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Summary
This work is motivated by a quantitative Magnetic Resonance Imaging study of the relative change
in tumor vascular permeability during the course of radiation therapy. The differences in tumor and
healthy brain tissue physiology and pathology constitute a notable feature of the image data—spatial
heterogeneity with respect to its contrast uptake profile (a surrogate for permeability) and radiation
induced changes in this profile. To account for these spatial aspects of the data, we employ a Gaussian
hidden Markov random field (MRF) model. The model incorporates a latent set of discrete labels
from the MRF governed by a spatial regularization parameter. We estimate the MRF regularization
parameter and treat the number of MRF states as a random variable and estimate it via a reversible
jump Markov chain Monte Carlo algorithm. We conduct simulation studies to examine the
performance of the model and compare it with a recently proposed method using the Expectation-
Maximization (EM) algorithm. Simulation results show that the Bayesian algorithm performs as
well, if not slightly better than the EM based algorithm. Results on real data suggest that the tumor
“core” vascular permeability increases relative to healthy tissue three weeks after starting
radiotherapy, which may be an opportune time to initiate chemotherapy and warrants further
investigation.
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1. Introduction
As a non-invasive visualization tool, quantitative Magnetic Resonance Imaging (qMRI)
enables researchers to assess pathological and physiological changes of in vivo tissue that
cannot be evaluated with conventional anatomic MRI. Recent applications of qMRI include
Cao et al. (2005), Moffat et al. (2005), and Hamstra et al. (2005). These applications share a
common goal: to use qMRI to predict (local) therapeutic efficacy early during treatment with
the aim of individualizing treatment regimens.

Despite recent advances in cancer treatments, the median survival time of patients with high-
grade gliomas (a type of brain cancer) has not substantially increased from approximately one
year after diagnosis. This is largely attributable to the tight endothelial junctions in the tumor
vascular structure (also known as the blood-tumor barrier, BTB) that blocks large molecules,
such as traditional chemotherapeutic agents, from entering these tumors. This mechanism also
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protects healthy tissue in the brain from the cytotoxicity of chemotherapeutic agents (also
known as the blood-brain barrier, BBB). Although it is known that radiation can increase
vascular permeability via damage to the vascular structure, standard of care sequential
radiotherapy followed by chemotherapy has had limited success in treating brain cancer
(Medical Research Council, 2001).

Researchers at the University of Michigan, School of Medicine recently conducted a study
aimed at determining if the increase in tumor vascular permeability induced by radiation is
transient and whether there is a time at which this increase is maximum (Cao et al. 2005). If
this hypothesis holds, it would suggest that chemotherapy should begin during the course of
radiation therapy instead of after its completion. This was the first study to use quantitative,
high-resolution MRI to assess radiation induced increases in tumor vascular permeability
among glioma patients (Cao et al. 2005). Eleven subjects with primary, high-grade gliomas
participated in the study. T1-weighted MRI1 was performed on each patient, with and without
contrast enhancement, prior to the beginning of radiotherapy. The same imaging protocol was
subsequently performed after the first and third week of radiotherapy, and at one, three and six
months after the completion of radiotherapy. The contrast agent used, Gadolinium
diethylenetriaminepentaacetic acid (Gd-DTPA), has approximately the same molecule weight
as many chemotherapeutic agents used to treat gliomas. Hence, the contrast uptake (quantified
as the difference, on the log scale, of the contrast enhanced and pre-enhancement MRI images)
was used as a surrogate of vascular permeability to these drugs (Cao et al. 2005). In this paper,
we focus on the change in contrast uptake from baseline to week three (the difference between
contrast uptake at week 3 and baseline, e.g. Figures 1a and 2a), which is of special interest to
the researchers. For simplicity, we hereafter refer to the change in contrast uptake image as the
observed image.

It is known that solid tumors are physiologically different from surrounding healthy tissue, and
that the contrast uptake, as well as its change, is heterogeneous. Many qMRI analyses ignore
the inherent spatial correlation (at the pixel level) in the data, and treat the observed change in
contrast uptake at each pixel as independent observations (e.g. Cao et al. 2005; Moffat et al.
2005; Hamstra et al. 2005), which results in biased variance estimates. To model the change
in tumor/brain contrast uptake induced by radiation at the pixel-level, we use a model that
accounts for the spatial correlation in the data and respects the distinct boundaries between
tumor and healthy tissue. We introduce a layer of discrete hidden labels from a Markov random
field (MRF, Besag 1974) which accounts for the spatial correlation in the data and avoids over-
smoothing. A priori, the MRF encourages spatial continuity but allows for spatial
heterogeneity. Like many similar models, we assume the observed data conditional on the
hidden labels are independent and normally distributed (e.g. Lei and Udupa, 2002; Liang and
Lauterber, 1999, Ch. 8).

The hidden MRF model we employ, known as the Potts model in statistical physics (Potts,
1952), has been applied in diverse areas such as disease mapping (Green and Richardson,
2002), agriculture (Dryden, Scarr, and Taylor, 2003), and landscape genetics (Francois,
Ancelet, and Guillot, 2006; Guillot, Estoup, Mortier, and Cosson, 2005). All the above
applications share the same feature as ours—spatial heterogeneity. However, our work builds
on previous methods by integrating many of the individual ideas that have been previously
published.

1A T1-weighted MRI uses short repetition time and echo time in which paramagnetic agents (e.g. Gadolinium) appear brighter in the
image. Note that the qMRI images derived from T1-weighted MRI reflect the change in the intensities of the MRI images, and therefore
reflect the change in the density of the paramagnetic agents, e.g. contrast uptake of Gd-DTPA.
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Firstly, we estimate the spatial regularization parameter, which is often fixed in the MRF
models (e.g. Green and Richardson, 2002). Francois, Ancelet, and Guillot (2006) show that
results can be sensitive to the choice of this parameter. However, estimation of the spatial
regularization parameter requires a corresponding normalizing constant, which is
computationally intractable. Some authors use pseudo-likelihood (Besag, 1974), which avoids
the need to estimate the normalizing constant. However, this approach tends to overestimate
the regularization parameter and over-smooth the data (Melas and Wilson, 2002). Instead, we
use thermodynamic integration proposed by Ogata (1989) to estimate the ratio of these
constants. This method was subsequently generalized by Gelman and Meng (1998). In 1997,
Potamianos and Goutsias conducted a simulation study comparing several methods that
approximate the normalizing constant in the Ising model (a two state Potts model) and
recommend that Ogata’s thermodynamic integration method be used.

Secondly, we treat the number of states of the MRF as a model parameter and employ reversible
jump Markov chain Monte Carlo (RJMCMC, Green, 1995; Richardson and Green, 1997) on
a large scale dataset. The number of states in the MRF is traditionally assumed known
(Khalkighi, Soltanian-Zadeh, and Lucas, 2002; Marroquin, Arce, and Botello, 2003). This is
reasonable when there is substantial scientific justification, e.g. segmenting the brain into white
matter, gray matter and cerebrospinal fluid. However, the segmentation labels lack a
biologically meaningful interpretation in our application. Therefore, it is more appropriate to
treat the number of labels as a model parameter. In this manuscript, we implement a complete
Bayesian approach using RJMCMC and we propose a novel implementation of the reversible
jump proposal inspired by the Swendsen-Wang algorithm (Swendsen and Wang, 1987). We
focus on the marginal posterior distribution of change in contrast uptake, rather than prediction
of the hidden labels. The labels are used to model spatial correlation and have no intrinsic
scientific interpretation of interest.

The rest of this manuscript is organized as follows. In the next section we introduce notation
and specify the model. We then discuss its implementation in Section 3. In Section 4, we present
results from simulation studies and compare the results with the EM algorithm of Zhang et al.
(2008). We also investigate the performance under violations to model assumptions and present
results from the motivating example. We conclude by summarizing the strengths and
weaknesses of our algorithm, and discuss future work.

2. Model Specification
Following convention, we use i = 1, 2, ···, N to index pixels (short for picture element). If pixel
i and i′ share a common edge, we call them neighbors, denoted by i ~ i′. The set of neighbors
of pixel i is denoted by ∂i = {i′: i′ ~ i}. Let y = (y1, y2 ···, yN)T denote the observed image
(Figures 1a and 2a). In the proposed hidden MRF model, we introduce a latent discrete label
Zi from a discrete state space  = {1, 2, ···, M} for each pixel i. The collection of latent labels,
z = (Z1 = z1, Z2 = z2, ···, ZN = zN)T, is called a configuration. The set of pixels that share the
same label is referred to as a component, and may consist of disjoint clusters of pixels.

2.1 Distribution of the Data
We assume the observed data are conditionally independent given the hidden labels,

The hidden labels follow a Gibbs distribution with joint probability mass function
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(1)

where I[·] is the indicator function (I[zi = zj] = 1 if zi = zj and 0 otherwise). The regularization
parameter, β, controls the spatial smoothness of the MRF. When β = 0 the pixels are
independent. When β is large, the correlation between pixels is strong (neighboring pixels have
high tendency to assume the same label) and the configuration tends to be smooth. In principle,
the MRF encourages neighboring pixels to share the same label. We note that the spatial
correlation decreases as the distance between pixels increases. The normalizing constant in
Equation (1), g(β, M) = Σz∈  exp{βΣi~i′ I[zi = zi′]}, has MN outer summands, and therefore is
not computationally tractable. Some authors (e.g., Chalmond, 1989; Won and Derin, 1992)
avoid computing the normalizing constant by using the pseudo-likelihood,

as an approximation to Pr(Z = z |β, M). However, Barker and Rayner (1997) show that, under
certain circumstances, this pseudo-likelihood may lead to an improper posterior distribution.
Others completely avoid estimating it by assuming fixed values for both β and M, the results
of which may depend on the choice of β (Francois, Ancelet, and Guillot, 2006). We use
thermodynamic integration2 (see Appendix 1 for details) as proposed by Ogata (1989), brought
to the attention of the statistical community by Gelman and Meng (1998), and subsequently
used by Green and Richardson (2002) and Higdon (1998), among others.

It follows that the joint distribution of the data and hidden labels is

Although we assume conditional independence of the observed data given the hidden labels,
one can show that the observed data are marginally correlated because of the correlation
introduced by the MRF labels.

2.2 Prior Distributions
A priori, regularization parameter, β, follows a uniform distribution on the interval [0, βmax]
with βmax = 3. The number of components, M, is given a uniform distribution on the set of
integers {Mmin, …, Mmax}, where Mmin = 1 and Mmax = 20. The component means, μk are
independently and identically distributed (i.i.d.) Unif[ymin, ymax], where ymin and ymax are the
minimum and maximum of the observed data, respectively. The inverse of the component
variances are, a priori, i.i.d. gamma random variates:  with ασ = 2.1
and βσ ~ Gamma(2.5, 5). The prior mode of βσ is 0.3, which favors smaller variances. We place

2Technically, we only need and compute the ratio of normalizing constants in this manuscript, as detailed in Appendix 1. However, the
normalizing constant itself can be readily approximated from the ratios (Gelmen and Meng, 1998).
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a hyperprior distribution on βσ to reduce the dependence of the posterior of  on its prior. In
Section 4.1.1, we investigate other values of ασ in a sensitivity analysis.

We illustrate the model structure in a Directed Acyclic Graph (DAG) in Figure 3 and write in
vector form μ = (μ1, ···, μM), , and θ = (μ, σ2, βσ, β, M). Assuming (conditionally)
independent prior distributions, the joint prior distribution is π(θ) = π(β)π(M)π(μ)π(σ2|βσ)π
(βσ).

2.3 Joint Distribution and Conditional Posterior Distributions
By Bayes’ Theorem, the joint posterior distribution is proportional to

(2)

Note that the above joint distribution is invariant to permutations of the component labels
conditional on M, and therefore the component means and variances are not identifiable. In
many fixed-dimension problems with segmentation as the main goal, a constraint such as μ1
< μ2 < ··· < μk is imposed to resolve the identifiability issue. However, when M is treated as a
parameter, the components may still be unidentifiable even with the ordering constraint. We
discuss this further in Section 3.3.2.

The conditional posterior distributions of the model parameters are

(3)

(4)

(5)
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(6)

(7)

for k = 1, 2, …, M, where Dk = {i: zi = k} denotes the set of pixel indices in component k, Nk
is the number of pixels in component k, and ‘·’ denotes all other parameters and data.

2.4 Marginal Posterior Distribution of Change in Contrast Uptake
Our goal is to establish the underlying change in contrast uptake, μzi, and characterize it with

its posterior mean, , and variance, . Both
of these quantities are estimated via Markov chain Monte Carlo (MCMC). Let t denote the tth

draw (1 ≤ t ≤ T). Then  and , where  when

. Zhang et al. (2008) propose a similar measure: the “expected change in contrast uptake”

defined by . However, this estimate depends only on the maximum
likelihood estimate (MLE) of θ, and neglects the uncertainty in its estimation.

3. Algorithm Details
We initialize the Monte Carlo chain with a relatively large number of components, M = 15.
The initial values of μ are evenly spaced on the range of observed data ([ymin, ymax]), while
the components of σ are set to the interval width. The hidden labels are drawn independently
from neighboring pixels, i.e. β = 0.

The parameters μ, σ2, and βσ can be updated via standard Gibbs sampling steps due to
conjugacy. The spatial regularization parameter β requires a Metropolis-Hastings step. We
update the hidden labels via the Swendsen-Wang algorithm (Swendsen and Wang, 1987), an
efficient sampler for the Potts model. The most difficult part of the sampler is updating the
number of components. Since the dimension of the parameter space is determined by the
number of components, we employ RJMCMC to update M.

3.1 Updating the Spatial Regularization Parameter
When updating the spatial regularization parameter at the tth iteration, β(t), we use a Gaussian

proposal distribution centered at β(t−1), , where the variance of the proposal,

, is adaptively tuned during burn-in to give an acceptance rate of approximately 35%. Since
we use a symmetric proposal distribution, the acceptance probability only depends on the ratio
of the conditional posterior distributions in Equation (6). The ratios of normalizing constants
are estimated before-hand on a grid of values for β and M (β = 0, 0.05, ···, 3.00 and M = 1, 2,
···, 20, see Appendix 1 for details), interpolating between values when necessary.
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3.2 Updating the Hidden Labels via the Swendsen-Wang Algorithm
The kernel of the conditional posterior distribution of Z, Equation (7), consists of two parts—
an interaction term (between neighboring pixels) and a likelihood term (sometimes referred to
as the external field, Higdon, 1998). A pixel-wise updating scheme may not mix well in the
presence of the interaction term (Higdon, 1998). Hence, we use the Swendsen-Wang algorithm,
an efficient sampling scheme designed to speed up the mixing of the Potts model (see Appendix
2 for details).

3.3 Trans-dimensional moves
Applications of RJMCMC in Potts models include Green and Richardson (2002), who analyze
disease mapping data using a trans-dimensional proposal that emulates the spatial dependence
structure of the Potts model; and Dryden, Scarr, and Taylor (2003), who apply a similar scheme
to analyze weed and crop images. However, we found that these proposals do not work well
for our application: with tens of thousands of pixels per image, the acceptance rate using these
proposals is practically zero.

Therefore, we propose a novel implementation of the trans-dimensional move inspired by the
Swendsen-Wang algorithm. We first randomly choose between a split and a merge proposal
with

3.3.1 Split Proposal—If a split proposal is chosen, we randomly pick a component k (1 ≤

k ≤ M) to split, i.e. . The dimension of the parameter space increases by two
accordingly. To match the increase in dimension, we introduce two independent random
variables, u1, u2 ~ Beta(2, 2), and define a bijective transformation

 that matches the first two moments,

We denote the proposed set of parameters with a superscript*:  and

. When there exists a component h (1 ≤ h ≤ M + 1) satisfying
, the proposal is not likely to be accepted. We therefore reject such proposals. The

common hidden labels define contiguous equivalence classes on the lattice. We base the
proposed labeling on the equivalence classes. In contrast to the Swendsen-Wang update, we
do not further break contiguous same-labeled regions with stochastic “bonds” (Appendix 2).
Rather, we partition the configuration deterministically. This is equivalent to a Swendsen-
Wang update with an infinite regularization parameter (β = ∞) where all same-labeled
neighbors are “bonded”. Suppose there are L such equivalence classes ξ1, ξ2, ···, ξL with current
labels E1, E2, ···, EL (by definition, L ≥ M, and when i ∈ ξl, zi = El). We randomly draw a label
for these equivalence classes with probability proportional to the likelihood. Specifically, the
probability that class ξl assumes a new label k is
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(8)

where the  are normalized so that  for all l. Let  denote the proposed label for

class ξl from Equation (8), i.e. . The allocation probability in the current

state conditional on the equivalence classes is .

We also compute the allocation probability for the proposed configuration given the same

equivalence classes, , where , for k = 1,
2, ···, M.

It follows that the acceptance probability for the proposed split move is min(1, A) with

(9)

Here b(·) is the density function of the Beta(2, 2) distribution. The first line is the product of
the posterior ratio and the proposal ratio, while the second line is the Jacobian of the bijective
transformation.

3.3.2 Merge Proposal—We first randomly pick a pair of components k1 and k2 with adjacent
means, . The parameters for the new component are determined as the
inverse of the split proposal, i.e.

We denote the proposed set of parameters by  and

.

We propose a new configuration z* with M − 1 components based on the same-labeled
contiguous equivalence classes. The new label  of class ξl is drawn from

, for k = 1, 2, ···, M − 1. The associated allocation

probability is . Similarly, the allocation probability for the new configuration

is , where , for k = 1, 2, ···, M.

Hence, the acceptance probability of the merge proposal is min(1, B), where
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We note that identifiability issues may still arise under the constraints μ1 < μ2 < ··· < μM, when
M is not fixed. For example, suppose there are three components labeled 1, 2, and 3, after the
merge of components 1 and 2. The component with original label 3 is automatically relabeled
as 2 under the constraints. It is clear that the component with new label 2 (originally labeled
3) is not the component with original label 2. Nevertheless, we are mainly interested in the
“true” change in contrast uptake and are not interested in the labels. Thus, we marginalize over
M and the labels (Section 2.4), and thus avoid the issue of non-identifiability.

4. Results
To evaluate the performance of the proposed method, we start with simulation studies under
the model assumption of conditionally independent noise, and then investigate model
performance under violations of this assumption. We define the image Mean Squared Error

(MSE) of pixel intensities by , where  is the simulated true
value. We generate multiple datasets and compute the average MSE across the datasets, i.e.

, where  is the image MSE of the lth simulated dataset (1
≤ l ≤ L). The results are compared with an EM algorithm (Zhang et al. 2008) as well as a fixed
dimension MCMC. We also present results from the motivating example.

4.1 Simulation Study with Conditionally Independent Noise
We divide a 128 × 128 lattice into 16 regions of various shapes (Figure 4). We assume the
observed pixel values within the same region follow the same distribution, drawn randomly
from eight candidate Gaussian distributions with means μ = (−3.5, −2.5, −1.5, −0.5, 0.5, 1.5,
2.5, 3.5)T and standard deviation 0.625. We generate 100 sets of true and observed images to
compute the MSEs (L = 100, see Figure 4 for one example).

Zhang et al. (2008) report biased parameter estimates when the pixels are treated as independent
observations, which is equivalent to a Gaussian mixture model (GMM) with equal component
weights. We find similar results with M = 8 and β = 0: the average MSEs are

 (mean ± standard deviation).

The EM algorithm (Zhang et al. 2008) yields smaller MSEs than the GMM by modeling the

spatial correlation, i.e.  (Table 1). However, our results also show
that the number of components has a sizable impact on the average MSE. When the number
of components is under-specified, e.g. M = 6, the performance of the EM algorithm is not

satisfactory with . On the other hand, when M is over-specified,
e.g. M = 12, the model fit improves with extra degrees of freedom, i.e.

. These results present a potential problem with the EM algorithm
—if both small MSE and correct estimation of M are important, the EM algorithm does not
yield a “best” model under both criteria.

As an alternative, parallel to the EM algorithm, we also implement a fixed dimension MCMC
algorithm (see results in Table 1). As with the EM algorithm, the choice of M impacts the
average MSE. When M = 8, the average MSE is smaller than that of the EM algorithm, i.e.

. The same holds true when M = 6 with

. When the data are over-fitted with M = 12, the average MSE

decreases to . In summary, the MCMC algorithm has smaller
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average MSE than the EM under all three choices for M. Furthermore, the MCMC algorithm
appears to be less variable as evidenced by the smaller standard deviations of the .

We then run our proposed RJMCMC algorithm for 50000 iterations and discard the first half
as burn-ins. Figure 4 displays the posterior mean (η ̂i) and standard deviation (ψ ̂i) for one
simulated dataset. The posterior mode is M = 8 for all L datasets and the posterior probability
that M = 8 ranges from 50% to 88%. The average MSE,  (Table 1),
is much smaller than both EM and fixed dimension MCMC under the true M = 8 with less
variability. Although the decrease in average MSE compared to the other two algorithms when
M = 12 is marginal, a detailed examination of all 100 simulations reveal that the image MSE
of our RJMCMC algorithm is smaller than the other two algorithms, conditional on M = 12,
in 99 out of the 100 simulated datasets. The inter-quartile range of the decrease in image MSE
is [0.002, 0.003] compared to EM and [0.001, 0.002] compared to the fixed dimension MCMC.

We reason that the Bayesian algorithms explore the posterior distribution more efficiently and
are less prone to getting stuck in local modes, whereas the EM algorithm only guarantees
convergence to a local mode. Furthermore, we reason that the additional flexibility of changing
between models (M) afforded by the RJMCMC algorithm, can further aid in exploring the
posterior. We argue that one significant benefit of the proposed algorithm is that it produces
satisfactory results (and in many cases better results) without the risk of over- or under-
specifying the number of components.

4.1.1 Sensitivity Analysis—In Section 2.2, we have chosen diffused prior distributions that
cover reasonable ranges for most parameters. We now investigate alternative values for ασ:
ασ = 0.5 and ασ = 5.0. The impact on the MSEs is negligible, i.e. the average MSE is 0.012 ±
0.001 when ασ = 0.5 and 0.012 ± 0.003 when ασ = 5.0 (compared to 0.012 ± 0.001 when ασ =
2.1).

We also examine our proposed algorithm under various signal to noise ratios (SNR). The
simulation set in the above section has signal level Δμ = μk+1 − μk = 1 and noise level σ = 0.625.
We increase the noise level to σ = 0.65, 0.7, 0.75, and 0.8, while maintaining the same signal
level. As the SNR decreases, the average MSE increases from 0.014 ± 0.005, 0.023 ± 0.014,
0.059 ± 0.024 to 0.083 ± 0.027.

4.2 Simulation Studies with Correlated Noise
We evaluate the robustness of the method to violations of the conditional independence
assumption by applying Gaussian smoothing kernels on the simulated datasets. We follow the
same Gaussian kernel parameters as Zhang et al. (2008), i.e. σ = 0.42, 0.85, 1.70, and 3.40.
Larger values of σ indicate smoother images.

The “edge preservation” of the proposed algorithm is more evident with lighter smoothing (the
bottom two rows of Figure 4). The average MSEs for all degrees of smoothing investigated
are displayed in Table 1. Within each algorithm, the average MSE increases as smoothing gets
heavier. When smoothing is light (σ = 0.42), the fixed dimension MCMC achieves smaller
MSEs compared to the EM algorithm using the same value for M. Our algorithm results in the
smallest average MSE regardless of the choice of M in the other two algorithms. However,
when the smoothing is heavy, e.g. σ ≥ 0.85, none of the algorithms has satisfactory performance.
Thus we suggest that no smoothing of the data be performed prior to running any of these
algorithms.
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4.3 Application
In the motivating study, eleven subjects received standard of care radiotherapy and MRI images
were obtained before, during, and after treatment. All images were registered to anatomical
Computed Tomography (CT) images obtained for treatment planning purposes. Due to space
limitations, we only display the images on the same two subjects as Zhang et al. (2008).

In the original analysis, Cao et al. (2005) divided the tumor into two regions, one with relatively
high pre-treatment contrast uptake and the other with relatively low initial contrast uptake. This
more-or-less divides the tumor into a “core” (low initial contrast uptake) surrounded by an
“annulus” (with high initial contrast uptake). Tumor cores are typically hypoxic (with low
oxygen content) due to a lack of blood supply, which is known to have a protective effect
against damage due to both radiation and chemotherapy and may be a source of tumor re-
growth. Hence, the focus was on demonstrating that radiation therapy has a transient effect on
the tumor “core” with respect to increasing the contrast uptake. The time when this increase is
greatest may suggest an optimal time for initiating chemotherapy, allowing for more effective
delivery of chemotherapeutic agents. Following Zhang et al. (2008), we use the 95th percentile
of healthy tissue contrast uptake at baseline as the threshold to divide the tumor into core and
annulus.

We then run the proposed algorithm for 50000 iterations after 25000 burn-in iterations. The
acceptance rate of the trans-dimensional proposals is 12.5% for subject 1. The posterior mean
of change in contrast uptake and associated standard deviation (Figure 1b and 1c) delineates
the heterogeneous response of the tumor. The results from subject 2 are similar (Figure 2b and
2c), as are the results from all subjects (not shown).

4.3.1 Interpretation of the Results—As discussed in the introduction, large increases in
contrast uptake may suggest more effective delivery of chemotherapy drugs. Hence, an optimal
time to deliver chemotherapy may exist when the contrast uptake increase in the tumor is large
relative to healthy tissue. One way to quantify this is to define a threshold and compare the
proportions of healthy and diseased tissue that exceed this threshold. Although, there is no
established threshold, we apply an illustrative threshold, 0.06, used by Zhang et al. (2008). For
subject 1, 8.2% of the normal tissue exceeds the threshold, while 59.5% of the tumor “core”
has an increase in contrast uptake above the threshold, compared to 15.6% in the tumor
“annulus” (Figure 1e). Similarly, for subject 2, 4.0% of healthy tissue exceeds the threshold.
While 54.3% of the tumor “core” has a change in contrast uptake that exceeds the threshold,
compared to 12.7% in the “annulus” (Figure 2e). The percentages are similar to those reported
by Zhang et al. (2008).

Since the choice of the above threshold is arbitrary and is not supported by biological
justifications, we propose to use the Mann Whitney U statistic to summarize the differential
change in contrast uptake of the tumor and healthy tissue. It can be interpreted as the probability
that a randomly selected pixel in the tumor has a larger mean change in contrast uptake than a
randomly selected pixel in healthy tissue. A larger U statistic indicates a larger increase in
contrast uptake of the tumor relative to healthy tissue which is desirable (i.e. more contrast is
entering the tumor). There is a connection between thresholds and the U statistic. The U statistic
is equivalent to the empirical area under the receiver operating characteristics curve, or AUC
(Section 4.3.4 of Pepe, 2003).

We compute the U statistic at each iteration for the tumor “core” versus healthy tissue and the
tumor “annulus” versus healthy tissue. The 95% posterior credible interval of the U statistic
between the tumor “core” and healthy tissue is (0.74, 0.76) for subject 1, which suggests the
“core” region has a substantial increase, on average, in contrast uptake compared to healthy
tissue. The tumor “core” of subject 2 is also well separated from healthy tissue with 95%
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posterior credible interval (0.81, 0.82). The U statistic between the tumor “annulus” and healthy
tissue is under 0.5 for both subjects: (0.23, 0.25) for subject 1 and (0.25, 0.26) for subject 2,
suggesting the “annulus” on average has decreased contrast uptake compared to healthy tissue.
The U statistic for all eleven subjects are listed in Table 2. Most subjects demonstrate significant
increase in contrast uptake in the tumor “core”. We also investigate the sensitivity of the results
to alternative cutoff of tumor core vs. annulus, i.e. using 90% and 97.5% percentile of the
baseline healthy tissue contrast uptake instead of 95% percentile. The results are listed in Table
2.

5. Conclusion
In this article, we implement a statistical imaging model that respects the key feature of spatial
heterogeneity in the qMRI data. Compared with previous work, we integrate many ideas that
have been previously discussed individually. First, we estimate the normalizing constant via
thermal integration, instead of using the pseudo-likelihood. Second, we estimate the spatial
regularization parameter from the data, rather than holding it fixed. Third, we acknowledge
that there is no clear substantive knowledge regarding the number of components, given the
lack of biological interpretation of the hidden labels. We therefore marginalize over both M
and the labels, and focus on the marginal posterior distribution of the pixel change in contrast
uptake, which is of primary scientific interest. Furthermore, the split scheme proposed by
Richardson and Green (1997) is inadequate for the scale of data, we therefore propose a non-
trivial implementation inspired by the Swendsen-Wang algorithm. Finally, we propose using
the U statistic to summarize the differential change in contrast uptake of the tumor “core/
annulus” versus healthy tissue.

We find the performance of our RJMCMC algorithm improves on the EM algorithm and the
fixed dimension MCMC algorithm regardless of the number of components specified in the
latter two algorithms. Furthermore, our algorithm is preferable when there is no clear basis for
the choice of M, since the loss associated with a miss-specified M can be severe with both the
EM and the fixed dimension MCMC algorithms.

There are alternatives to the proposed algorithm. For example, birth-and-death MCMC
(BDMCMC, Stephens 2000) is an alternative trans-dimensional MCMC algorithm. Another
alternative could be a spatial infinite mixture model (Guillot, Estoup, Mortier, and Cosson,
2005, Francois, Ancelet, and Taylor, 2006), which extends infinite mixture models using the
Dirichlet process prior to the spatial setting. However, implementation of the these alternatives
may be challenging giving the large volume of data.

Finally, we would like to address that it is a complicated issue to determine the optimal timing
of administering chemotherapy with respect to radiation. The image model discussed in this
manuscript provides crucial information, but its role is not to be over-stated. It is more
appropriately considered as a piece of a large puzzle. Future research in the image model itself
as well as the underlying biological science are much needed. One future direction of our
research is in extending the image model by incorporating the repeated images that captures
the longitudinal profile of tumor/brain contrast uptake.
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Appendix

1. Estimating the Ratio of Normalizing Constant
The outline of the estimating procedure follows the general method found in Ogata (1989) and
Gelman and Meng (1998) with appropriate notational changes. For a given M (number of
components), we wish to estimate the log ratio of normalizing constants λM(a, b) = ln[g(b, M)/
g(a, M)] for b > a ≥ 0. Now

Therefore,

(10)

In order to estimate λM(a, b), we have two integrals to evaluate. The inner integral, or
expectation, is estimated via MCMC. We use the Swendsen-Wang algorithm under the
assumption that there is no likelihood term. The use of the Swendsen-Wang algorithm is key
to accurately estimate this ratio as the Swendsen-Wang algorithm moves quickly through the
state space in a way that cannot be done with single site updates. The outer integral in Equation
(10) is evaluated numerically using the trapezoidal rule. The ratio is calculated for M = 2, …,
20 and β = 0, 0.01, …, 3. For values of a and b not on the grid on which the (inner) expectation
is evaluated, we linearly interpolate.

For the RJMCMC proposal, the ratio ln[g(β, M)/g(β, M + 1)] is required. This can be estimated
using the fact that ln[g(0, M)] = ln Σz∈  1 = N ln(M), where N is the number of pixels, and the
following identity:
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2. Details of the Swendsen-Wang Algorithm
The Swendsen-Wang algorithm stochastically partitions the configuration into same-labeled
contiguous regions such that the label for these regions can be updated independently. This
clever idea is implemented in the following three steps.

1. We first generate independently random variables, uii′ ~ Uniform(0, exp{βI[zi =
zi′]}), for each pair of neighbors i ~ i′. Clearly, the joint distribution of all auxiliary
variables u = {uii′}i~i′ is f(u) = Πi~i′ exp {−βI[zi = zi′]} I[0 ≤ uii′ ≤ exp{βI[zi = zi′]}].

2. By Bayes theorem, the posterior distribution of the labels conditional on the auxiliary
variables is

(11)

The second term in Equation (11) defines the range over which the posterior
distribution is non-zero. More concretely, when 1 ≤ uii′ ≤ exp{βI[zi = zi′]} holds, it
builds a virtual stochastic “bond” between i and i′ that requires both pixels to assume
the same label. That is if pixel i and i′ assume the same label in the current
configuration, they are “bonded” to assume a common label (could be different from
the current one) with probability 1 − e−β. The bonds define an equivalence relation,
and partition a configuration into contiguous regions of bonded pixels. We denote
these equivalence classes by C1, C2, …, CJ. According to the definition, a component
consists of one or more such equivalence classes.

3. According to Equation (11), the labels of the equivalence classes can be updated

independently. The new label  of class j satisfies
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Figure 1.
Subject 1 results: (a) observed change in contrast uptake (black to white indicating larger
increases in contrast uptake); (b) marginal posterior mean of change in contrast uptake μ̃zi and
(c) standard deviation σ̃zi; thresholded image assuming (d) spatial independence (e) spatial
dependence; (f) tumor “core/annulus”.
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Figure 2.
Subject 2 results: (a) observed change in contrast uptake; (b) marginal posterior mean of change
in contrast uptake μ̃zi and (c) standard deviation σ̃zi; thresholded image assuming (d) spatial
independence and (e) spatial dependence; (f) tumor “core/annulus”.
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Figure 3.
Directed Acyclic Graph (DAG) of the proposed model
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Figure 4.
One set of simulations: the skeleton (top left) the “true” scene ( , top middle), the observed
images (y, left), the posterior mean (η ̂i, middle) and standard deviation (ψ ̂i, right) of pixel mean
intensity when σ = 0, 0.85, and 3.40 from the second to fourth row.
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