, and training data sources.

Training and Inference Methods
In these tests, we use leave-one-out cross-validation to evaluate MRF-based WMH detection
on the ADC data set; for each subject, we estimate the α and β parameters from the remainder
of the subjects and use them to detect WMHs on the left-out subject. Agreement between the
ground-truth WMH volumes and our computed volumes is evaluated using the intraclass
correlation coefficient (ICC). We compute these ICC values for our method under each of these
conditions: In the No MRF method, we do not use an MRF-based system and instead simply
threshold the Posterior probabilities deduced from the Hs and HL terms alone. In the 6-MRF
Without Training method, we use the empirical marginals  for the βXδ terms instead of
performing a proper training method. Finally, the 6-MRF With Training method uses our
complete system with its designed proper IPF-based training. The results of these experiments
are available in Table 1 and an example is given in Fig. 5.

In our experiments, our MRF-based method outperforms the No-MRF and untrained MRF
versions.
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Contextual Prior Connectivity
One variable parameter of the method is the connectivity of its Contextual Prior information,
ie. what size groupings of neighboring pixels influence each other in the MRF system. Higher
values allow the system to model more complex spatial patterns. In 2D images, this choice is
generally whether or not diagonal pixels are considered neighbors. In 3D, neighborhoods are
described in values between 6, ie. a pixel’s 4 nearest neighbors within the plane and 2 nearest
in the Z direction; and 26, ie. all of a pixel’s neighbors in a 3×3×3 pixel box around it. Results
of testing our method under varying connectivities are presented in Table 2. For these tests, as
in the previous, we used the ADC dataset and leave-one-out cross validation.

In these experiments, we found that our method performs best using 6-connected
neighborhoods, the smallest logical size within 3D space.

Training Set Size
One important property of any training-based classification method is the amount of training
data it requires to give good results on test data. To test this property, we trained upon three
different randomly selected subsets of the ADC dataset for each size: 10, 20, 40, 60, 80, and
100 subjects. We then ran the method to classify the dataset using these subsets as training data
(Fig. 4).

For this dataset our method performs better when using more training data up until about 60
images, after which there is little improvement.

Training and Test Sets from Different Populations and Scanners
To test our method’s performance using a completely different dataset from that upon which
it was trained, we employed ground-truth WMH map data of 51 subjects from the Chicago
Health and Aging Project (CHAP), a longitudinal Epidemiological study of individuals with
risk factors for Alzheimer’s Disease [24]. These images were preprocessed in the same fashion
as the ADC data (Sec. 2) and used for training. We then tested (using 6-connected
neighborhoods and standard training/inference) our dataset of 114 ADC subjects using this
training data and obtained results with an ICC of 0.841, demonstrating our method’s ability to
perform reasonably when classifying images from a dataset from an entirely different MRI
scanner, study type (epidemiological vs. clinic-based cohorts), and population.

4 Discussion and Future Work
Summary of Results

Our method performs robust WMH detection with no FLAIR when using at least 60 training
images and standard MRF training/inference, including when the sources of training and testing
data differ significantly. While our method performs strongly in these experiments, there exist
several routes through which it can be improved in the future. Specifically, we discuss why
the method performed worse using higher connectivities and possible new applications such
as longitudinal WMH detection and multi-class segmentation.

Higher Degrees of Neighborhood Connectivity
Increased complexity can model more complex spatial dependencies among WMHs, but did
not perform well in our experiments (Sec. 3). This drop in performance can be explained by a
combination of factors. Higher connectivities subdivide the training data into a larger set of
parameters, requiring a larger amount of training data. Additionally, it is possible that higher
connectivities result in overfitting to the training data. Finally, BP, used here in both training
and inference, is technically not guaranteed to perform well in loopy graphs but empirically
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does for 4-connected 2D latices. As the connectivity of our model increases, so does the
proportion of loops in the graph, which may decrease performance. Future work should
determine which combination of factors causes the decrease.

Other Applications
In addition to improving the method itself, future work will test and extend it for use in other
applications. Simply by using appropriate training data, it could be applied to other diseases
and modalities. It could also be extended to classify multiple tissue types at once to create an
overall brain tissue segmentation system. Another possibility would be to detect WMHs on
longitudinal series of MRIs. With this change our method could not only improve the results
of each detection by the additional information (eg. encouraging pixels with WMH at time 1
to remain WMH at time 2) but also generate models of disease progression.
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Fig. 1.
A representative axial slice from the input images used for detecting WMHs at run time (left)
and ground-truth data used for training the WMH detection method and validating the results
(right).
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Fig. 2.
Left: ADC subjects were divided into quintiles based on total WMH volume; voxels that had
WMHs in more than 5% of subjects in the quintile are shown in red. Note that WMHs appear
to progress systematically upwards and outwards from periventricular zones. Right: The
contextual prior captures the characteristic inferior-to-superior progression of WMHs in
elderly subjects. Each pixel is colored according to the probability that it is WMH, given that
the pixel below it, vs. above it, is WMH. P(WMH|WMHBelow) is moderate at most pixels
because if a downward neighbor is WMH, the upward propagation of WMHs may have arrived
there and stopped; or it may have continued upward to include the pixel in question. Meanwhile
P(WMH|WMHAbove) is generally high because if the upward progression of WMHs has
already reached a particular pixel, it is likely to have already passed through the pixels below
it. The WMH detection method uses this known spatial progression of WMH to help determine
which pixels are WMH, based on the absolute position of the pixel and the presence of
neighboring WMHs.
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Fig. 3.
The intensity distributions of WM and WMH intensities empirically follow “comet-like”
patterns. Pictured: WMH intensities and the fit distribution for them in one ADC subject.
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Fig. 4.
Plotted mean μ and μ ± σ of ICC values between ground-truth WMH volume and WMH volume
estimated by our method using differently-sized random subsets of the training set in cross
validation. Note that these values are absolute, not percents, and are out of a maximum of 114
(training with all data). *Each of the size-10 ICC measures is without 1–2 test subjects for
whom IPF did not converge.
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Fig. 5.
Comparison of WMH detection results for a selected brain region (see green box, left, and
ground-truth). Detected WMHs are shown in yellow.
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Fig. 6.
Comparison of WMH detection results for a selected brain region (see green box, left, and
ground-truth). Detected WMHs are shown in yellow.
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Table 1

Intraclass correlation coefficients (ICCs) between ground-truth WMH volume and WMH volume estimated by
our method on the ADC data set with several variations.

No MRF 6-MRF Without Training 6-MRF with Training

ICC 0.909 0.872 0.916
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Table 2

Intraclass correlation coefficients (ICCs) between ground-truth WMH volume and WMH volume estimated by
our method using various degrees of spatial prior directional connectivity for the ADC data set.

6-MRF 10-MRF 18-MRF 24-MRF

ICC 0.916 0.909 0.898 0.862
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