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Abstract
We develop mathematical techniques for analyzing detailed Hodgkin-Huxley like models for
excitatory-inhibitory neuronal networks. Our strategy for studying a given network is to first reduce
it to a discrete-time dynamical system. The discrete model is considerably easier to analyze, both
mathematically and computationally, and parameters in the discrete model correspond directly to
parameters in the original system of differential equations. While these networks arise in many
important applications, a primary focus of this paper is to better understand mechanisms that underlie
temporally dynamic responses in early processing of olfactory sensory information. The models
presented here exhibit several properties that have been described for olfactory codes in an insect's
Antennal Lobe. These include transient patterns of synchronization and decorrelation of sensory
inputs. By reducing the model to a discrete system, we are able to systematically study how properties
of the dynamics, including the complex structure of the transients and attractors, depend on factors
related to connectivity and the intrinsic and synaptic properties of cells within the network.
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1. Introduction
Oscillations and other patterns of neuronal activity arise throughout the central nervous system
[1-6]. These oscillations have been implicated in the generation of sleep rhythms, epilepsy,
Parkinsonian tremor, sensory processing, and learning [7-12]. Oscillatory behavior also arises
in such physiological processes as respiration, movement, and secretion [13-15]. Models for
the relevant neuronal networks often exhibit a rich structure of dynamic behavior. The behavior
of even a single cell can be quite complicated [16-18]. An individual cell may, for example,
fire repetitive action potentials or bursts of action potentials that are separated by silent phases
of near quiescent behavior [19-21]. Examples of population rhythms include synchronized
oscillations, in which many cells in the network fire at the same time, and clustering, in which
the entire population of cells breaks up into subpopulations or clusters; every cell within a
single cluster fires synchronously and different blocks are desynchronized from each other
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[22-24]. Of course, much more complicated population rhythms are possible. The activity may,
for example, propagate through the network in a wave-like manner, or exhibit chaotic dynamics
[23-28].

There has been tremendous effort in trying to understand the cellular mechanisms responsible
for these rhythms. This has led to numerous mathematical models, often based on the Hodgkin-
Huxley formalism [29]. Most work done on these models has consisted of computational
studies with little mathematical analysis. This is because realistic models typically consist of
very large systems of nonlinear differential equations. As pointed out above, even a single
cell's dynamics can be very complicated. In addition, the coupling between cells within a
network can be either excitatory or inhibitory and may include multiple time scales [24]. Since
a neuronal system may involve combinations of different types of cells and different types of
coupling, it is easy to understand why mathematical analysis of these networks is extremely
challenging.

Numerous researchers have considered idealized networks, which capture important features
of the more realistic system; see, for example, [24,30]. Examples of such networks include
integrate-and-fire models, firing rate models, coupled relaxation oscillators and phase
oscillators. These studies have certainly been very useful; however, it is often not clear what
the precise relationship is between details of the biophysical network and those of the idealized
model. The biophysical systems involve large numbers of parameters that characterize the
intrinsic and synaptic currents. Moreover, the underlying network architecture may be quite
complicated. These details are usually absent in the reduced models, making it difficult to
understand the precise role of a particular current, or the network architecture, in producing
the resulting population rhythm. Furthermore, a network's behavior is not apt to be controlled
by a single component, but rather by combinations of processes within and between cells.

A primary goal of this paper is to develop mathematical techniques for analyzing detailed
biophysical models for excitatory-inhibitory neuronal networks. While these networks arise in
numerous applications, including models for thalamocortical sleep rhythms [11] and
Parkinson's tremor [12], the focus of this paper will be to apply our mathematical methods to
better understand mechanisms that underlie temporally dynamic responses in early processing
of olfactory sensory information [31-37]. In the insect and mammalian olfactory systems, any
odor will activate a subset of receptor cells, which then project this sensory information to a
neural network in the Antennal Lobe (AL) (insects [38]) or Olfactory Bulb (OB) (mammals
[39]) of the brain. Processing in this network transforms the sensory input to give rise to
dynamic spatiotemporal patterns that can be measured in the projection neurons (PN) that
provide output to other brain centers [35,36]. These output patterns typically consist of
subgroups of PNs firing synchronously, and the pattern of synchronous PNs evolves at rates
of 20-30 Hz. Any given PN might synchronize with different PNs at different stages, or
episodes, in this rhythm. This sequential activation of different groups of PNs gives rise to a
transient series of output patterns that through time converges to a stable steady state [36,37].

However, the mechanisms that give rise to these dynamic patterns [31,40-42], as well as their
roles in odor perception [33,43] remain controversial. Behavioral data indicate that animals
need only a few hundred milliseconds to effectively discriminate most pairs of odorants [44,
45], and more difficult discriminations require slightly more time [46,47]. If animals use
information in either the transient or attractor phase of any proposed dynamic process, the
behavioral data can set important time constraints for that process to produce discriminable
patterns. This, in turn, can set constraints on network properties including the underlying
network architecture. Neural activity patterns that represent odorants in the AL are statistically
most separable at some point during the transient phase, well before they reach a final state
[37]. The time frame for reaching this point of maximal difference is consistent with behavioral
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studies [44]. This means that dynamic processing in the AL may serve to decorrelate sensory
representations through early transients rather than by reaching a fixed point or a stable
attractor.

In this paper, we consider a minimal biophysical model that reproduces several known features
of the olfactory neural networks in the OB and AL. These features include decorrelation of
sensory inputs and dynamic reorganization of synchronous firing patterns. Our strategy for
studying these complex networks is to first reduce the model to a discrete-time dynamical
system. If we know which subset of cells fire during one episode, then the discrete model
determines which subset of cells fire during the next episode. This defines a map from the set
of subsets of cells to itself. The discrete model is considerably easier to analyze, both
mathematically and computationally, than the original model and, using the discrete model,
we determine how the structure of transients and attractors depend on parameters.

We will consider two different Hodgkin-Huxley type network models. Model I is perhaps the
simplest model that exhibits dynamic reorganization of synchronous firing patterns.
Considering such a simple network allows us to more easily describe the reduction to a discrete-
time dynamical system. In Model II, we consider a more detailed Hodgkin-Huxley type model
that incorporates additional currents and exhibits more realistic firing patterns. This model is
closely related to the network model proposed by Bazhenov et al [40,41] and the mechanisms
underlying transient patterns of synchronization in both models are similar. However, it
remains unclear how properties of the dynamics, including the complex structure of the
transients and attractors, depend on factors related to connectivity and the intrinsic and synaptic
properties of cells within the network. The mathematical techniques developed in this paper
allow us to systematically study how the model's emergent firing patterns depend on model
parameters, including the network architecture.

2. Methods
2A. The two models

We consider two neuronal network models. Model I consists of a single layer of cells coupled
through mutual inhibition. Activity spreads through the network via post-inhibitory rebound;
however, this can also be interpreted as delayed excitation that is not dependent on post-
inhibitory rebound per se. This is the simplest network that exhibits dynamic reorganization
of synchronous firing patterns and decorrelation of sensory inputs. By considering this simple
network, we can give explicit examples that more easily explain the mechanism underlying
dynamic reorganization of synchronous firing patterns. As we shall see, even this simple
network may exhibit a rich structure of multiple transients and attractors. It will be useful to
understand how this rich dynamics arises in a simple network before moving onto a more
complicated model.

In Model I, the equations for each cell can be written in the form:

(1)

where IL = gL(v-vL), INa = gNamτ3(v)(1-n)(v-vNa) and IK = gKn4(v-vK) represent leak, sodium
and potassium currents, respectively, and I0 is an external current. All of the nonlinear functions
and parameters used in the simulations that follow are given in the Appendix.
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The term Isyn represents the synaptic current. For cell i, Isyn = gsyn(vi – vsyn) ∑jsj where the sum
is over those cells that send synaptic input to cell i. The variables sj satisfy a first-order
differential equation of the form:

(2)

where Hβ(x) = 1/(1+exp(−x/σs)) is a smooth approximation of the Heaviside step function.
Note that if cell j fires an action potential, so that vj > σv, then the synaptic variable sj activates
at a rate determined by the parameters σ and σ. On the other hand, if cell j is silent, so that vj
< σv, then the synapse turns off at the rate σ.

The synapses we have considered so far are direct since they activate as soon as a membrane
crosses the threshold. It will sometimes be necessary to consider more complicated
connections. These will be referred to as indirect synapses. To model indirect synapses, we
introduce a new independent variable xi for each cell, and replace (2) with the following
equations for each (xj,sj):

The effect of an indirect synapse is to introduce a delay from the time one cell jumps up until
the time the other cell feels the synaptic input. For example, if cell 1 fires, a secondary process
is turned on when v1 crosses the threshold βv. The synaptic variable s1 does not turn on until
x1 crosses some threshold βx.

Model II consists of two layers of excitatory (E-) and inhibitory (I-) cells. Each E-cell excites
some subset of I-cells, which provide inhibitory input to some subset of E-cells, as well as
other I-cells. The cells may also receive an external current, corresponding, for example, to
input from sensory cells in the periphery. We note that excitatory-inhibitory networks similar
to Model II have been proposed as models for the subthalamopallidal network within the basal
ganglia underlying Parkinsonian tremor [12] and the inhibitory reticular nucleus cells and the
excitatory thalamocortical cells network within the thalamus underlying certain sleep rhythms
[11]. Since the intrinsic properties of neurons within the insect AL are unknown, we will use
this model to develop the mathematical techniques and then explore how properties of the
network depend on parameters, including the underlying architecture.

In Model II, each cell is modeled as before, except the I-cells also have a calcium-dependent
potassium current, IAHP, and a high-threshold calcium current, ICa, while the E-cells have a
low-threshold calcium current, IT. Hence, each E-cell satisfies equations of the form:

(3)

where  and IE is an external current. Each I-cell satisfies equations of
the form:
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(4)

where , IAHP = gAHP [Ca/(30+Ca)](v–vK) and II is an external current.

The synaptic input from structure A to a cell i in structure B is given by IBA = gBA(vi – vA)∑sj
where the sum is over all cells in A that send synaptic input to cell i. The indices A and B can
take values E for excitatory or I for inhibitory. The synaptic variables sj satisfy an equation of
the form (2).

2B. Presentation of an odor
To model the presentation of an odor, we assume that an odor activates a certain subset of
receptors [48] and this, in turn, increases the external input to some of the E-cells. For Model
II, we assume that there are two constants, IE

0 and IE
1, such that if a given E-cell does receive

input from receptors during the presentation of an odor, then IE = IE
1; if the E-cell does not

receive input from the receptors then IE = IE
0. The constants IE

1 and IE
0 are chosen so that E-

cells that receive input from receptors are able to participate in network synchronous activity,
while E-cells that do not receive input from receptors are not. Since Model I is used primarily
to motivate the discrete-time dynamical system, we simply assume that all the cells in Model
I receive input from receptors.

2C. Distance between solutions
In what follows, we will compute how the distance between two solutions of Model II evolve
with time. By this we mean the following: As we shall see, each solution consists of distinct
episodes in which some subset of E-cells fire. If there are NE E-cells, then for the kth episode,
we can define an NE-dimensional vector {a1, a2, ... , aNE} where ai = 1 if the E-cell i fires during
this episode and ai = 0 if it does not. Then the distance between two solutions during the kth

episode is the Hamming distance between the two corresponding vectors.

3. Numerical simulations
3A. Solutions of Model I

Three emergent properties of the models – synchrony, dynamic reorganization, and transient/
attractor dynamics – are represented in Fig. 1B where we show solutions of the Model I with
seven cells (architecture shown in Fig. 1A) and indirect synapses. These properties have all
been described for olfactory codes in the AL [37,42]. After the initial input, each succeeding
response consists of episodes in which some subset of the cells fire in synchrony. These subsets
change from one episode to the next. Moreover, two different cells may belong to the same
subset for one episode but belong to different subsets during other episodes. For example, cell
1 and cell 2 fire together during the first episode, but during the fourth episode, cell 1 fires and
cell 2 does not. This is dynamic reorganization. After a transient period (consisting of 5 episodes
in Fig. 1B), which is characterized by a sequence of activation patterns, the response becomes
periodic. For example, in Fig. 1B the cells that fire during the sixth episode are cells 1, 2 and
7. These are precisely the same cells that fire during the eighth (last shown) episode. This subset
of cells continues to fire together every second episode thereafter. Different initial conditions
produce different transients that may either approach different attractors (Figs. 1B and 1C
(top)), or they may approach the same attractor (Fig. 1C).
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3B. Solutions of Model II
Solutions of Model II are shown in Fig. 2. Here there are 10 E-cells and 6 I-cells. Each E-cell
receives input from 3 I-cells, chosen at random, and each I-cell receives input from 2 E-cells,
again chosen at random, and from all other I-cells. Note that the solution exhibits the emergent
properties described above: there are distinct episodes in which some subpopulation of E-cells
synchronize with each other and membership of this subpopulation changes from episode to
episode. After a transient period of several episodes, the response becomes periodic. As is the
case for Model I, different initial conditions may produce different transients that may or may
not approach the same attractor (not shown). Figs. 2B, C and D illustrate how the solution
changes as we increase the parameter kCa, corresponding to the decay rate of calcium in the I-
cells. For the solutions shown in Figs. 2B (kCa=2) and 2C (kCa=3.8), certain E-cells may fire
for several consecutive episodes, while others are silent, and then other E-cells eventually ‘take
over’ and fire for several episodes. For the solution shown in Fig. 2D (kCa=7) some of the E-
cells fire every episode, while the other E-cells remain silent.

Note that changing kCa in the I-cells has a significant impact on the network's firing properties.
In brief, kCa is related to the rate of uptake of calcium in the I-cells. When an I-cell fires an
action potential, calcium enters the cell and this strengthens the outward current IAHP. If the
calcium level is sufficiently high – that is, IAHP is sufficiently strong – then the cell will be
unable to fire in response to excitatory input from an E-cell. Since kCa helps control the rate
at which calcium builds up in the cell, it also helps to determine the number of consecutive
episodes that I-cell fires before other I-cells take over. This, in turn, is related to the number
of consecutive episodes that an E-cell may fire. We note that if kCa is too large (as in Fig. 2D),
then calcium will be unable to build up in the cell. Hence, some cells may continue to fire
indefinitely, and the resulting inhibition prevents other I-cell from firing.

3C. Discrimination of odors
Studies have suggested that dynamic processing may serve to enhance discriminability of
sensory patterns. For example, experiments have demonstrated that neural activity patterns that
represent odorants in the AL are statistically most separable at some point during the transient
phase, well before they reach a final state [37]. Recently, Fernandez et al [45] studied the time-
dependent response of PNs in the honeybee AL to binary mixtures of pure odors. They
demonstrated that there is a smooth transition in the time-dependent neural representation of
the PNs in response to a smooth transition in the ratios of components in the binary mixtures.

Fig. 3 demonstrates that Model II can reproduce several features of these experiments. We
presented the network with mixtures of two distinct odors (odor X and odor Y) and evaluated
how the Hamming distance between the firing patterns corresponding to the mixture and one
of the pure odors evolve with time. For the simulations shown in Fig. 3A, the entire network
consisted of 10 E-cells and 6 I-cells. Each E-cell receives input from 3 I-cells, chosen at random,
and each I-cell receives input from 3 E-cells, again chosen at random, and from all other I-
cells. We found that the network more robustly discriminates between mixtures if there are
reciprocal connections. Here, we assume that if there is an E → I connection, then we add an
I → E connection. Each pure odor corresponded to the activation of 5 E-cells and we assumed
that the two odors activated non-overlapping sets of E-cells. As in [45], we considered mixtures
in which the ratio of the two odors was varied 100:0 (base), 80:20, 60:40, 40:60, 20:80 and
0:100. For each ratio, we numerically generated a mixed odor as follows. Consider, for
example, the ratio 80:20. Then each E-cell in odor X had a .8 probability of being activated —
that is, IE = IE

1 in this E-cell — and each E-cell in odor Y had a .2 probability of being activated.
After generating the mixture, we computed the Hamming distance, as defined earlier, between
the averaged firing pattern corresponding to the mixture and one of the pure odors. We chose
initial conditions so that precisely one E-cell, chosen at random, in the mixture fired during
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the initial episode. We did this for 200 randomly chosen mixtures and then averaged the
distances at each episode.

This figure demonstrates that there is a smooth transition in the time-dependent firing patterns
as the mixture varies from pure odor X to pure odor Y. Fig. 3B shows the results of simulations
of the discrete model (described below) corresponding to this network.

4. Analysis of Model I
4A. The discrete-time dynamical system for Model I

Fig. 1 demonstrates that even small networks of simple cells are capable of producing dynamic
reorganization. Moreover, each response is characterized by a transient followed by an
attractor. We wish to determine how firing properties of larger networks, such as the number
and lengths of different transients and attractors, depend on parameters in the models, including
the underlying network architecture. Our strategy for studying more complicated networks is
to first reduce the model to a discrete-time dynamical system: if we know which subset of cells
fire during one episode, then the discrete model determines which subset of cells fire during
the next episode. This defines a map from the set of subsets of cells to itself. As we shall see,
the map also depends on the ‘state’ of each cell. For example, whether a cell responds to input
may depend on whether that cell had fired during the preceding episode; it may also depend
on the number of inputs that the cell receives.

We begin by reviewing results in [49] where the discrete dynamical system for Model I, and
more general excitatory-inhibitory networks, is formally defined. We then present new
simulations of the discrete model in which we consider how the lengths of transients and
attractors depend on the connection probability.

We illustrate the discrete dynamical system for the Model I using the example shown in Fig.
1. We assume, for now, that a given cell fires during a given episode if and only if the following
two conditions are satisfied: (i) the given cell receives input from at least one other cell that
fired during the preceding episode; and (ii) the given cell did not fire during the preceding
episode. Note that a cell fires via post-inhibitory rebound and (ii) implies that cells cannot fire
during two consecutive episodes. Solutions of the Model II do not necessarily satisfy this
property – that is, cells may fire during consecutive episodes – and, therefore, better account
for firing patterns observed in many neuronal systems including olfaction.

If we know which cells fire during one episode, then, using this assumption and the network
architecture, it is a simple matter to determine which cells fire during the next episode.
Consider, for example, the solution shown in Fig. 1C (top). We choose initial conditions so
that cells 1 and 6 fire during the first episode. These cells send input to cells 4 and 5, and these
are the cells that fire during the second episode. These cells, in turn, send input to cells 2, 3
and 7, which fire during the third episode. These cells then send input to cells 1, 3, 5, 6 and 7.
However, because cells 3 and 7 fire during the third episode, and cells cannot fire on two
subsequent episodes, it follows that the cells that fire during the fourth episode are 1, 5 and 6.
Continuing in this way, we can determine which cells fire during each subsequent episode.

The discrete model simply keeps track of which subset of cells fire during each episode. Since
there are seven cells, there are 27 possible states of the discrete model and the discrete dynamics
defines an orbit on this set of states. Each nontrivial orbit consists of two components: there is
an initial transient until the orbit returns to a subset that it has already visited. The orbit must
then repeat itself. Every orbit must eventually become periodic or is a trivial orbit in which all
cells become activated or quiescent. This is because the number of states is finite. The entire
discrete dynamics for this example is shown in [49]. We do not show the trivial orbits.
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We generalize the definition of the discrete dynamical system in two ways. We assume that
each cell, say i, is assigned two positive integers: pi, corresponding to the length of the cell's
refractory period, in units of episodes or activity cycles, and Θi, corresponding to the cell's
firing threshold, in units of number of inputs necessary to fire. Now suppose that some subset
of cells, say σ, fire during an episode. Cell i will then fire during the next episode if it receives
input from at least σi cells in σ and if it has not fired in the preceding pi episodes. Hence, if we
know which subset of cells fire during one episode, along with each cell's refractory period,
then the network architecture determines which cells fire during the next episode, along with
the corresponding refractory periods. This then defines the discrete dynamical system. A more
formal definition of the discrete model is given in [50].

4B. Numerical simulations of the discrete model
We now use the discrete dynamical system to examine how the numbers and lengths of
transients and attractors depend on network parameters. We used networks with 150 cells and
a random selection of 1000 initial conditions. In different simulations, cells were connected
randomly with a fixed probability of connection from cell i to cell j. In each simulation, a
proportion of cells (η) had refractory period pi = 2 and the remaining cells had refractory period
1. Similarly, a proportion of cells (θ) had a threshold θI = 2 and the remaining cells had threshold
1.

Consider first the case for η = 0 and θ = 0, in which all cells have refractory period and threshold
of 1 (thick black curve in Fig. 4 A-D). The average length of both transients (Fig. 4 A, B) and
attractors (Fig. 4 C, D) first increases with connectivity and peaks between 1 and 2 connections
per cell. At higher connection probabilities, all lengths decline. Therefore, increasing
connectivity produces a sharp transition at which lengths of transients and attractors are
maximal. Increasing θ (Fig. 4 A, C) changed the shapes of these curves. In particular, the
connectivity that produces the sharp transition increases with θ and peaks when θ = 0.5, which
corresponds to half of the cells in the network having refractory period of 2. The lengths of
transients and attractors are also highest at that value of θ. Likewise, increasing θ changed the
shapes of the curves such that the sharp transitions tended to occur at higher connectivities.
The lengths of transients at the sharp transition were maximal for intermediate levels of θ.
There is also a sharp transition in the number of attractors at approximately that same
connectivity (Fig. 5). We note that there are a huge number of attractors for connection
probabilities greater than the sharp transition. An example is shown in Fig. 5. Here we
considered networks with 50, 100, 150 and 200 cells, and computed the number of distinct
attractors reached by solutions starting with a sample of 1000 random initial activation patterns.
Note that for higher values of connectivity, each trajectory has its own attractor (the graphs
reach 1000).

4C. Mathematically rigorous results
It is not clear at this point what the precise relationship is between the differential equations
model and the discrete dynamical system. One would like to demonstrate that every orbit of
the discrete model is, in some sense, realized by a solution of the continuous differential
equations model. We have addressed this issue in [49] where we considered both purely
inhibitory and excitatory-inhibitory networks in which every cell satisfies equations of the form
(1). We rigorously proved that, for excitatory-inhibitory networks, it is possible to choose the
intrinsic and synaptic parameters in the continuous model so that for any connectivity between
the E-cells and the I-cells, there is a one-toone correspondence between solutions of the
continuous and discrete systems. In particular, properties of the transients and attractors in the
two systems are equivalent. For this result, we assumed that the inhibitory synapses are indirect.
The choice of parameters depends only on the size of the network and the refractory period
pi; in [49], we considered only the case ΘI = 1. A detailed analysis of the discrete dynamical
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system model is given in [50]. In that paper, we investigated how the connectivity of the
network influences the prevalence of so-called minimal attractors – that is, attractors in which
every cell fires as soon as it reaches the end of its refractory period. We demonstrate that in
the case of randomly connected networks, there is a phase transition: if the connectivity is
above the phase transition, then almost all states of the system belong to a fully active minimal
attractor; if the connectivity is below the phase transition, then almost none of the states belong
to a minimal attractor. This result allows us to estimate the number of attractors if the
connectivity is above the phase transition; in particular there are a large number of stable
oscillatory patterns. We also demonstrate that there is a second phase transition. If the
probability of connection is above this second phase transition, but below the first, then most
but not all cells will fire as soon as they reach the end of their refractory period.

5. Analysis of Model II
We now turn to Model II. The discrete model is more difficult to define for several reasons.
There are now two cell layers and both the E- and the I-cells contain additional currents that
may impact on the firing patterns. In order to explain mechanisms underlying the network's
firing properties and to motivate the discrete dynamical system, we first consider two small
networks.

5A.Two simple networks
First consider the network of two E–cells and two I-cells shown in Fig. 6A. Each E-cell excites
both I-cells, each I-cell inhibits one of the E-cells and the two I-cells inhibit each other. A
solution is shown in Fig. 6B. Note that E-I pairs take turns firing a series of 4 action potentials.

The mechanism underlying this activity pattern is the following: Suppose that one of the I-
cells, say I1, spikes. The resulting inhibition allows E1 to spike during the next episode;
however, the response to inhibition is not simply post-inhibitory rebound as it was in for Model
I. Now inhibitory input to E1 deinactivates the inward current IT and, once the inhibitory input
wears off sufficiently, E1 responds with an action potential. Once E1 fires, it sends excitatory
input to both I-cells; however, only one of the I-cells responds with an action potential. This
is because when one of the I-cells fires, it inhibits the other I-cell, preventing it from firing.
Note in Fig. 6B that I1, fires several action potentials before I2 ‘takes over’. Each time I1 fires,
it inhibits I2, delaying I2's response to excitatory input. This allows I1 to respond first for several
episodes. However, each time that I1 fires, its calcium level increases and this strengthens the
outward current IAHP, thereby delaying I1's response to excitatory input. Once IAHP becomes
sufficiently strong – that is, the calcium level in I1 becomes sufficiently high – I2 responds first
to excitatory input.

Other mechanisms come into play when we consider larger networks. In larger networks, we
must consider the number of excitatory or inhibitory inputs that a cell receives during each
episode. I-cells that receive more excitatory input than other I-cells tend to fire first and,
thereby, inhibit other I-cells. On the other hand, E-cells that receive more inhibitory input than
other E-cells tend to respond later than the other E-cells. As we explain shortly, these late-
firing E-cells may not be important for the subsequent dynamics.

Consider the network shown in Fig. 6C. There are now 3 E-cells and 3 I-cells and each I-cell
sends inhibitory input to the other two I-cells. Suppose that E1 and E3 fire together during some
episode. This results in excitatory input to all three I-cells; however, I2 receives input from
both E1 and E3, while I1 and I3 receive input from only one of these E-cells. Hence, I2 will
tend to fire earlier than the other two I-cells and, if it does, prevent the other two I-cells from
firing. We note, however, that whether I2 fires first depends on the relative calcium levels of
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the three I-cells. Once the calcium level in I2 builds up sufficiently, either I1 or I3 (or both)
‘takes over’ and responds to excitation from E1 and E3.

Now suppose that I1 and I3 fire synchronously during some episode (and not I2). Then all three
E-cells receive inhibitory input. However, E2 receives input from both I-cells, while E1 and
E3 receive input from only one I-cell. Hence, the total inhibitory input to E2 takes longer to
wear off and E1 and E3 fire together before E2 does so. We note that even if E2 does fire (after
E1 and E3), then this is not important for the subsequent dynamics. If, for example, E1 and
E3 induce I2 to fire (as described above) then I2 will send inhibition to both I1 and I3. When
E2 does fire, it will excite I1 and I3; however, these cells will be unable to fire because of the
inhibitory input from I2.

Similar mechanisms underlie firing patterns in larger networks. In brief, suppose that some
subset of I-cells fire. The E-cells that fire during the next episode are those that receive input
from the smallest positive number of I-cells. Next suppose that some subset of E-cells fire.
Whether or not an I-cell, say Ii, responds to the resulting excitation depends on three factors:
(i) the number of E-cells that Ii receives excitation from; (ii) the number of I-cells that Ii received
inhibition from during the previous episode; and (iii) the calcium level of Ii. If an I-cell does
fire, then it will tend to inhibit other I-cells, preventing them from firing. However, there may
be a small delay from when one I-cell fires until its synaptic variable activates and inhibits
other I-cells. Hence, even if there is all-to-all coupling among the I-cells, once one I-cell fires,
there is a ‘window of opportunity’ for other I-cells to respond. This will all be made more
precise in the following section where we more formally define the discrete dynamical system.

5B. The discrete-time dynamical system
In order to formally define the discrete-time dynamical system, it will be convenient to
introduce some notation. We consider the discrete time τ ∊ {0, 1, ...}. Each discrete time unit
corresponds to a separate episode. We denote the state of each I-cell, Ii, at the discrete time τ
as Si(τ) = (Fi(τ), CaDi(τ)). Here, Fi(τ) = 1 if Ii fires at discrete time τ and Fi(τ) = 0 if it does not;
CaDi(τ) represents the calcium level – if the discrete time τ corresponds to the continuous time
t, then CaDi(τ) = Cai(t).

Assume that there are N I-cells. The state of the discrete model at time τ is then ∑(∑) =
{S1(∑), S2(∑), ... , SN(∑)}. We will define a map π: π(π) → π(π + 1). That is, if we know which
I-cells fire and what the calcium levels of all the I-cells are at one episode, then the map
determines this information at the next episode. This map then generates the discrete-time
dynamical system.

We note that the state of the model involves the I-cells, not the E-cells. As the first example
above demonstrates, it is critically important to keep track of the calcium levels of all the I-
cells. As we shall see, if we know which I-cells fire during a given episode, then we can
determine which E-cells fire during the next episode from the network architecture.

It will be convenient to consider both the discrete time π and the continuous time t. We assume
that π=0 corresponds to t=0 and refer to this time as the 0th episode. The derivation of π is given
in several steps. We assume that we are given an initial state π(0); this specifies which I-cells
fire initially and the initial calcium levels of all of the I-cells. The first step is to determine
which E-cells fire during the next, or 1st, episode. We then compute the calcium levels of all
the I-cells during the 1st episode. The final step is to determine which I-cells fire during the
1st episode.

Step 1: Which E-cells fire during the 1st episode? Let JI denote the subset of I-cells that fire
during the 0th episode; that is, JI = {i: Fi(0) = 1}. We assume that the E-cells that fire during
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the 1st episode are those that receive the minimal positive number of inputs from I-cells in JI.
Denote this subset of E-cells as JE.

We note that for the continuous model, other E-cells may also fire. However, these E-cells
either receive input from a larger number of I-cells than those in JE or they do not receive any
input; hence, they must fire after the E-cells in JE. Our numerical simulations demonstrate that
these late firing E-cells do not impact on the subsequent dynamics unless there is very sparse
coupling among the I-cells. The reason for this was given in the second example in the
preceding section.

We assume that the E-cells in JE fire when t=T. Note that T should depend on the number of
I-cells that cells in JE receive input from. Here we simply assume that T is some fixed constant.
Later, we describe how T is chosen and discuss the validity of this assumption.

Step 2: What are the calcium levels of the I-cells? We assume that every time an I-cell spikes,
its calcium level increases by a fixed amount ACa, which is chosen later. Moreover, between
spikes, calcium levels decrease at the exponential rate φCakCa (see eq. (4)). Hence, the calcium
level of the I-cell Ii at the 1st episode is given by

(5)

Step 3: Which I-cells fire during the 1st episode? It remains to determine which I-cells fire
during the 1st episode. Note that if an I-cell does fire, then it may inhibit other I-cells, preventing
them from firing. We must, therefore, determine the I-cell that fires first and then determine
which other I-cells are ‘stepped on’ by this I-cell. Other I-cells may fire if they do not receive
inhibitory input from an I-cell that has already fired. There may also be a delay from when one
I-cell fires until its synaptic variable activates and inhibits other I-cells. It is, therefore, possible
for other I-cells to fire if they are able to do so within some prescribed ‘window of opportunity’.

We consider the continuous model and estimate the membrane potential of each I-cell. From
this, we will compute the time (if it exists) at which the membrane potential would cross a
prescribed threshold vθ and fire if no other I-cells fire during this episode. This then determines
the order in which the I-cells would fire if they are not ‘stepped on’ by other I-cells. We can
then determine which I-cells actually do fire during the 1st episode as follows. We assume that
an I-cell fires if its membrane potential reaches threshold before it receives inhibitory input
from another I-cell that has already fired. We further assume that there is a delay, δ, from when
one I-cell fires until its synaptic variable activates and inhibits other I-cells. An I-cell will not
fire if it receives inhibitory input before its membrane potential reaches threshold.

We now estimate the membrane potential, vi(t), of a given I-cell. The analysis is split into two
parts. First we estimate vi when t=T, the time when E-cells in JE fire. We next consider the
time interval from when E-cells fire until the I-cell would cross threshold if no other I-cells
fire during this episode. In what follows we will make several assumptions on the dynamics;
these assumptions are justified in the next section when we compare solutions of the continuous
and discrete models.

For 0 < t < T, each I-cell lies in its silent phase. We assume that during this time the membrane
potential is in pseudo steady-state; that is,

Ahn et al. Page 11

Physica D. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We further assume that the excitatory input and the sodium, calcium and potassium currents
are negligible. It follows that, while silent, vi satisfies

(6)

where z(Cai) = Cai/(30+Cai) and SII = ∑sj is the total synaptic input from other I-cells. This is
a linear equation for vi. We have already determined Cai(T) in Step 2. Hence, in order to obtain
an explicit expression for vi(T), we need to estimate SII(T).

We assume that when an I-cell, Ij, fires, its synaptic variable, sj, is set to 1; in between spikes,
sj decays exponentially at the rate β given in (2). We further assume that if Ij does not fire
during an episode, then sj is negligible during the next episode. Hence, if Ii receives input from
KI active I-cells during the 0th episode, then SII(T) = KI exp{–βT}. Together with (6), this then
gives an explicit approximation for vi(T): vi = A/B where

and

Now consider the time from t=T until vi crosses the threshold vθ. Denote this time as ti.
Assuming that the sodium, potassium and calcium currents are still negligible, we find that
vi(t) satisfies the linear differential equation:

(7)

together with the initial condition v(T)=vi(T). Here SIE is the total synaptic input from the E-
cells. Since |T-ti| is small, we assume that for T < t < ti, Cai(t) = Cai(T) and SII(t) = SII(T) are
constant. We further assume that while an E-cell is active, its synaptic variable is equal to 1.
It follows that SIE = KE where KE is the number of active E-cells that vi receives input from.
We can now solve (7) explicitly and compute the time at which vi(ti) = vθ. This gives

(8)

where,

and

We note that ti may not be defined, in which case we say it is ∞. This may be the case if the I-
cell does not receive any excitatory input; that is, KE = 0.
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To determine which I-cells fire during the 1st episode, we let TI = min{ti}. The first I-cell that
fires during the 1st episode is the one with tj = TI. This I-cell may then inhibit some other I-
cells preventing them from firing. We assume that there is a delay, δ, from when one I-cell
fires until its synaptic variable activates and inhibits other I-cells. Hence, an I-cell, Ik, will fire
during the 1st episode if tk < TI + δ. Other I-cells may also fire if they do not receive inhibitory
input. These I-cells may then inhibit other I-cells, after the delay, and so on. We note that if
there is too much discrepancy in the firing times of the I-cells, then this may disrupt the near
synchronous firing patterns, leading to instabilities.

Now that we have determined which I-cells fire during the 1st episode, and, from (5), the
calcium levels of all the I-cells, we can define the map π: ∑(0) → ∑(1). This then defines the
discrete dynamical system.

Choosing parameters—The discrete model depends on four parameters, which are not
given explicitly in the continuous model. These are: (i) T, the time between episodes; (ii)
ACa, the step increase in calcium after an I-cell spikes; (iii) vθ, the firing threshold; and (iv)
δ, the delay from when one I-cell fires until it can suppress the firing of another I-cell. To
choose these parameters, we simply solve the continuous model for a moderately sized
network. It is then a simple matter to estimate these parameters for this one example. We then
plug these parameters into the discrete model and test how well the discrete model predicts the
behavior of the continuous model over a wide range of initial conditions, model parameters
and network architectures.

Summary of the discrete-time dynamical system—Here we summarize how one
derives the discrete-time dynamical system corresponding to a given E-I network. First we
choose the parameters T, vδ, ACa and δ as described above.

In order to define the discrete-time dynamical system, we must define a map from the set of
states to itself. Assume that we are given a state ∑(0) = {S1(0), ... , SN(0)} where each Si(0)=
(Fi(0),CaDi(0)). Let JI = {i: Fi(0) = 1}. These are the I-cells that fire during the 0th episode.
Then let JE be those E-cells that receive the minimal positive number of inputs from I-cells in
JI. These are the E-cells that fire during the 1st episode.

The next step is to determine the calcium levels of the I-cells during the 1st episode. These are
CaDi(1) = Cai(T) = (CaDi(0) + Fi(0) ACa) exp{–φCakCa T}.

Finally, we need to determine which I-cells fire during the 1st episode. For each I-cell, Ii, let,
KI be the number of inputs that Ii receives from cells in JI, KE equal the number of inputs that
Ii receives from cells in JE.,vi(T) = A/B where A and B were defined above, and let ti be as
defined in (8). Then an I-cell, Ik, will fire during the 1st episode if tk < min{tj} + φ. We therefore
let Fi(1)=1 if ti < min{tj} + φ and Fi(1)=0, otherwise.

Since we now know the calcium levels of all the I-cells at the 1st episode and which I-cells fire
during the 1st episode, we can define the map π: π(0) →(1).

5C. Justification of the discrete model
The network we used to choose parameters for the discrete model and to test its validity
contained 10 E-cells and 6 I-cells. We found that T=32.5, π=.12, ACa =.1785, and vπ =−60.
After choosing these parameters, we tested whether the discrete model accurately predicts
which cells fire. The results are summarized in Fig. 7; this can be viewed as a 10 × 6 matrix
of symbols. For the symbol at position (m,n), we randomly chose 20 networks in which every
I-cell receives connections from n E-cells, and every E-cell receives connections from m I-
cells. For each network, we randomly chose 5 different initial conditions. Hence, at each
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symbol, we compared the discrete and continuous models for 100 simulations. Each symbol
represents the percentage of all simulations in which the discrete model matched the firing
pattern of the continuous model over A) 500 ms and B) 200 ms. Even if solutions of the
continuous and discrete models do not agree over some transient, they may still approach the
same attractor. Fig. 7C shows the percentage of all simulations in which the continuous and
discrete models do have the same attractor. In Fig. 7, a black circle represents between 75%
and 100% match, an ‘x’ represents between 50% and 75% match, and a pentagram represents
between 25% and 50% match. We do not expect the discrete model to perfectly match the
continuous model over a wide range of connectivities and parameter values. In the derivation
of the discrete model, we made a number of simplifying assumptions. For example, we assumed
that the time between episodes is always fixed, while this should depend on the number of
inputs the active E-cells receive. Moreover, we assumed that calcium increases by a fixed
amount when an I-cell fires; however, the precise nature of the I-cell action potential depends
on how many E-cells it receives input from and this influences how much calcium enters the
cell.

To further justify the discrete model, we tested how well it predicts the length of transients and
attractors, even when the precise firing patterns may not match. Sample results are shown in
Fig. 8, which represents column 4 in Fig. 7A. (Here, we averaged the length of transients and
attractors over 100 stimuli.) We note that this is the column for which the match in Fig. 7
between the continuous and discrete models is worst. Note that the discrete model does an
excellent job in predicting the behavior of the continuous model. In Fig. 8B, we change the
parameters gAHP =15 and kCa =35 (from gAHP =25 and kCa =20 in Fig. 8A) to test whether the
match between the discrete and continuous models is robust under changes in parameters.
Finally, Fig. 3B demonstrates that the discrete model reproduces the results concerning binary
mixture shown in Fig. 3A.

5D. Numerical simulations of the discrete model
Fig. 9A shows how the lengths of attractors (left) and transients (right) depend on connection
probability. Each curve represents a fixed I → E probability and is plotted against changes in
the E → I probability. For example, for the thick black curves we generated networks in which
each E-cell received input from 2 I-cells, chosen at random. We rescaled the maximal synaptic
conductances gEI, gIE, and gII by the connection probabilities. For example, if gIE is the default
value of the maximal synaptic conductance for an E → I connection, then along each black
curve we divided gEI by 2. Unless stated otherwise, all the other parameters are the same (and
given in Table 2) for each simulation. We considered networks with 100 E-cells and 40 I-cells.
At each connection probability, we generated 100 different random networks with 20 different
initial conditions. Hence, at each connection probability, we used 2000 simulations. We then
took the mean of the lengths of attractors and transients. Note that along each of these curves,
the maximum lengths of both transients and attractors reaches a maximum value at some
intermediate E → I probability connection. Similarly, if we fix the E → I connection
probability, then maximum lengths of transients and attractors are achieved at intermediate
values of I → E connection probabilities. These results are similar to those obtained for Model
I.

Figs. 9 B, C illustrate how these results depend the parameters gIE, corresponding the E → I
synaptic strength, and gAHP, corresponding the maximal conductance of the IAHP current in
the I-cells. For each figure, we fixed the I → E probability (2 I → E for Fig. 9 B and 5 I → E
for Fig. 9 C); each curve corresponds to a fixed value of the parameter. Note that the maximal
lengths of transients and attractors are achieved for intermediate values of the parameters, as
well as intermediate E →I connection probabilities. These results are similar to those shown
in Fig. 4 for Model I in which we varied the firing threshold Θ. Note that both gAHP and gIE
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impact on the ability of an I-cell to respond to excitatory input. Clearly, increasing gIE makes
it easier for an I-cell to respond. Since IAHP is an outward potassium current, increasing
gAHP makes it more difficult for the I-cell to respond.

For Fig. 10, we presented the network with mixtures of two distinct odors (odor X and odor
Y) and evaluated how the Hamming distance between the firing patterns corresponding to the
mixture and one of the pure odors evolve with time. We considered networks with 300 E-cells
and 100 I-cells. Different panels correspond to different connection probabilities. For example,
47 E and 15 I (Panel A) means each I-cell gets input from 47 randomly chosen E-cells and
each E-cell gets input from 15 I-cells, chosen at random except, as in Fig. 3, we assumed that
if there is an E → I connection, then there is also an I → E connection. Each pure odor
corresponded to the activation of 30 E-cells and we assumed that the two odors activated non-
overlapping sets of E-cells. As before, we considered mixtures in which the ratio of the two
odors was varied 100:0 (base), 80:20, 60:40, 40:60, 20:80 and 0:100. All other procedures are
the same as Fig. 3. We did this for 1000 different randomly chosen networks and initial
conditions and then took the average distance. Note that maximal discrimination of mixtures
occurs for intermediate connection probabilities (Panel B). Moreover, in Panels C, D, the
distances reach a maximum value after approximately 5-10 cycles. In order to estimate the
time our model takes to reach maximal separation, we assume that one step in our model equals
one oscillation in the field potential measured in projection fields of AL PNs. That is a
reasonable assumption, because each cycle of oscillation in the field potential corresponds to
one set of synchronized PNs. Those sets are updated approximately every 30-50 ms (20-30
Hz). Using the longer estimate, 5-10 cycles corresponds to 250-500 ms, which is consistent
with behavioral and electrophysiological data [37,44].

6. Discussion
The primary goal of this paper is to develop mathematical techniques for analyzing a general
class of excitatory-inhibitory neuronal networks. While this type of network arises in many
important applications, including models for thalamic sleep rhythms and models for activity
patterns within the basal ganglia, there has been very little mathematical analysis of them.
Previous analytic studies have considered idealized cells with special structure of network
connectivity, such as all-to-all, nearest neighbor, sparse or Mexican hat coupling. This paper
represents the first attempt to analyze arbitrarily large excitatory-inhibitory networks with
Hodgkin-Huxley like neurons and arbitrary network architecture. While the cells within our
network include specific ionic currents that contribute to the emergent population rhythm, we
feel that the mathematical techniques developed in this paper should help in the study of other
neuronal networks as well.

We have shown that it is possible to reduce the full model to a discrete-time dynamical system.
The discrete-time dynamical system is defined explicitly in terms of the model parameters;
these include the maximal ionic conductances and reversal potentials, the strength and decay
rates of synaptic connections, and the network architecture. Since the discrete system is
considerably easier to solve numerically, this allows us to systematically study how emergent
firing patterns depend on specific network parameters.

We have considered two model networks. Mechanisms underlying the firing patterns of Model
I are considerably easier to analyze than those for Model II and we have, in fact, developed a
detailed mathematical theory for when Model I can be rigorously reduced to the discrete
dynamical system and how the nature of the transients and attractors depend on network
properties [49,50]. It is interesting that a model as simple as Model I, which consists of a single
layer of cells and only includes the most basic ionic currents, can exhibit firing patterns with
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properties similar to those seen in the AL. These properties include synchrony, dynamic
reorganization and transient/attractor dynamics.

Model II is more complicated since it includes additional ionic currents and more complex
interactions among the cells. We note that Model II is similar to the model proposed by
Bazhenov et al [40,41], who also described mechanisms underlying these firing patterns. In
particular, Bazhenov et al considered the role of the IAHP current in allowing for competition
among the inhibitory cells. The analysis in this paper demonstrates that other mechanisms, not
explicitly discussed in [40,41], come into play. For example, a critically important component
that determines whether a cell will fire is the number of inputs it receives from the other cells
in the network. By comparing solutions of the full model to the discrete dynamical system, we
can be confident that all of the key components are accounted for. Moreover, Bazhenov et al
do not describe the long transients now reported for locusts [37] and honey bees [36,45]. The
transients may be important for the output of the AL, because the best (maximal) separation
of different odors, which is important for behavioral discrimination, may occur during the
transient compared to a ‘fixed point’ at which the pattern no longer evolves [37].

We considered as inputs for the model a (binary) mixture of two different odors. Fernandez et
al [45] recently showed that gradations from one extreme mixture (100:0) through the other
extreme (0:100) produce smooth changes in the perception of the odorants. That is, a 70:30
mixture elicits a level of response similar to 90:10, and the response changes smoothly as the
mixture grades farther away from 90:10. This is correlated to smooth changes in the trajectories
of the transients measured through calcium imaging in the AL. Our model is capable of
reproducing smooth, almost linear, changes in the trajectories through PN-space. This is not a
trivial finding, because it is not clear that computational networks like these would exhibit this
behavior with small alterations of stimulus input.

A more important finding is that the behavior of the network changes dramatically with
alterations of parameters such as connectivity and refractory period. These transitions take the
form of changes in the lengths of transients or size of attractors. Furthermore, it was mostly
sparse connectivity that maximized these outputs. For example, at a very low average
connectivity, transients increase rapidly in length with increases in connectivity, then decreased
with higher connectivities. The implication is that the network can be fine tuned to produce
long transients for separation and discriminability of similar odors, such as when odor mixtures
are similar in ratio [45]. Such low connectivity has neither been confirmed nor ruled out in the
AL. Thus this prediction of the model remains to be experimentally tested.

Plasticity in the AL and OB has now been well documented (reviewed in [51]). Association
of odors with one or another kind of reinforcement produces stable alterations in the response
of cells in the network and in the PN output [52-57]. Several different modulators are involved
in AL and OB networks and likely mediate the presence of reinforcement. For example, in the
honey bee the biogenic amine octopamine is released into the AL as a result of reinforcement
of an odor with sucrose feeding [58.59]. This reinforcement signal may change processing in
the AL such that the transients are pushed farther apart and odors become, presumably, more
discriminable [45]. Our model can now be used to make specific predictions of how these
reinforcement signals may be altering the network to accomplish the changes observed in
empirical studies.
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Appendix: Nonlinear functions and parameter values
If X = m, n, r, mT or mCa, then we can write X∞(v) as X∞(v) = 1/(1+exp(-(v-θX) / σX)). Moreover,
if X = n or r, then τX = τX0 + τX1 / (1+exp(-(v-τ0X) / τ0X)).

For Model I, Cm=1, gL=2.25, vL=−60.0, gNa=37.5, vNa=55, gK=45, vK=−80, gsyn=.2, vsyn=
−100, α=2, β=.09, βx=.009, βx=.009, βm=−30, βm=15, βn=−45, βn=−3, βv=−56, βx=.2, βs=.1,
βx=.01, βn0=1, βn1=10, β0

n=−20, β0
n=.1, I0=15.

Unless stated elsewhere, we used the following parameters for Model II: Cm=1 for both. In
Figs. 3, 7, 8, 9 and 10, we rescaled the maximal synaptic conductances by the number of
connections: gIE =0.06 / # of connected E-cells, gEI = 12 / # of connected I-cells, gII =2 / # of
connected I-cells.
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Figure 1.
An example of Model I. (A) The network consists of 7 cells with connections indicated by
arrows. The connectivity is summarized in a table (bottom), in which the left column shows
the indices of all cells, and the remaining columns show the indices of all cells that receive
connections from the cell on the left. B) An example of network activity. The top panel shows
the time courses of voltage in all 7 cells over 8 epochs of activity. Grey scale in the checkerboard
panels corresponds to the magnitude of voltage, with black areas indicating spikes. After a
transient (white part of the time bar under the checkerboard) the response converges to a
repeating pattern (black part of the time bar). The bottom panel shows the orbit of the discrete
dynamical system corresponding to this example. (C) Solutions of the same network, but with
different initial conditions. These solutions have different transients (white parts of the time
bars), but they converge to the same attractor (which, in turn, is different from the one in B).
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Figure 2.
An example of Model II dynamics. The network consists of 10 E-cells and 6 I-cells. Each E-
cell receives input from 3 I-cells, chosen at random, and each I-cell receives input from 2 E-
cells chosen at random, as well as all other I-cells. (A) The time course of voltage for three of
the E-cells. A cell may fire for several subsequent episodes and then remain silent for several
episodes. Two E-cells may fire synchronously during some episodes but not during others.
(B) The entire E-cell network activity over 1000 ms. Each row corresponds to the activity of
one of the E-cells; a vertical line indicates a spike. (C,D) Solutions of the same network as in
panels A, B with different values of kCa (the rate of decay of calcium in the I-cells). In B, C
and D, kCa = 2, 3.8 and 7, respectively. Values of other parameters are listed in Tables 1 and
2 except gIE =.025, gII =1.
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Figure 3.
Discrimination of odors. A network of 10 E- and 6 I-cells is presented with mixtures of two
pure odors, X and Y. The pure odors activate disjoint subsets of 5 E-cells. For each fixed ratio
of the two pure odors, 200 mixtures are randomly generated, as described in the text. The figure
displays the distance (defined in the text) between the averaged firing pattern corresponding
to the mixture and one of the pure odors (odor X) during each successive episode. The baseline
is 100% odor X, different curves correspond to different ratios of X to Y: 80:20, 60:40, 40:60,
20:80 and 0:100. Values of other parameters are listed in Tables 1 and 2. (A) Full continuous
model; (B) discrete counterpart (see section 5B).
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Figure 4.
Properties of transients and attractors in a 150-cells Model I network. Each point is averaged
over 8 matrices of connectivity, and 1000 initial conditions for each matrix. (A,B) Properties
of transients. (C,D) properties of attractors. Thick black curve (inset in A drawn to different
scale) is the basic case when the threshold θ =0 and the refractory period η = 0. In the top row
(A,C) different shades correspond to changes in the fraction of the cells with refractory period
2 (η). In the second row (B,D) different shades correspond to changing the fraction of the cells
with threshold 2 (η). For each row changing of shade of thin lines from black to light grey
corresponds, respectively, to η or η equaling 0.2, 0.5, 0.7, 1.
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Figure 5.
There are a huge number of attractors for sufficiently high connection probability. We
computed the number of distinct attractors reached by solutions starting with a sample of 1000
random initial activation patterns. Note that for higher values of connectivity, each trajectory
has its own attractor (the graphs reach 1000).
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Figure 6.
Two examples of Model II. (A) A model with two E- and two I-cells. (B) Activity of the model
from A: voltage of the E-cells (top), voltage of the I-cells (middle) and calcium in the I-cells
(bottom). E-I pairs take turns firing four action potentials. Activity in a pair stops when the
calcium level in the I-cell becomes too large. (C) A network example with three E- and three
I-cells. Properties of this network are discussed in the text.
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Figure 7.
Comparison between the continuous and the discrete models in a network of 10 E- and 6 I-
cells. For each grid point at position (m,n), 20 networks are randomly chosen in which every
I-cell receives connections from n E-cells and every E-cell receives connections from m I-cells.
For each such network, 5 different initial conditions are chosen at random. The marker type
corresponds to the percentage of simulations in which the continuous and the discrete models
had the same firing patterns for A) 500 ms and B) 200 ms. In C), the marker type corresponds
to the percentage of simulations in which the continuous and the discrete model reach the same
attractor, regardless of the transient. Values of parameters are listed in Tables 1 and 2.
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Figure 8.
The discrete model predicts the lengths of attractors and transients. For each simulation used
for Figure 7, we computed the lengths of attractors and transients and then averaged over all
simulations corresponding to a fixed number of connections. (A) Attractors and transients for
the same simulations as in column 4 in Figure 7. In (B), gAHP is changed from 25 to 15 and
kCa is changed from 20 to 35. Values of other parameters are listed in Tables 1 and 2.
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Figure 9.
Numerical simulations of the discrete model (100 E-cells and 40 I-cells). At each number of
incoming connections, we considered 100 different random networks with 20 different initial
conditions and then took the average length of attractor and transient. Each curve is plotted
against the average number of E → I connections per cell. (A) Dependence of the lengths of
attractors (left) and transients (right) on number of connections. Each curve represents a fixed
number of I → E connections. (B,C) Dependence of lengths of attractors and transients on
parameters gIE (B) and gAHP (C). Here we fixed the number of I → E connections (2 I → E in
(B) and 5 I → E in (C)). Same parameter values as in Tables 1 and 2.
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Figure 10.
Discrimination of odors for the discrete model, larger network (300 E-cells, 100 I-cells). Each
pure odor corresponds to the activation of 30 E-cells and the two odors activated non-
overlapping sets of E-cells. Different panels correspond to different number of connections in
the network. The figure displays the distance (defined in the text) between the averaged firing
pattern corresponding to the mixture and one of the pure odors (odor X). For each connection
probability, we used 1000 different networks and initial conditions and then took the average
distance. The baseline is 100% odor X, different curves correspond to ratios of odors X to Y:
80:20, 60:40, 40:60, 20:80 and 0:100. Values of other parameters are listed in Tables 1 and 2
except kCa =15 and gAHP =55.
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