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Abstract
Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl
salicylate), which are constituents of aromas and scents of many plant species and play important
roles in plant communication with the surrounding environment. Within the past five years, eleven
such carboxyl methyltransferases were isolated and most of them were comprehensively investigated
at the biochemical, molecular and structural level. Two types of enzymes can be distinguished
according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri,
Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher
catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus,
Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The
elucidation of C. breweri SAMT’s three-dimensional structure allowed a detailed modelling of the
active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly
conserved among these enzymes while the methyl acceptor binding site exhibits some variability,
allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression
patterns coupled with biochemical characterization showed that these carboxyl methyltransferases
are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be
induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit
developmental and rhythmic expression pattern. The nature of the product and efficiency of its
formation in planta depend on the availability of substrates, the catalytic efficiency of the enzyme
toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational
regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases
suggest that the genes involved in plant defenses might represent the ancestor for the presently
existing floral genes which during evolution gained different expression profiles and encoded
enzymes with the ability to accept structurally similar substrates.
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1. Introduction
Plants produce more than 1000 different volatile secondary metabolites, many of which enable
them to interact with their surroundings. Such compounds are released not only from flowers
and vegetative tissues into the atmosphere but also from roots into the soil (Steeghs et al.,
2004). The primary functions of airborne metabolites are to defend plants against herbivores
and pathogens or to provide a reproductive advantage by attracting pollinators and seed
dispersers. Plants produce scents, which can vary in number and amount of constituents in
relation to different plant species, the stage of plant development, the time during the light/
dark cycle, and the pollination status. Since only a few major biochemical pathways
(phenylpropanoid/benzenoid, isoprenoid, and lipoxygenase pathway) are involved in the
synthesis of plant volatiles, their large diversity originates from specific enzymatic
derivatizations which sometimes in addition increase the volatility of compounds at the final
step of their formation. It could be predicted that the synthesis of this wealth of volatiles will
require almost as many speciffic enzymatic reactions as there are volatile metabolites.
However, there are several mechanisms providing multiple mRNAs from one gene, multiple
proteins from one mRNA, and multiple products from one enzyme (summarized in Schwab,
2003). Another way to limit the number of individual enzymes required for all these reactions
is to broaden their substrate range so that they can accept several related substrates rather than
favouring a high substrate specificity. This strategy is particularly applicable for reactions with
similar or identical reaction mechanisms such as hydroxylations, acetylations or methylations
(Pott et al., 2004; Dudareva et al., 2004).

The process of methylation that is catalyzed by S-adenosyl-L-methionine-dependent
methyltransferases (EC 2.1.1.-), is an ubiquitous reaction that takes place in bacteria, fungi,
plants and mammals. The reaction involves the transfer of the methyl group of S-adenosyl-L-
methionine (SAM) to either nitrogen, sulfur, oxygen or carbon atoms and modifies DNA, RNA,
proteins or small molecules with the formation of corresponding methylated product and S-
adenosyl-L-homocysteine (Attieh et al., 2002; Ibrahim and Muzac, 2000). Enzymatic
methylation of hydroxyl and carboxyl moieties is catalyzed by O-methyltransferases (O-MTs)
(EC 2.1.1.6.-). Although the chemical mechanisms of methyl transfer are identical, O-MTs
differ in their structure, their acceptance of substrates with different hydroxylation patterns at
the benzene ring. Recent elucidation of the three dimensional structure of several plant O-MTs
through protein X-ray crystallography defined three types of small molecule O-MTs (Zubieta
et al., 2001, 2002; Noel et al., 2003). Type 1 O-MTs exclusively methylate oxygen atoms of
hydroxyl moieties of phenylpropanoid-based compounds. The examples include chalcone O-
methyltransferase (ChOMT) which methylates the 2′-OH of 2′,4,4′-trihydroxychalcone;
isoflavone O-methyltransferase (IOMT) which acts on isoflavanone compounds in vivo, and
multifunctional caffeic acid/5-hydroxyferulic acid 3′/5′-O-methyltransferase (COMT) that
methylates 3′- and 5′-hydroxylated phenylpropanoids (Noel et al., 2003). Type 2 O-MTs, e.g.,
caffeoyl-CoA O-MT (CCoAOMT) are specific for phenylpropanoid esters of the coenzyme A
which are found in all lignin-producing plants. Type 3 O-MTs specifically methylate carboxyl
groups of small molecules and also nitrogen atoms of some alkaloids such as theobromine and
caffeine, for which they are collectively named SABATH MTs based on the first three
identified genes belonging to this family, SAMT, BAMT, and Theobromine synthase (D’Auria
et al., 2003). The first member of the latter type of methyltransferases was shown to be involved
in the synthesis of the volatile methyl salicylate in flowers of Clarkia breweri (Ross et al.,
1999) and recently its crystal structure was solved (Zubieta et al., 2003; Noel et al., 2003). To
date 11 type 3 carboxyl methyltransferases can be found in the data bank, many of those were
biochemically characterized. They include the SAM:benzoic acid carboxyl methyltransferase
(BAMT) from Antirrhinum majus (Murfitt et al., 2000); the SAM:jasmonic acid carboxyl
methyltransferase (JMT) from Arabidopsis thaliana (Seo et al., 2001), the SAM:benzoic acid/
salicylic acid carboxyl methyltransferases (BSMT) from A. thaliana and Arabidopsis lyrata
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(Chen et al., 2003), Petunia hybrida (Negre et al., 2003) and Nicotiana suaveolens (Pott et al.,
2004), the SAM:salicylic acid carboxyl methyltransferases (SAMT) from C. breweri (Ross et
al., 1999), Atropa belladonna (Fukami et al., 2002), A. majus (Negre et al., 2002), and
Stephanotis floribunda (Pott et al., 2002).

The resulting reaction products of the carboxyl MTs are methyl esters, which often contribute
to the plants’ characteristic scents and flavors and renders them appealing to humans, animals
or insects. Several plant varieties therefore have been selected or bred for high content of methyl
esters including methyl salicylate, methyl benzoate, methyl cinnamate, and methyl jasmonate.
The latter, first identified in the floral scent of Jasminum grandiflorum (Demole et al., 1962)
and broadly used in perfume industry, was also found to be involved in the regulation of diverse
developmental processes, such as root growth, seed germination, flower and fruit development,
leaf abscission and scenescence (Creelman and Mullet, 1997; Wasternack and Hause, 2002).
Methyl salicylate, on the other hand, is recognized as a flavor ingredient and is often produced
synthetically to flavor many types of candy, food and medicine (Cauthen and Hester, 1989;
Das Gupta, 1974; Howrie et al., 1985). Methyl cinnamate is present in some basil varieties
selected for this trait (Simon et al., 1990) while methyl benzoate is one of the major components
of ylang-ylang oil (Adam et al., 2000).

Methyl salicylate and methyl benzoate are plant volatiles with importance in inter- and intra-
organismic communication. This review focuses on floral enzymes synthesizing these
benzenoids and summarizes the recent results obtained for this new class of O-
methyltransferases five years after their discovery. The review covers the biological functions
of their products, provides a comparison of the biochemical characteristics of these enzymes
and also ties in aspects of their evolutionary origin.

2. Methyl salicylate and methyl benzoate emission is widespread in the plant
kingdom

Benzoic and salicylic (2-hydroxyl benzoic) acids are synthesized from phenylalanine via the
benzenoid branch of the phenylpropanoid pathway (Boatright et al., 2004), although an
alternative pathway for salicylic acid biosynthesis through isochorismate synthase was recently
found in Arabidopsis (Wildermuth et al., 2001). Benzoic and salicylic acids are precursors for
the synthesis of methyl benzoate and methyl salicylate in reactions catalyzed by carboxyl
methyltransferases. Methyl salicylate naturally occurs in leaves and flowers of wintergreen
(Cauthen and Hester, 1989) and in the vegetative tissue of a wide range of species including
strawberry, walnut, fig, tobacco and oat leaves (Buttery et al., 1982a,b, 1986; Andersen et al.,
1988; Hamilton-Kemp et al., 1988). It is also a constituent of the flavor of such fruits as plum,
strawberry, black cherry, and tomato (Herrmann, 1990). Methyl salicylate is involved in
tritrophic interactions by attracting natural enemies of the herbivores upon herbivore damage
(Takabayashi et al., 1994; Kessler and Baldwin, 2001) or in interplant communication between
damaged and undamaged tissues (Shulaev et al., 1997; Dicke and Bruin, 2001). In strawberry
leaves, the level of methyl salicylate increases by 10-fold after fruit harvest, making the plants
more resistant to strawberry spider mites (Tetranychus urticae) (Hamilton-Kemp et al.,
1988). Similarly, methyl benzoate has been found not only in the scent of flowers, but also in
the aroma and flavor of some tropical fruits like kiwi (Young et al., 1983), starfruit (Fröhlich
and Schreier, 1989), and feijoa fruit (Shaw et al., 1983). Analysis of moth and hawkmoth
(Hyles lineata and Sphinx perelegans) electroantennogram responses to these two volatile
esters (Raguso et al., 1996; Raguso and Light, 1998), as well as, their attractiveness for silver
Y moth (Autographa gamma L.) in flight tunnel tests (Plepys et al., 2002) suggested their
possible involvement in the attraction and guidance of pollinators.
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Methyl salicylate and methyl benzoate are present in the floral scents of approximately 100
species of 30 different plant families (Knudsen et al., 1993; Knudsen pers. communication)
(Table 1). Some plant species emit only one of these compounds, while many other plant
species emit both compounds from their flowers. A detailed analysis revealed that even in
closely related species there is a high diversity in emission of these methyl esters. For example,
C. breweri emits methyl salicylate, while C. concinna, a member of the same genus, is scentless
(Raguso and Pichersky, 1995). S. floribunda emits primarily methyl benzoate and little methyl
salicylate (Pott et al., 2002) while Hoya carnosa, a member of the same family Asclepiadaceae,
emits only methyl salicylate (Altenburger and Matile, 1988). In night-flowering Silene species
(Caryophyllaceae) methyl benzoate is dominated in Silene saxifraga (96% of the total scent
output) while in S. chlorantha or S. nutans flowers does not reach a 0.5% level (Jürgens et al.,
2002). Predominance of methyl benzoate was also found in the other three members of
Caryophyllaceae family, Dianthus arenarius, D. sylvestris, and Saponaria officinalis (42.1%,
85.7%, and 68.7% of the total scent output, respectively) while five Dianthus species (D.
armeria, D. barbatus, D. deltoides, D. monspessulanus, and D. superbus) produce very little
methyl benzoate (0.1–4.5%) (Jürgens et al., 2003). The emission of methyl salicylate and/or
methyl benzoate also varies in the different Nicotiana species: N. suaveolens emits both methyl
benzoate and methyl salicylate, N. sylvestris and N. alata only methyl benzoate, N.
langsdorffii only methyl salicylate, while neither compound is found in the scents of N.
rustica and N. tomentosiformis, N. longiflora, N. plumbaginifolia, N. forgetiana (Loughrin et
al., 1990; Raguso et al., 2003).

3. Plant benzenoid carboxyl methyltransferases: sequence comparison,
three-dimensional modelling, and biochemical characterization

The first gene and enzyme involved in floral methyl salicylate synthesis was isolated from C.
breweri (Ross et al., 1999), followed by the benzoic acid methyltransferase from A. majus
(Dudareva et al., 2000). Within the past five years eleven related proteins were deposited into
the sequence data bank. Sequence alignment (Clustal W) of presently known benzoic and
salicylic acid carboxyl methyltransferases revealed 38% to 99% sequence identity at the amino
acid level (Table 2). Determination of the molecular mass of the majority of the holoenzymes
revealed that the active methyltransferases exist as homodimers with the molecular mass of
the subunits varying between 39.9 and 43.7 kD (Table 3). The existence of enzyme dimers was
supported by the determination of the protein crystal structure for the C. breweri SAMT,
showing that the N-terminal sequence is involved in dimer formation, while the C-terminal
domain is primarily involved in substrate binding (Zubieta et al., 2003; Noel et al., 2003). The
polypeptide sequences lack encoded signal peptides in their 5′ end suggesting that the carboxyl
methyltransferases are cytoplasmic enzymes. Indeed, immunogold localization of the BAMT
protein in snapdragon petals provided in vivo evidence for its cytosolic location (Kolosova et
al., 2001b).

Analysis of substrate specificity of native or recombinant carboxyl methyltransferases revealed
a high specificity of these enzymes for SAM with Km values ranging between 2 and 90 μM.
On the other hand, variation of the Km values for the methyl acceptors is much broader. Based
on methyl acceptor preferences, the subgroup of benzoate specific enzymes can be divided in
two categories: SAMT- and BAMT-types (Table 3). The generation of a relationship tree using
the PHYLIP software package (Felsenstein, 1985) also clearly distinguished the SAMT-type
group of enzymes from the BAMT-type group with the exception of BSMT from N.
suaveolens, which maintains the highest level of amino acid sequence identity with BSMT
from P. hybrida, a member of the same Solanaceae family (Fig. 1(a)). The SAMT-type includes
the enzymes from C. breweri, S. floribunda, H. carnosa, A. majus, and P. hybrida. This latter
group of enzymes favor salicylic acid over benzoic acid. For these enzymes, the Km values for
salicylic acid are in the micromolar range, from 24 to 250 μM, while the Km values for benzoic
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acid are in the millimolar range, from 1.3 to 2.9 mM, with the exception of C. breweri SAMT.
This enzyme has a Km value of 190 μM for benzoic acid. The activities of these enzymes
towards benzoic acid constitute 10–69% of their activity levels with salicylic acid. Where
determined, the catalytic efficiencies of these enzymes for salicylic acid are 39 to 76-fold higher
than for benzoic acid. The SAMT from S. floribunda represents the exception and exhibits
almost equal catalytic efficiencies for salicylic and benzoic acids, but has about a 12-fold higher
specificity for salicylic acid than for benzoic acid based on determined Km values.

The BAMT-type group of enzymes comprises BSMTs from N. suaveolens, A. thaliana and A.
lyrata, and BAMT from A. majus (Table 3). These enzymes have similar Km values for both
salicylic and benzoic acids in the micromolar range (from 16 to 162 μM), with the exception
of BAMT from A. majus, which only methylates benzoic acid and has an unexpectedly high
Kmvalue towards this substrate (1.1–1.5 mM). However, the catalytic efficiencies of N.
suaveolens and A. lyrata BSMTs for benzoic acid are from 4 to 24-fold higher than with
salicylic acid, indicating that benzoic acid is the preferred substrate. The Km value of the BSMT
from A. thaliana for salicylic acid is only slightly smaller than with benzoic acid (4 fold) and
the catalytic efficiency also indicates salicylic acid as a slightly better substrate. However, in
in vitro assays in the presence of 1 mM of benzoic or salicylic acids due to its higher turnover
value (Kcat) with benzoic acid compared with salicylic acid (0.19 versus 0.07 s−1, respectively)
it produces more methyl benzoate (Chen et al., 2003).

Within these two groups of enzymes, two patterns of substrate preferences emerge: H.
carnosa, A. majus, C. breweri, P. hybrida, A. thaliana and A. lyrata SAMTs and BSMTs can
accept primarily two substrates, benzoic acid and salicylic acid, while substrate acceptance is
significantly extended in the S. floribunda and N. suaveolens enzymes, since several benzoic
and cinnamic acid derivatives can also be methylated.

For enzymes that utilize very chemically distinct substrates, substrate binding and product
formation are often intimately related to the complementary shape and chemical features of
the constellation of amino acids found in the enzymes’ active sites. For the family of SAMTs,
which demonstrate a preference for salicylic acid and the BAMTs which, in majority
demonstrate activity with both benzoic acid and salicylic acid, structural complementarity of
the active sites to the substrates is not obvious. Within the binding sites of the BAMT-type and
the SAMT-type enzymes, there is a high degree of overall conservation. Comparative analysis
of amino acid composition within the substrate-binding sites shows that the SAM binding
pocket is highly conserved among the known benzenoid carboxyl methyltransferases while the
methyl acceptor binding sites exhibit more variability between the different species, but do not
possess signature sequences that correlate with distinct specificities for benzoate or salicylate
(Table 4, Fig. 2).

For the SAMT-type enzymes, differences in the breadth of substrate tolerance must be
explained by amino acid differences outside the active site, which may ultimately exert an
influence on binding pocket conformation and catalysis. For the S. floribunda SAMT it is
reasonable to hypothesize that residue substitutions in the methyl acceptor binding pocket may
contribute to this enzyme’s broader tolerance for diverse carboxyl-bearing substrates. The
majority of the substrate binding site changes in S. floribunda SAMT (Ala 231 for Ile, Leu 232
for Trp, and Val 316 for Met) may enhance the active site volume to allow sequesteration of
both benzoate-derived substrates with increased hydroxylation and bulkier substrates such as
cinnamic and coumaric acid (Table 3).

One of the distinctive structural differences between both enzyme types is the occurrence of a
His residue in the BAMT-type, which is replaced by a Met residue in the SAMT-type (Met
150 in C. breweri SAMT). However, this substitution alone cannot account for any preference
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forx benzoic acid versus salicylic acid, as the His residue at this position is also found in the
Arabidopsis enzymes that show substrate specificity for jasmonic acid (A. thaliana JMT, Seo
et al., 2001), and for auxin (A. thaliana IAMT, Zubieta et al., 2003).

Two other notable substitutions may be significant to the enzymes’ ability to accept salicylic
acid or benzoic acid as substrates. One is the substitution of a Leu residue (Leu 210 in C.
breweri SAMT), which is conserved throughout most of the SAMT-type enzymes, by an Asn
211 in the A. majus BAMT. Asn, unlike Leu, has an amide side chain with both a potential
hydrogen bond donor (carbonyl oxygen) and a hydrogen bond acceptor (amino nitrogen).
Interestingly, the A. majus BAMT accepts benzoic acid as a substrate, but with a Km value
significantly higher than that of all other SAMTs or BAMTs, whereas the other enzymes in
the BAMT group, which instead have conservative Ile or Met substitutions at the position
equivalent to Leu 210 in C. breweri SAMT, show efficient activity with both benzoic and
salicylic acid (Tables 3 and 4). Therefore, the Asn substitution may perturb the active site,
resulting in the decreased affinity for benzoic acid seen in A. majus BAMT. Another substrate
binding site distinction is the conservation of a Phe residue throughout the SAMTs (Phe 347
in C. breweri SAMT), and the substitution of a hydroxyl bearing residue throughout the
BAMT-type enzymes (Tyr 354 in A. majus BAMT, Thr 369 and Thr 370 in the A. thaliana
and A. lyrata BSMTs, respectively, and Ser 344 in N. suaveolens BSMT). How these
substitutions allow the enzyme to make the subtle distinction between the non-hydroxylated
benzene ring of benzoic acid versus that of the hydroxylated salicylic acid may best be
explained by influences of residues one tier removed from the active site. The dynamics of
forces exerted on active site residues cannot be appreciated by inspection of the static models
generated based on the experimentally determined structure of the Clarkia SAMT enzyme
(Fig. 2).

Perhaps the single most important determinant of an enzyme’s ability to turn over benzoate
versus salicylate is revealed by comparison of the structures of the substrates themselves. In
salicylic acid, the presence of the hydroxyl substitution on the benzene ring allows for the
formation of a very stable, high energy intramolecular hydrogen bond between this hydroxyl
moiety and the nearby carboxyl group, constraining the ring to remain in the same plane as
this carboxyl. Such an intramolecular hydrogen bond would prevent rotation of the benzene
ring around the axis of the bond bearing the carboxyl (Zubieta et al., 2003). In benzoic acid,
the lack of the hydroxyl substitution allows for free rotation of the aromatic ring around the
axis of the carboxyl-bearing bond. The internal rigidity of salicylic acid allows for active site
residues to better constrain this substrate for methylation, thus permitting the substrate binding
pocket itself to be more narrow and to fit more tightly around the substrate with little need to
adapt to the increased dynamics associated with benzoate. Benzoic acid, in contrast, is a more
“slippery” substrate, and presents more of a challenge for an enzyme to sequester in a
catalytically competent form with high specificity. To turn over benzoic acid, the enzyme’s
active site must either be more spacious, providing an ellipsoidal environment in which the
benzene ring can rotate, or its active site must efficiently adapt to this substrate’s increased
rotational freedom. If neither case exists, then only a portion of the benzoate substrate will be
in a productive conformation for recognition, binding and subsequent transmethylation when
encountering the enzyme’s active site. A comparison of the Km data of the SAMT-type enzymes
for salicylic acid versus benzoic acid, clearly demonstrates that the enzymes in this group show
an increased ability to use salicylic acid over benzoic acid. Within the BAMT-type, the Km
data show that three out of four of these enzymes can efficiently turn over both salicylic acid
and benzoic acid, and have improved ability in turnover of benzoic acid as compared to the
SAMT-type, suggesting that the BAMT-type enzymes must have either a more spacious active
site or a more dynamic active site architecture which enables them to accomodate the mobility
of benzoic acid during methylation.
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The S. floribunda SAMT and the N. suaveolens BSMT exhibit the most promiscuous substrate
tolerances (Table 3). The N. suaveolens BSMT shares five out of eleven substrate binding
residues with the S. floribunda SAMT. Both enzymes share a conserved Met (position 210) at
the position occupied by an Asn residue in the A. majus BAMT, and by Ile in both the A.
thaliana and A. lyrata BSMTs. The Ile present in the A. thaliana and A. lyrata BSMTs is a
conservative substitution for the Leu residue found generally at this position throughout the
SAMT-type enzymes (Leu 210 in C. breweri SAMT), and hence would not appear to confer
increased ability to turn over benzoic acid. The Met residue (position 210) might contribute to
the broader substrate tolerances of these two enzymes, as its sulfur-containing side chain would
allow for increased hydrophobic interactions with other active site residues, aiding in the
exclusion of water necessary for binding and turnover of aromatic carboxyl-bearing substrates
(Zubieta et al., 2003). Additionally, both enzymes share a conserved Leu at a position occupied
by a Trp residue (position 226) in the other SAMT-type enzymes, and in the A. thaliana and
A. lyrata BSMTs. This conserved Trp is substituted with another hydrophobic residue, Phe
227, in A. majus BAMT. The substitution of the much smaller Leu for the bulkier aromatic
rings of Trp or Phe, could serve to enlarge the active site, accounting for its broader substrate
tolerances as compared to the other SAMTs and BAMTs.

The generation of a neighbor-joining tree based on amino acids involved in methyl acceptor
binding sites revealed some correlations with the observed substrate specificities of the
analyzed enzymes and clearly separated A. majus BAMT and, to a lesser extent, N.
suaveolens BSMT, the BAMT-type of enzymes, from the SAMT-type (Fig. 1(b)). Although
A. thaliana and A. lyrata BSMTs also belong to BAMT-type of enzymes based on their
biochemical properties, the low bootstrap values of the neighbor-joining tree do not allow these
latter enzymes to group together with the A. majus BAMT and the N. suaveolens BSMT.

4. Expression of plant benzenoid carboxyl methyltransferase
Presently characterized carboxyl methyltransferases are thought to be involved in the
production of flower volatiles (A. majus BAMT, P. hybrida and N. suaveolens BSMTs, C.
breweri, H. carnosa and S. floribunda SAMTs) or in plant defense responses (A. thaliana and
A. lyrata BSMTs, and A. majus and A. belladonna SAMTs). The first group represents floral
genes which are highly and specifically expressed in petal tissues, the principal emitters of
scent methyl esters (Table 5, Fig. 3). Further dissection of petunia, snapdragon and S.
floribunda flowers revealed that tubes of these flowers contribute very little to the expression
pattern, thus concentrating scent production to the flower areas facing pollinators and
increasing advertising efficiency (Dudareva et al., 2000;Negre et al., 2003; Rohrbeck and
Piechulla, unpublished). Expression of C. breweri, S. floribunda SAMT and A. majus BAMT
genes is epidermis specific and, in the case of S. floribunda SAMT and A. majus BAMT, two
epidermal petal layers, the inner and the outer, are differentially involved in floral scent
biosynthesis (Kolosova et al., 2001b;Ross, 2002; Rohrbeck and Piechulla, unpublished). The
expression of carboxyl methyltransferases was found to be developmentally regulated over the
life span of the flowers and positively correlated with the corresponding methyltransferase
activities and the emission of the volatile methyl ester (Dudareva et al., 2000;Pott et al.,
2002;Ross, 2002; Fig. 3(a)), supporting the involvement of these genes in scent production.

Among the six plant species for which floral carboxyl methyltransferases were isolated, five
species exhibit rhythmicity in methyl ester emission with a maximum during the day in A.
majus and during the night in P. hybrida, N. suaveolens, H. carnosa, and S. floribunda
(Kolosova et al., 2001a; Pott et al., 2003; Altenburger and Matile, 1988). In these species, the
expression of carboxyl methyltransferase genes or enzyme activities oscillate during a light/
dark cycle. These oscillations in the case of A. majus, S. floribunda and N. suaveolens were

Effmert et al. Page 7

Phytochemistry. Author manuscript; available in PMC 2010 May 5.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



found to be controlled by a circadian clock (Kolosova et al., 2001a; Pott et al., 2003; Figs. 3
(b–d).

The second group represents genes involved in defense reactions since their expression could
be induced by biotic and/or abiotic stresses (Fukami et al., 2002; Negre et al., 2002; Chen et
al., 2003). These genes are not only expressed in floral tissues but also in leaves (Table 5).
Additionally, a high level of SAMT expression was found in A. belladonna hairy roots,
however the expression of this gene in other parts of the plant was not analyzed (Fukami et al.,
2002). The common feature of genes belonging to this group is that they are responsible
primarily for the biosynthesis of methyl salicylate, which is thought to be involved in plant–
plant and plant–insect interactions (van Poecke et al., 2001; Shulaev et al., 1997). Indeed, it
has been shown that alamethicin, herbivore damage by the larvae of Plutella xylostella,
uprooting, mechanical wounding, and methyl jasmonate treatment induce the expression of
BSMT gene and, in some of these cases, the emission of methyl salicylate and occasionally
methyl benzoate in A. thaliana leaves (Chen et al., 2003). Moreover, when leaves were
damaged by thrips of the genus Franklinella, the induction of BSMT expression occurred
specifically around lesions. While salicylic acid was not a good inducer of BSMT gene
expression in A. thaliana leaves, it induced A. majus SAMT in snapdragon petals 48h after
treatment (Negre et al., 2002). Similar results were obtained with jasmonic acid treatment,
suggesting the possible role of SAMT in plant defense. Salicylic acid also induced expression
of the SAMT gene in A. belladonna hairy roots starting 12 h after the treatment thereby
converting the deleterious amount of salicylic acid to methyl salicylate in a detoxification
process (Fukami et al., 2002). While the results described above suggest the involvement of
this group of genes in plant defense, the exact biological significance of the induction of these
carboxyl methyltransferases and the function of their products awaits further investigations.

5. Prediction of in planta function of benzenoid carboxyl methyltransferases
The biochemical characterization of the cloned carboxyl methyltransferases confirms their
involvement in the synthesis of methyl benzoate and/or methyl salicylate in plant floral tissues.
The question of which product the enzymes synthesize in planta does not always have a straight
forward answer. Analysis of the scent profile of various plant species revealed different
emission patterns with some species emitting only one methyl ester (A. majus, C. breweri, H.
carnosa, P. hybrida) (Dudareva et al., 2000; Raguso and Pichersky, 1995; Verdonk et al.,
2003) while the others emitted both (N. suaveolens and S. floribunda) (Pott et al., 2002; Raguso
et al., 2003). Obviously, the in vitro specificities of O-methyltransferases do not always
correlate with the scent production in vivo, since it also depends on the plant cellular pools of
available substrates.

Out of six carboxyl methyltransferase genes involved in scent production, two (C. breweri
SAMT and A. majus BAMT) were isolated via a classical biochemical approach through
enzyme purification from petal tissues (Ross et al., 1999; Murfitt et al., 2000). While the
function of these genes in the biosynthesis of methyl esters in planta was clear, the isolation
of A. majus SAMT via a functional genomic approach suggested the possible contribution of
this gene to methyl benzoate production in snapdragon flowers. However, the low expression
of A. majus SAMT in petal tissue along with the high Km value and low catalytic efficiency of
the enzyme for benzoic acid revealed that this gene could not make a significant, if any,
contribution to methyl benzoate production and emission in snapdragon flowers (Negre et al.,
2002).

The other four carboxyl methyltransferase genes involved in scent production were isolated
using a functional genomic approach (P. hybrida) or reverse transcriptase (RT)-PCR (H.
carnosa, N. suaveolens, S. floribunda) based on sequence information available from
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previously isolated carboxyl methyltransferases. Considering that the O-MTs catalyze
equivalent reactions and exhibiting diverse biochemical properties, their physiological
contribution is under debate and therefore should be discussed case by case. The most straight
forward situation was found in H. carnosa which emits only methyl salicylate (Table 1)
(Altenburger and Matile, 1988; Heidebrecht and Piechulla, unpublished results). In vitro, the
isolated enzyme (SAMT) has a 10-fold higher activity with salicylic acid than with benzoic
acid (Table 3) and only salicylic acid was detected in petal tissue (Table 6). Taken together
with the expression data (Table 5), these results suggest that this enzyme synthesizes methyl
salicylate in planta.

In petunia flowers, which emit only methyl benzoate, the apparent catalytic efficiencies (kcat/
Km ratio) of the isolated BSMTs were higher with salicylic acid than with benzoic acid (Table
3), indicating that salicylic acid was the preferred substrate. Although a high carboxyl
methyltransferase activity towards salicylic acid was also detected in petunia petals, there was
a very small internal pool of free salicylic acid (~10 times lower than the apparent Km values
of these enzymes for salicylic acid) indicating that the enzymes could not produce methyl
salicylate in planta due to the lack of substrate (Table 6). On the other hand, the level of benzoic
acid (~7 mM) was in the range of Km values for benzoic acid, suggesting that these enzymes
are involved in methyl benzoate emission (Negre et al., 2003).

In S. floribunda, the isolated SAMT has similar catalytic efficiencies towards both benzoic and
salicylic acid (Table 3). However, S. floribunda flowers emit 5 times as much methyl benzoate
as methyl salicylate (Table 1). Analysis of internal pools of benzoic acid and salicylic acid
revealed that the level of salicylic acid (~12.3 μM) is 20-fold lower than the Km value of this
enzyme for salicylic acid, while the level of benzoic acid (~9 mM) is in the range of Km value
for benzoic acid, suggesting that this enzyme in planta is primarily involved in methyl benzoate
and to a lesser extent in methyl salicylate formation (Pott et al., 2004).

In the case of N. suaveolens, which emits both methyl benzoate and methyl salicylate, the
isolated enzyme exhibits a higher catalytic efficiency with benzoic acid than with salicylic
acid, partially reflecting the ratio of the two methyl esters in the floral bouquet. However, with
the benzoic acid level exceeding that of salicylic acid in petal tissue, it is likely that the isolated
enzyme from N. suaveolens flowers is primarily involved in the synthesis of methyl benzoate
(Pott et al., 2004).

In summary, the examples described above show that sequence annotations and/or the
elucidation of the biochemical properties of isolated enzymes cannot always predict their
function(s) in planta. The nature of the product and the efficiency of its formation depend on
several parameters, such as the availability of substrates, the catalytic efficiency of the enzyme
towards each substrate, and the transcriptional, translational, and posttranslational regulation
at the enzyme level.

6. Evolution of plant benzenoid carboxyl methyltransferases
Analysis of substrate specificity of carboxyl methyltransferases catalyzing the final step in the
biosynthesis of volatile benzenoid esters revealed that they display a wide range of substrate
preferences. The C. breweri SAMT and A. majus BAMT and SAMT are examples of enzymes
with high substrate specificity while the N. suaveolens BSMT and S. floribunda SAMT can
accept several benzoic and cinnamic acid derivatives. Such a broad range in substrate
specificity does not reflect the differences found in the amino acid sequences nor does it mirror
plant ancestry (Tables 2, 4, Fig. 1(a)). For example, both S. floribunda and H. carnosa belong
to the Asclepiadaceae family, but S. floribunda SAMT exhibits a wide substrate spectrum while
H. carnosa SAMT is highly specific and accepts predominantly salicylic acid. Opposite
examples are the BSMT enzymes from the related species A. thaliana and A. lyrata, which
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posses a very similar substrate selectivity (Chen et al., 2003). Further detailed investigations
of enzymes from related species have to be performed to determine whether the evolutionary
process proceeded in the direction of gain or loss of substrate selectivity.

The substrate selectivity of these enzymes can be put into a broader biological context of
specialization and generalization. Both processes can be advantageous and disadvantageous
for plants. Specialized enzymes synthesize a single product and the level of product formation
can be regulated at the level of enzyme or substrates for the reaction. Enzymes with a broader
substrate acceptance have the advantage that several substrates can be used and several
products can be simultaneously synthesized. Such a scenario is found in S. floribunda
flowers emitting both methyl benzoate and methyl salicylate, both of which are synthesized by
SAMT (Pott et al., 2002). However, the regulation of the formation of a single product out of
the array of possible products will require multiple levels of regulation to make available only
one of the multiple substrates.

The carboxyl methyltransferases known to date have lower Km values for salicylic acid than
for benzoic acid (Table 3). This finding might be important regarding the ancestry of these
enzymes. It is likely that they originated from salicylic acid-specific enzymes, which during
evolution adapted the capability to accept other related substrates such as benzoic acid
derivatives and cinnamic acid derivatives. The development/evolution of the enzymes might
have started from a previously existing salicylic acid specific enzyme operating in vegetative
tissue (leaves) during pathogen defense. This ancestor enzyme was then subsequently recruited
in petals to synthesize structurally related products attractive to pollinators (e.g., methyl
benzoate). The comparison of substrate preferences of characterized benzenoid carboxyl
methyltransferases (Table 3) and the amino acid sequences in the substrate binding pocket
(Table 4) supports this hypothesis. The ancestral enzyme might have been similar to the
salicylic acid-specific enzymes now present in the floral tissue of H. carnosa, P. hybrida, C.
breweri, and A. majus. More generalized enzymes could have evolved from these salicylic acid
specific enzymes to become similar to enzymes found in S. floribunda and N. suaveolens which
exhibit a broad substrate specificity. These generalized enzymes might in turn be templates for
the generation of enzymes with new substrate preference (like A. thaliana and A. lyrata BSMTs
which prefer benzoic acid over salicylic acid) and ultimately for the generation of a benzoic
acid specialized enzyme (e.g., BAMT A. majus). As summarized in this review, specialized
and transitional enzymes presently exist and can be isolated from plants. It is possible that some
carboxyl methyltransferases evolved independently multiple times during plant evolution. This
might be the case for N. suaveolens BSMT which is more genetically related to the SAMT-
type of enzymes than to the BAMT-type and represents a new diverging event in evolution
(Fig. 1(a)). To further support our hypothesis of generalization followed by a process of
specialization will require the characterization of enzymes from related species which vary in
methyl benzoate and methyl salicylate emission patterns and for which a phylogenetic tree is
available.
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Fig. 1.
Phylogenetic trees of carboxyl methyltransferases based on computer modelling. (a) Alignment
of amino acid sequences of 10 carboxyl methyltransferase. Alignment was performed using
AlignX. The circle symbol indicates amino acids of the binding pocket (see Table 4), and the
star symbol indicates amino acids of the 2nd tier. (b) Unrooted neighbor-joining phylogenetic
tree based on amino acid sequence similarity between plant benzenoid carboxyl
methyltransferases complete amino acid sequences (355 to 392 amino acids). (c) Unrooted
neighbor-joining tree based on amino acids involved in the methyl acceptor binding pocket of
plant benzenoid carboxyl methyltransferases (amino acids presented in Table 4). (d) Unrooted
neighbor-joining tree based on 2nd tier amino acids which were found in clusters within a 10
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Å radius around each of the residues in the methyl acceptor binding pocket. The unrooted
neighbor joining trees and associated bootstrap values were generated using the PHYLIP
software package (Felsenstein, 1985). TreeView was used to visualize the resulting trees. The
accession No. of the Hoya carnosa SAMT is AJ 863118.
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Fig. 2.
Computer modelling of the active site of four floral benzenoid carboxyl methyltransferases.
Three-dimensional view of the active sites of the methyltransferases from Hoya carnosa
(SAMT, upper left pannel, accession No. AJ 863118), Petunia hybrida (BSMT, upper right
pannel), Antirrhinum majus (SAMT, lower left pannel, BAMT, lower right pannel). The side
chains are depicted as half-colored sticks. The modelling was performed as described in Zubieta
et al. (2003).
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Fig. 3.
Expression of the N. suaveolens BSMT. (a) BSMT transcript levels at different flower age:
Plants were grown under LD cycle (16 h/8 h). Petals of N. suaveolens were harvested at 6 pm,
in flower buds (day 1), at the day of flower opening (day 0) and at day 1 to 5 after flower
opening. At day 5 flowers show obvious signs of senescence. (b) BSMT transcript levels at
different time points during the day: Plants were grown under 16 h light and 8 h darkness (10
pm to 6 am). Petals of N. suaveolens were harvested at indicated time points during the day at
the first and second day after flower opening. Black bars represent time of darkness, white bars
represent time of illumination. (c) and (d) BSMT transcript levels under varied light regimes:
Plants were grown under 16 h light and 8 h darkness (10 pm to 6 am) before they were shifted
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to continuous light conditions (LL for 4 days). Subjective night is represented by light gray
shaded bars. Thereafter, light conditions were altered to 16 h light and 8 h darkness (10 to 6
pm darkness) for 3 days (LD). Black bars represent time of darkness, white bars represent time
of illumination. Light was then switched off and plants were kept in complete darkness for 3
days (DD) (n.d. not determined). The subjective day is indicated by the dark gray shaded bar.
Light conditions were then changed to 16 h light and 8 h darkness (4 pm to midnight) for 2
days (LD). Petals of N. suaveolens were harvested at indicated time points. RNA was extracted
and RNA gels were run with 5 microgramm total RNA. The blots were hybridized with the N.
suaveolens BSMT specific probe and rehybridized with 18 S rDNA probe. Relative transcript
levels (normalized with rRNA data) were calculated, and the highest value was set as 100%
(lowest panel).
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Table 1

Methyl benzoate and methyl salicylate in floral scents

Plant MeBA MeSA Reference

Agavaceae

Polyanthes tuberosa − 12.0b (21)

Annonaceae

Cananga odorata 0.2–0.7b − (20)

Araceae

Spathiphyllum wallisii 2b 20b (6)

Asclepiadaceae

Hoya carnosa − + (1)

Stephanotis floribundae 14.7a 5.9a (28)

Asteraceae

Cirsium arvense − + (3)

Bromeliaceae

Tillandsia crocata − 2b (6)

Cactaceae

Dolichothele + + (15)

Selenicereus + + (15)

Sulcorebutia + + (15)

Calycanthaceae

Chimonanthus praecox − + (15)

Caryophyllaceae

Dianthus arenarius 42.1b 14.5b (12)

Dianthus armeria 0.1b − (12)

Dianthus barbatus 0.4b − (12)

Dianthus deltoides 4.2b − (12)

Dianthus monspessulanus 4.5b 9.1b (12)

Dianthus superbus 1.8b 1.7b (12)

Dianthus sylvestris 85.7 − (12)

Saponaria officinalis 68.7b 0.4b (12)

Silene chlorantha 0.1b − (11)

Silene dichotoma 1.0b 0.2b (11)

Silene italica 3.0b 0.6b (11)

Silene latifolia 0.5b 0.3b (11)

Silene nutans 0.2b tr (11)

Silene otites 0.4b − (11)

Silene saxifraga 96.1b 0.4b (11)
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Plant MeBA MeSA Reference

Silene sericea 0.9b 0.2b (11)

Silene subconica 1.3b 0.1b (11)

Silene succulenta 15.2b 0.7b (11)

Silene vallesia 0.3b 0.4b (11)

Silene viscosa 0.5b 0.1b (11)

Silene vulgaris 0.5b − (11)

Dipsacaceae

Knautia arvensis − + (24)

Eupomatiaceae

Eupomatia + + (15)

Fabaceae

Coronilla + − (15)

Medicago sativa − 2–3b (2)

Gesneriaceae

Gloxinia perennis − 9b (6)

Liliaceae

Hyacinthus + + (15)

Nyctaginaceae

Acleisanthes crassifolia 44.4b 0.19b (17)

Acleisanthes obtusa 8.0b 0.8b (17)

Acleisanthes wrightii − 0.1b (17)

Mirabilis greenei − − (17)

Mirabilis multiflora 44.5b 2.8b (17)

Selinocarpus angustifolius 1.0b 1.6b (17)

Selinocarpus chenopodioides 35.9b 2.8b (17)

Nymphaeaceae

Victoria tr − (13)

Oleaceae

Jasminum + + (15)

Onagraceae

Clarkia breweri − 4.4b (29)

Clarkia concinna − − (29)

Orchidaceae

Angreacum eichlerianum 77.5b − (23)

Angreacum girymae 11.1b − (23)

Angreacum sesquipedale 7.3b 13.5b (23)

Brassavola + + (33)
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Plant MeBA MeSA Reference

Catasetum collare + + (8)

Catasetum dilectum 0.7b 98.8b (9)

Catasetum gnomus + + (8)

Catasetum luridum − − (8)

Catasetum roseum 0.7b − (9)

Chaubardia heteroclita − 9b (6)

Cochleanthes aromatica − 5b (6)

Coryanthes alborosea + − (5)

Coryanthes leferenzorium 3b − (6)

Coryanthes leucocorys −; 10b 76–95b (6)

Coryanthes macrantha − 1b (6)

Coryanthes trifoliata − [+] 2b [(5)], (6)

Cycnoches + + (15)

Dressleria + + (15)

Epidendrum ciliare + + (22)

Galeottia negrensis − 4b (6)

Gongora + + (15)

Houlletia tigrina 2b 98b [100b] (35), [(6)]

Houlletia wallisii 1b (6)

Huntleya lucida − 97b (6)

Kefersteinia pellita − 3b (6)

Lycaste aromatica − 0.55b (34)

Lycaste ciliata − 6.3b (34)

Neofinetia + − (10)

Pescatorea dayana − 3b (6)

Platanthera bifolia 32.0–62.9b 2.3–1.4b (25), (32)

Platanthera chlorantha 25.2b 0.1b (25), (32)

Stanhopea anfracta 1–3.5b 1.9–6.6b (36)

Stanhopea candida 0.9b 88.5–93.2b (36)

Stanhopea connata 3.9–9.3b − (36)

Stanhopea grandiflora 2b − (6)

Stanhopea graveolens − − (36)

Trevoria lehmannii − 40b (6)

Vandofinetia + − (10)

Zygopetalum crinitum 7b 3b (6)

Zygopetalum mackayi − 1.4b (31)
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Plant MeBA MeSA Reference

Papaveraceae

Hypecoum fragrantissimum + + (4)

Hypecoum imberbe − + (4)

Hypecoum procumbens + + (4)

Pinaceae

Larix sibirica − + (15)

Picea abies + + (15)

Pinus sylvestris − + (15)

Pyrolaceae

Moneses uniflora 0.1b − (14)

Pyrola media − − (14)

Pyrola norvegica − − (14)

Pyrola rotundifolia − − (14)

Ranunculaceae

Cimicifuga japonica 0.4b − (7)

Cimicifuga simplex tr-8.5b 0.2–6.6b (7)

Rosaceae

Fragaria − + (15)

Rubiaceae

Gardenia + + (15)

Saliaceae

Salix − + (15)

Scrophulariaceae

Antirrhinum majuse 2.85d − (16)

Solanaceae

Cestrum nocturnum 6.1b 0.3b (18)

Nicotiana alatae 2.0b 0.1b (30)

Nicotiana bonariensise − tr (30)

Nicotiana forgetiana − − (30)

Nicotiana langsdorffie − 1.0b (30)

Nicotiana longiflora − − (30)

Nicotiana plumbaginifolia − − (30)

Nicotiana suaveolense 0.71a 0.19a (28)

Nicotiana sylvestrise 6.8b [49.1]c − (30), [(19)]

Nicotiana rustica − − (30)

Nicotiana tomentosiformis − − (19)

Petunia hybridae 11.5d − (16)
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Plant MeBA MeSA Reference

Theaceae

Camellia tr-27.2b tr-27.1b (26)

Zamiaceae

Encephalartos altensteinii − 1.5b (27)

Zamia pumila − 55.2b (15)

MeBA, methyl benzoate; MeSA, methyl salicylate.

+, compound detected in scent, not quantified;

−, compound not detected; tr, traces.

1
Altenburger and Matile (1988)

2
Buttery et al. (1982b)

3
Connick and French (1991)

4
Dahl et al. (1990)

5
Gerlach and Schill (1989)

6
Gerlach and Schill (1991)

7
Groth et al. (1987)

8
Hills et al. (1968)

9
Hills et al. (1972)

10
Holman and Heimermann (1973)

11
Jürgens et al. (2002)

12
Jürgens et al. (2003)

13
Kite et al. (1991)

14
Knudsen and Tollsten (1991)

15
Knudsen et al. (1993)

16
Kolosova et al. (2001a)

17
Levin et al. (2001)

18
Li et al. (1988)

19
Loughrin et al. (1990)

20
Ma et al. (1988)

21
Mookherjee et al. (1990)

22
Moya and Ackermann (1993)

23
Murrell et al. (1981)

24
Naumann et al. (1991)
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25
Nilsson (1985)

26
Omata et al. (1989)

27
Pellmyr et al. (1991)

28
Pott et al. (2004)

29
Raguso and Pichersky (1995)

30
Raguso et al. (2003)

31
Tatsuka et al. (1988)

32
Tollsten and Bergström (1989)

33
Williams (1981)

34
Williams et al. (1981)

35
Williams et al. (1984)

36
Whitten and Williams (1992).

a
μg per g FW flower per hour.

b
Relative amounts [% of overall scent components].

c
ng per g flower.
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