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Abstract
The presentation outlines an integrative approach for developing a computational model of
cardiomyocytes. A modular approach is proposed, and strategies of linking the modules
(intermediary metabolism, electrophysiology, and mechanics) of the model are presented. A strong
recommendation is given toward an integrated system approach backed by experimental validation.
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INTRODUCTION
As we enter the era of the renewal of integrative biology, we can reflect on the reflections of
those who emphasized it long ago as being fundamental to life. Claude Bernard’s many
experimental studies in the 1860s and the 1870s led to his formulation of the idea that there
were overriding features of human physiology that dominated over local events and resulted
in a relative stability, or “homeostasie du milieu interieure.”1 What Bernard labeled
“homeostasis” we might now call homeodynamics, as Bernard himself might have done,
recognizing that the stability of plasma electrolyte and substrates composition was caused by
the interactions of many ongoing processes. The turn of Bernard’s century saw the expansion
of his ideas revealed in the kinetics and mechanisms of circulatory exchange processes2–4 and
in elements of their hormonal-humoral control.5 A century later, marking the passing through
of a strenuously productive era of emphasis on molecular biology and the remarkable insights
coming out of genomics, biologists generally have assumed that it is timely to look at the
interactions among molecules. The genotype-to-phenotype relationship is recognized as not
merely an associative one, but one that lends itself to determining mechanism.

Systems biology, outlined in Science magazine6–10 at the gene-to-protein level, is now ready
to envelop thinking at the organism level. Whereas the phrase systems biology is new, it is in
the style of research that Bernard espoused. That style dominated physiology for over a century
and then was largely displaced by molecular biology, although it never actually vanished from
the scene.

Swayed by the belief that “discovery science” was at the gene and molecule level, which was
an accurate portrayal of where major funding in science was to be found, physiologists,
pharmacologists, biophysicist, bacteriologists, and pathologists—almost all became molecular
biologists, then genetic interventionists. Although some may have lost their intellectual breadth
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in these reductionist efforts, most maintained the larger goal of understanding biology by
developing an understanding of the underlying mechanisms. Not all reductionism is bad.
Nevertheless, over these decades, certain scholarly aspects of integrative science have been all
but lost. The teaching of systems analysis, control systems, physiological signal acquisition
and analysis, and simulation analysis of data through mathematical modeling vanished from
the curricula of our medical schools and basic biological science departments, with remarkably
few exceptions. The reassignment of teaching responsibilities from basic science departments
to the clinical practitioners may have given researchers more time to indulge in the latest
nuances of cell and molecular biology but deprived them of the obligation to think and teach
in terms of the whole organism.

This same period saw islets of integrated analysis in physiology and the growth of
bioengineering approaches. In a few laboratories, the studies centered on whole-animals
studies; Rushmer11 developed instrumentation for recording physiological responses in
running dogs and countered the trend to rely on isolated organ studies, particularly those of
Sarnoff,12 with whom he joined in vociferous debates. Guyton and his colleagues pioneered
the development of large-scale integrated models;13,14 these tended to be ignored by most
academic physiologists: whereas the models demonstrated remarkable fidelity in simulating
observed physiological responses to blood loss, salt loading, and other conditions, this success
was compromised by the fact that the models were, at the component level, descriptive rather
than mechanistic. The critics, rather than accepting these models as an invitation to work out
the mechanisms of the components, decried them as useless, nonintuitive, or artificial. They
should have recognized their predictive and integrative success and built upon them. A few
cardiovascular investigators did continue integrative whole-animal studies,15,16 but most of
those not involved in molecular and cell biology worked with anesthetized preparations or
isolated organs, arguably still pursuing the goal of understanding the intact system.

Sam Sideman and his group at Technion, Israel Institute of Technology in Haifa, initiated an
engineering approach in 1982, focusing their efforts on the heart and vascular system. Their
three-dimensional imaging techniques and analytical quantitative cardiology allowed them to
relate structure and function to mechanical, electrical, and hemodynamical parameters in the
macroscale, followed by relating ventricular function to microscale intracellular sarcomere
characteristics. Sideman developed an international forum, in the form of a series of annual
conferences—the Henry Goldberg conferences, named in honor of the New York stockbroker
who funded these “think-tank” efforts to fathom how the system worked quantitatively.17–26

The outcome of this effort brought about widespread alliances and collaborations in the
cardiovascular sciences, and there were many exchanges of scientists among the participants.
Much new science, and even new attitudes, evolved.

Formal recognition of the need to coalesce diverse sets of information emerged. My own
version of this was the description of a framework for gathering and integrating physiological
information as the “Physiome Project,”27 and even applying its lessons as a potential vehicle
for aiding the selection of targets for new drugs. This was not an isolated event. Boyd and
Noble’s book, The Logic of Life,28 was distributed at the 1993 Congress of the International
Union of Physiological Sciences (IUPS), and the Union endorsed the formation of a
Commission on Bioengineering in Physiology in the same year, which I chaired, with the goals
of contributing engineering approaches to physiological research and teaching. The Physiome
Project was more or less formally kicked off in 1997, at a satellite meeting of the next IUPS
Congress at St. Petersburg, Russia; and a separate IUPS Physiome Commission was established
in 2001, with Peter Hunter as chair.

Symposium volumes covering these efforts to integrate the cardiac systems were published in
1998,29 2000,30 2001,31 and 2003.79
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THE CELL AS A COMPONENT OF THE HEART
The need to develop models encompassing major portions of biochemical and genetic
regulatory networks and their control is evident. Integrative models are the key to providing
context for the individual reactions and for eliciting an understanding of the influences of the
various components upon whole-system behavior. The methods for formulating a virtual cell
model or for constructing models of more limited expanse such as cellular energetics are still
more or less ad hoc, but we will later attempt to define these.

Small portions of a metabolic system can be described in detailed form. For a sys tem such as
glycolysis, it is useful to develop several representations, providing different levels of
complexity or accuracy or computational speed. Having the highest level of precise detail is
not compatible with computing solutions rapidly, yet speed is required to allow widespread
exploration to gain insight, develop predictions, or optimize the fits of model solutions to data.
Making compromises for specific purposes therefore is essential.

Larger, more all-encompassing models are best composed of smaller modules, each of which
has been validated previously by comparisons with data and verified for computational
accuracy. The individual modules must adhere to a prechosen standard and provide a
scientifically accurate representation of the system, using semantics compatible with those of
the larger system. Individual modules are best developed and maintained by individual
investigators or groups who are expert in the particular science. Models are merely working
hypotheses that must be kept at the forefront of the field if they are to be useful as tools for
experiment design and for data analysis. Leaving them in model repositories tended by
technical staff relegates them to obsolescence in a short time.

Certain principles and practices should be upheld so that modules be maintainable. Here is our
strategy for constructing the “eternal” or “sustainable cell” model.32 The list begins with the
science and extends to matters of style, convenience, and dissemination to the scientific
community.

1. Write model code to conserve mass, charge, volume, energy, and redox state.

2. Define variables and parameters, with symbol, name, description, and units.

3. Identify all inputs and outputs, for linking purposes.

4. Identify all assumptions and approximations.

5. Identify all information sources.

6. Write the code for maximal computational speed.

7. Provide operations manuals and tutorials for developed models.

8. Publish models on the web, so they can be run or downloaded.

9. Establish open-forum discussion of models and modules.

Speed, though only number 6 on our list, is vital: to use the computer as a mind expander, one
needs to compute at the speed of thought to facilitate exploration and to gain insight into the
behavior of complex biological processes. Moreover, speed is critical to the use of models as
tools to analyze experimental data through automated optimization procedures. Of the list
above, the first four are essential to using a module as a component in a more comprehensive
system. The fifth and the last three are essential for documentation and dissemination.
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LINKING MODULES TO FORM COMPOSITE MODELS
The process of linking modules is suggested by the composite model in FIGURE 1. The top
panel shows a set of modules for intermediary metabolism that are linked with known
stoichiometry. Consider each to be a separate model, each the evolutionary result of years of
research. Linking them through the stoichiometric relationships of input substrates and output
products appears straightforward and results in the integrated model shown in the bottom panel.
It appears as if the integrity of the individual modules remains intact, and in fact it is almost
this simple. Problems arise, not so much in accounting for NADH and other slowly changing
variables, but in accounting for the influences of rapidly changing calcium and hydrogen ion
concentrations in some circumstances.

The argument that models are best developed and maintained by a group working in the
particular field leads to complications when models become modules of larger system models.
The expertise required to develop and maintain a given model may not be available in the group
that chooses it as the best version of the desired component of a higher level integrative model.
From the technical point of view, putting together two models from different sources is not too
difficult when both submodels or modules can be described by ordinary differential equations
(ODEs). Using a simulation system such as JSim <http://nsr.bioeng.washington.edu>,
Madonna <http://www.berkeleymadonna.com>, SAAM II <http://www.saam.com>, Gepasi
<http://www.gepasi.org>, or XPPAUT <http://www.compcell.appstate.edu>, one simply
combines the two modules into a common piece of source code, combining all those equations
that have common variables. If all the variables common to both modules have been defined
with the same names, their identity will be easily recognized.

Another issue is how to build a composite model out of modules while maintaining the identity
of the code of the module so that it can be replaced automatically when the originating group
advances the module’s code to a new level. Ideally the composite model should be reconfigured
whenever it is judged that improvements have been achieved in any particular module.
Automating this is possible when common variables are named identically; it is also possible,
but requires human intervention, to define equivalences, when the variable names in each
module are not identical. There is a trade-off here: when the variable names are identical,
combining the modules can be automated because the equations for the common variable can
be automatically combined, as has been achieved by Gary Raymond in our laboratory; but the
cost is that the two source codes are now intermixed. For computational reasons, this is good
because it minimizes the numbers of different variables and facilitates solving the whole system
simultaneously. But its cost is that a composite model composed of a large set of modules must
be entirely formed anew when a module is to be replaced.

A biological component language has been developed at our resource for simulating
biochemical reaction networks with transporters and flows as a part of the JSim simulation
system. This system enables one to add modules using the appropriate biological component
representation. The ODEs describing the system under consideration are automatically
constructed by JSim. Modules can be added or removed without having to rewrite the ODEs.

Separating Modules from One Another for Computational Speed
Solving a large set of simultaneous equations as a whole gives high accuracy when the system
is linear but is computationally costly when it is composed of nonlinear equations with
drastically different rate constants in different parts of the model: the set of equations is “stiff.”
Then one would like to solve separately those submodels that have rate or time constants that
are relatively slow and to solve at higher frequencies those submodels that have time constants
orders of magnitude faster. Allowing differences in time steps from one module to another
greatly reduces the “stiffness” of the overall system and increases computation speed. This
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argument favors keeping modules separated even while linked in the composite model and
enhances the incentive to use automated methods for composite model building.

A situation in which modular separation can be maintained occurs whenever the common
variables change slowly relative to the internal rates of the modules to which they are relevant.
An example is ATP, which is at such a high concentration normally that its concentration
changes only very slowly, even with drastic changes in circumstances. By treating ATP as an
external variable from the point of view of the individual modules, its concentration can be
considered constant during a time step; by preserving the fluxes of ATP into or out of the
relevant modules, ATP concentration can still be represented to a high degree of accuracy
without solving for it at the high rates required for the fast modules. Another way of achieving
the same objective is to give the local ATP a local name, as if local concentrations differed
slightly from one another, but exchanged with one another with moderately fast exchanges.
Thus, using a differential equation to describe ATP1 ↔ ATP2 allows independence of the
modules from one another while maintaining exchange and mass balance, bringing their
solutions together through the exchange. This same approach lends itself to parallel
computation of the different modules on different CPUs. Because computation time is a major
factor for metabolic and electrophysiologic cell models and a huge issue for integrated organ
models, such approaches need much further development to achieve maximal efficiency of
computation and improve the efficiency of investigation.

COMPOSITION OF THE “ETERNAL CELL”
The reason for defining an “eternal cell” is to have a clearly defined and finite first objective
as a component of the ultimate “complete” model of a functioning cell. By “eternal,” we mean
that there is no proteolysis or protein synthesis, so that the cell’s functional proteins are held
at constant concentrations. For the simplest “eternal” cell, we ignore structural proteins and
pretend that the only proteins we need are those that serve as enzymes, transporters, channels,
pumps and leaks, buffer proteins, and contractile elements. In addition to proteins there must
be substrates, ions, metabolites, the solutes participating as energy pools, and those governing
redox state.

The essential components to be modeled are (1) systems for uptake and metabolism of
substrates for energy production: glucose, fatty acids including acetate, and oxygen; (2) the
cell’s central system for energy supply, including mitochondrial oxidative phosphorylation;
(3) ionic currents, leaks and pumps, and their role in governing the membrane potential; (4)
energy usage for contraction, biochemical reactions, and ion pumping; (5) excitation-
contraction coupling, calcium balance, and the contractile process; and (6) balances of reducing
equivalents and pH.

Figure 1 is a simplified diagram of the first of these. The initial steps in glucose and fatty acid
metabolism require the use of ATP to form phosphorylated intermediates, so that ATP
breakdown occurs before there is any ATP production from these substrates. The glycosome
of the trypanosome isolates the glycolytic enzymes from the rest of the cytosol and so prevents
the total depletion of cell ATP when substrate is first delivered to a starved cell.33 The
mammalian cell has no such protection, so one may expect transient cytosolic ATP depletion
at the onset of reperfusion following a period of ATP-depleting ischemia. The modeling of
Garfinkel and colleagues pioneered this area in the late 1960s through the 1980s.34–47 The
red blood cell (RBC) models of Palsson and colleagues48–50 and of Mulquiney and
Kuchel51,52 are valuable descriptions of glycolysis. The flux expression for hexokinase in the
Joshi and Palsson53 article differs from the original source cited in the positioning of a
parenthesis. Development of databases of physiological information on-line will enable
investigators to conveniently access the relevant information for error-free model development.
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The Mulquiney and Kuchel articles are to be admired as excellent examples of providing the
detailed enzyme kinetic mechanisms that serve as the basis for the reversible flux expressions
in their articles. (As a side comment, our experience is that many models published or made
available on a web site in the past 10 years have had errors. We have, however, had the pleasure
of rapid responses from authors whose models we have found wanting, so it has for the most
part been not too painful to obtain and implement corrections, just as one would like to see in
modern science.) However, even a pathway as long known as glycolysis needs improvement
when new experimental data become available. The glycogenolysis model of Lambeth and
Kushmerick54 accounted for the reversibility of all the reactions known to be reversible; the
RBC glycolyis model of Bali and Thomas55 provides for feed forward activation of pyruvate
kinase, an adaptation that allows for rapid responses when ATP production needs to be
increased.

Fatty acid uptake and metabolism is remarkably parallel to that of glucose: the first step requires
ATP. There is storage as di- and triglyceride, which is analogous to glucose storage as glycogen.
And there is uptake into the TCA cycle for generating NADH, the reducing equivalents that
help to form the proton gradient that drives mitochondrial ATP production. The model for this
that we prefer is that of Kohn and Garfinkel,45–47 simply because most of the reactions are
described in reversible equations and fulfill Haldane conditions as required by the
thermodynamics. (Haldane conditions means that every reaction is reversible and that the
forward and backward rate constants lead to zero net flux at equilibrium.) The ratios of reactant
concentrations at thermodynamic equilibrium are independent of whether or not a catalyst or
enzyme is present. Other models will work under physiological steady state conditions, but
any with irreversible equations cannot match the thermodynamically determined equilibrium
state and therefore are more subject to failure in stress states deviating from the normal
physiological state. Models by Cortassa et al.56 and Salem et al.57 fall into this category and
are not applicable over a wide range of conditions.

The second component, the cell’s central system for energy production, is mitochondrial
oxidative phosphorylation. Several models have been devised for this. A peculiar problem is
how oxygen is linked to the production of ATP, and the variation in opinion on what is the
appropriate value for the affinity of binding of oxygen by cytochrome oxidase. Mitchell’s
chemiosmotic hypothesis serves as the basis of the models. Currently accepted models58 fail
when oxygen falls to low levels.

The third set of components, ion currents during the action potential, the spread of excitation,
and the pumping of ions to maintain ionic balance are relatively well worked out. Action
potential models such as those of Noble et al.,59 Winslow et al.,60 and Luo and Rudy,61 are
being updated and improved each year. For example, Michailova and McCulloch62 augmented
the Winslow model by adding the Ca buffering systems, thus modifying the shape of the
calcium transient. Winslow’s group have inserted or substituted genetic variants of particular
channels to illustrate the peculiarities of their currents (e.g., Greenstein et al.63). All the
currents flowing during the action potential, and the passive exchangers (NaCa exchanger and
NaH exchanger), dissipate the ionic electrochemical gradients. Energy-dependent pumps, the
NaK ATPase and the CaATPase, are key to maintaining the gradients. For a composite cell
model, the pump fluxes determine both the ionic gradients and the energy utilization. Lauger’s
text64 gives an excellent resume of their kinetics and specific models. Because perhaps one-
third of the energy of a cardiomyocyte goes into ionic pumps, they must be accounted for in
the expenditures.

The fourth process, balancing the energy usage for contraction, biochemical reactions, and ion
pumping, is the production of energy through anaerobic metabolism (glycolysis) and aerobic
metabolism (Krebs cycle fluxes and oxidative phosphorylation). We consider this a separable

BASSINGTHWAIGHTE and VINNAKOTA Page 6

Ann N Y Acad Sci. Author manuscript; available in PMC 2010 May 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



topic because it requires linking all of these various modules and yet achieves an energy balance
over a wide range of steady states. A particular example that tests any model system severely
would be an analysis of studies where energy sources are limited and the functional state
impaired, but yet where steady state can be reached. An example is the observation of Chen
and Gueron65,66 on acetate Ringer-perfused rabbit heart: when 2 mM 2-deoxy-D-glucose was
added to the perfusate, all the NMR-visible phosphate was converted to DG-6P, so that one
has to ask how energy was being provided for cellular metabolism. Yet contractions continued
at approximately 60% of peak control tension, still with acetate as the only substrate. The rate
of diminution of the DG-6P peak in the NMR spectrum after stopping the 2-DG perfusion gives
clear evidence of the hydrolysis of DG-6P by a phosphatase, without which the cell could have
no free phosphate. Considering the persistence of contraction as a bioassay for cellular
phosphorylation potential, one has to think that it was still at approximately 60% of control
levels despite the absence of NMR visible ATP or Pi. Other data sets at low PO2s will similarly
challenge current models.

The fifth set of models are those of excitation-contraction coupling, calcium balance, and the
contractile process. Bers’s book67 provides a masterful compendium of the information on the
heart, part of which is incorporated into LabHeart, a model developed and distributed by Puglisi
and Bers68 and run under LabView. It is an excellent teaching tool, and, although we have not
tested it this way, it should be a good test vehicle for designing critical experiments to test the
model. The several action potential models all contain elements of excitation-contraction
coupling—that is, Ca release and reuptake—as these are essential to define the gradient for
calcium currents during the action potential, but none are very detailed for the contractile
process itself. The relationships between the Ca binding to troponin C, the actin-myosin
interactions, the tension on the sarcomere, and the rates of shortening and the rate of utilization
of ATP are complex. The models of Hill,69 Taylor et al.,70,71 Landesberg and Sideman,72–
74 and others reviewed by Gordon et al.75 attest to the critical thinking going into understanding
this process. One source of difficulty is the contribution of stretch activation of Ca channels
versus the influences of stretch and tension on actin-myosin interactions.76 Increasingly refined
cross-bridge models continue to be developed.

The sixth set of considerations are balances of reducing equivalents and pH. Although these
involve many transporters, exchangers, and shuttles (e.g., aspartate-malate shuttle), the
emphasis is on assuring balances among the various processes of intermediary metabolism.
For example, because NAD and NADH scarcely cross the mitochondrial inner membrane, the
totals of NADH and NAD should remain constant in cytosol and inside mitochondria. This
makes for a more useful check on mass balance than simply keeping track of the cellular total.
However, to balance reducing equivalents and to express a cellular redox potential means also
accounting for –SH groups, which we have not done in our “eternal cell” to this point. Balancing
H+ is much more complex because of the host of reactions in which H+ is either used or
produced, and because it is rapidly exchanged across cell membranes. At the whole-tissue
level, pH balance is further complicated by such events as the release of approximately 0.7
moles H+ for each mole of oxygen bound to Hb. The many buffering systems for H+ include
ones with clear stoichiometry (bicarbonate, etc.) and others (such as proteins in interstitial fluid
and cells) in which no fixed stoichiometries can be assigned.

MODELING STRATEGY AND TACTICS
Given the complexity of the task, it is no wonder that complete cell models are not yet available;
but now that there are demonstrated needs and increasing computer power, there will be soon.
Therefore, we might try to define a set of questions that might be asked of each new model as
it comes off the press. Second, we might determine how to define a model so that it can be
understood and reproduced. Third, we might devise a set of tests or test cases that every “cell
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model” should be able to pass; there might be a set of levels of these. Fourth, we must expand
on a “correct” “eternal cell” model that will be useful to the scientific community.

The questions to ask of a newly published model start with: (1) Is it reproducible? (2) Is the
code verifiable? Over what range of parameters and variable values does it run correctly? (3)
Is the model scientifically valid, and for what situation or species or cell?

Reproducibility (question 1) demands that the equations and parameter sets be completely
correct, and that the numerical methods are such that behavior can be reproduced to so many
decimal places. Of the many models we have tried to reproduce from publications in our
laboratory, the only substantial one that survived this first test is that of Hodgkin and Huxley,
77 for which all the parameters were given for every figure. (Another one might have been the
Luo-Rudy action potential,61 but we converted to different solvers and got slightly different
solutions.) Other models have required corrections of misprints in the publication or in the
material first received from authors; but, in general, authors have been most responsive,
immediately, for requests for corrections or further information. This is, indeed, the time of
international collaboration.

The verification question (2) is mainly answered by reproducibility of the operational code,
but there is an additional nuance at a deeper level: do the solutions obtained through a particular
numerical method give the correct solutions to the original equations? Because implementation
methods can be expected to be peculiar to each laboratory, an error in the methods of solution
in the originator’s computations will not be recognized through a failure to reproduce if the
originator’s computational code is used. A better test is to run it with different solvers on
different platforms after retranslating from the equations into computational code. Nowadays,
for example with JSim or XPPAUT, the original mathematics-like source code is parsed and
solution methods are automatically chosen. Because these two platforms provide different
solvers, if a model is run under both systems and the results are the same, then one is virtually
assured that the solutions are correctly obtained for the equation set.

The validity question (3) is open ended. All models are wrong, in the sense of being inexact
or incomplete, or not sufficiently refined. All models are a statement defining a working
hypothesis in a quantitative fashion. Models are made to be disproved and are the best vehicle
for the advancement of science. A giant stride is taken whenever “a beautiful hypothesis is
destroyed by an ugly fact,”78 and one moves on to try to find the improved version of “truth.”
The generality is that the more data, and the better the data, that one has, the better they serve
as a test of the model. Biological models are based on anatomic structure, the nature of physical
and chemical processes, and their thermodynamic constraints. The models used to analyze a
particular data set should use all of these information types, not simply those data which came
from a few variables measured in a single set of experiments. The idea of using a minimal
model to characterize a data set is to abandon the idea of testing a hypothesis about a system
and settling for a mere descriptor of that data set; this may be acceptable for diagnostic purposes,
but it is not systems modeling.

THE FUTURE OF MODELING IN THE BIOLOGICAL SCIENCES
There is a new wind blowing in the halls of academia, driven in part by the pharmaceutical
industry’s needs for quantitative, predictive modeling to assist in target selection for new
agents. This fresh breeze is opening minds to the utility and beauty of models as aids to thinking
and to advancing science at accelerated rates. Even though the American Journal of
Physiology abandoned its Modeling Forum a few years ago, there are now more modeling
articles published there than ever. Although Circulation Research appears at first glance to
have a heavy emphasis on molecular and genetic studies, it still manages to publish key articles
on the modeling of electrophysiology and of mechanics. The receptivity to models is really
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higher now than it has been in more than 20 years, in my view. However, there is a
commandment: the model shall be coupled with experimental data. Pure mathematical
modeling for its own sake does not appear in the leading biological journals, and even journals
such as the Annals of Biomedical Engineering and the Journal of Mathematical Biology are
weighted toward models applied to well-defined data, where the model fits to the data create
new insight into processes and are not mere exercises in descriptive parameterization.

What is becoming recognized is that the modeling, in parallel with experiments, is essential
for scientific development; and that the modeling analysis is powerful, although often still
difficult. Training programs in the areas of computational and integrative physiology are still
too small to satisfy the demands of industry and academia, and students are still reluctant to
enter a demanding career requiring deep knowledge of both biology and engineering analysis.
The advances in genomics, proteomics, and now metabolomics as fields of endeavor now make
it more than obvious that the next big field in computational biology is integrative.
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FIGURE 1.
Building composite modules from prebuilt modules in intermediary metabolism. Top:
Individual models for glycolysis, Krebs (TCA) cycle, oxidative phosphorylation, and
nucleotide energetics showing their main inputs and outputs. Bottom: Combining the modules
from the top panel and adding fatty acid metabolism gives a composite model of intermediary
metabolism. Stoichiometric balance is maintained, and the modules remain distinct from each
other.
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