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SUMMARY
The remodeling that occurs after a posterolateral myocardial infarction can alter mitral valve
function by creating conformational abnormalities in the mitral annulus and in the posteromedial
papillary muscle, leading to mitral regurgitation (MR). It is generally assumed that this remodeling
is caused by a volume load and is mediated by an increase in diastolic wall stress. Thus, mitral
regurgitation can be both the cause and effect of an abnormal cardiac stress environment.
Computational modeling of ischemic MR and its surgical correction is attractive because it
enables an examination of whether a given intervention addresses the correction of regurgitation
(fluid-flow) at the cost of abnormal tissue stress. This is significant because the negative effects of
an increased wall stress due to the intervention will only be evident over time. However, a
meaningful fluid-structure interaction model of the left heart is not trivial; it requires a careful
characterization of the in-vivo cardiac geometry, tissue parameterization though inverse analysis, a
robust coupled solver that handles collapsing Lagrangian interfaces, automatic grid-generation
algorithms that are capable of accurately discretizing the cardiac geometry, innovations in image
analysis, competent and efficient constitutive models and an understanding of the spatial
organization of tissue microstructure. In this manuscript, we profile our work toward a
comprehensive fluid-structure interaction model of the left heart by reviewing our early work,
presenting our current work and laying out our future work in four broad categories: data
collection, geometry, fluid-structure interaction and validation.
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1. Introduction
Computational fluid-structure interaction (FSI) studies of the heart have a long - but sparse -
history, beginning with the seminal introduction of immersed boundary methods in 1972 by
Dr. Charles Peskin [1]. Nearly all later studies avoided consideration of the mitral and aortic
valves, and were instead focused on the fluid-dynamics of either diastolic filling [2,3,4,5] or
systolic ejection [6]; the few studies that did consider valvular-interaction in addition to
ventricular-interaction considered only the aortic valve [7]; and all but a very recent few
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have been based on highly idealized geometries and material properties [8,9]. These
idealizations have characterized in-vacuo numerical models of the myocardium to a
somewhat lesser extent (e.g. [10,11,12,13]). At the same time, a number of studies have
considered the fluid-structure interaction of native tissue valves. Of these, the majority have
focused on the aortic valve or the aortic position [7,14,15,16,17,18,19,20,21,22,23], while
only two [24,25] have considered the native mitral valve, and another a chorded mitral
prosthesis [26]. The geometry of the majority of these valvular models was based on
anatomical descriptions of Thubrikar et al. [27], with the notable exceptions of the work of
Grande-Allen [28], which was based on magnetic resonance imaging data, Kunzelman [29]
which was based on serial histology, and Votta [30] which was based on invivo ultrasound
data.

The simplification of the cardiac geometry and tissue microstructure in cardiac FSI models
has enabled interesting studies that have increased our understanding of cardiac fluid-
dynamics. A careful characterization of both of these is critical to a predictive analysis of
both cardiac mechanics and surgical intervention. Cardiac (as distinct from cardiovascular)
computational modeling, in general, has been slow to benefit from the rapid developments in
image processing that have permeated many other fields. In part, this has to do with the fact
that only ex-vivo hearts can be imaged with sufficient resolution to capture the full cardiac
geometry and fiber orientations; this is problematic since ex-vivo geometries and in-vivo
geometries are quite different, especially following fixation. However, a bigger barrier to a
predictive analysis has been the absence of the mechanical influence of the cardiac valves.
The strong influence of the cardiac valves on the fluid dynamics of the heart is obvious. In
addition, the valves have a strong influence on the solid mechanics of the heart. The anterior
leaflet, for example, is continuous with the the aortic valve and the wall of the ascending
aorta. However, the greatest mechanical coupling between the ventricle and the cardiac
valves is due to the chordae tendinae of the mitral valve that connect the free-edges of the
anterior and posterior mitral leaflets to the papillary muscles and thus to the left ventricular
wall. These chordae also act as secondary orifices for blood flow, creating a dynamic
interface between blood and tissue that is geometrically complex.

Ischemic mitral regurgitation (MR) is a clinical pathology that involves both the mitral valve
and the left ventricle in terms of the dynamic interaction between blood and tissue.
Following a postero-lateral myocardial infarction, the infarct loses contractile function and
expands. Infarct expansion and compensation via the Starling relationship leads to an
increase in left ventricular (LV) volume at end-diastole. Repositioning of the papillary
muscle relative to the mitral annulus creates a traction on the chordae such that the mitral
leaflets close below the valve plane and no longer coapt. Cardiac and intravalvular flows are
pathologically altered, with blood regurgitating into the left atrium during systole. The
clinical consequences of ischemic MR are dramatic over time, although the exact
contributions of the mitral regurgitation per se and infarct expansion to ventricular
remodeling remain unclear. Both acute and chronic regurgitation can lead to pulmonary
edema [31], and relatively small changes (25 mL) in end-systolic LV volume are associated
with exponential increases in mortality [32]. The goal of surgical intervention is to correct
the mitral regurgitation and to reduce stresses in the remote myocardium and infarct
borderzone so that ventricular remodeling is slowed or reversed. These goals may not be
automatically complimentary, depending on the surgical intervention. While regurgitation is
clinically observable, stress is not. Computational modeling of ischemic MR and its surgical
correction is attractive because it enables an examination of whether a given intervention
addresses the correction of regurgitation (fluid-flow) at the cost of abnormal tissue stress.

In this manuscript, we present our ongoing work toward a comprehensive fluid-structure
interaction model of ischemic mitral regurgitation. First, we review our early work as a
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motivation for our current efforts. Next we present novel contributions in the area of image
analysis, grid generation, computational geometry, inverse methods and numerical schemes
for strongly coupled fluid-structure problems that move us toward our goal of a
comprehensive fluid-structure interaction of the heart. Most, if not all of these contributions
have implications for biological fluid-structure interaction problems in general. Next we
outline areas of improvement that are needed and are planned in the near future for this
effort. Biological fluid-structure interaction problems are challenging not only due to the
demands of the coupling numerics, which is still the subject of much research, but also
because the analyst must work in many disparate disciplines. To simplify our presentation,
sections on early, present and future work are organized into four broad categories: data
collection, geometry, fluid-structure interaction and validation.

2. Finite Element Analysis of The Mitral Valve: Early Work
Our early analyses of the fluid-structure interaction of the mitral valve have been previously
published [33,34,25,35]. Here we briefly summarize that work to serve as background for
our presentation of our current work.

2.1. Data Collection
Material properties and material anisotropy for the fluid-structure model of the mitral valve
were obtained from bench top tests. Collagen fiber orientation was determined from a small-
angle-light-scattering (SALS) mapping [36]. A drawback of SALS is that it requires that the
valve leaflets be excised and rendered two-dimensional. Nevertheless, by dividing the tissue
into quadrants, we were able to create a case-specific mapping between the data and the
computational model. Having defined the local material anisotropy, we parameterize a
constitutive model for mitral tissue elasticity with bench top biaxial mitral tissue tests
[37,38]. Such material tests also require tissue excision. Briefly,

(1)

where S is the second Piola-Kirchhoff stress, C is the Lagrangian metric, p is a Lagrange
multiplier to force the constraint of incompressibility, Sf (θ, C) is a fiber stress-strain rule,
R(θ) is a probability distribution function, and a0 ⊗ a0 (θ) governs the orientation of a fiber
family in the 2D plane. We assumed that Sf (θ, C) was given by

(2)

As formulated, Equation 1 must be numerically integrated.

2.2. Geometry
The mid-diastolic surface geometry (1) of the mitral valve leaflets and papillary muscle tips,
as well as the number and radiation pattern of the chordae tendinae were developed from
fresh porcine hearts [29]. Briefly, three porcine mitral valves were fixed in resin in both their
loaded and unloaded configurations, cut into cross-sections, digitized and averaged [29,39].
The unloaded geometries were triangulated to represent the leaflet geometry in the finite
element model. Loaded geometries were available for comparison with model predictions.
At discrete locations on the anterior and posterior leaflets thickness was recorded [29,39].
Thickness for the entire leaflets was interpolated from these data. Chordal insertion and
diameters were recorded as well. Importantly, the leaflets, papillary muscles and chordae
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were approximated as being symmetrical about the leaflet’s mid line - i.e. the mid line
perpendicular to a line connecting the commisures [29,39].

This geometry has yielded many important insights into the mechanics of the mitral valve.
However, for application to modeling ischemic mitral regurgitation there are several ways it
can be improved upon. First, dynamic video fluoroscopic data suggest that while the mitral
annulus is approximately symmetric about the septal-lateral mid-line [40,41,42], significant
asymmetry exists with regard to subvalvular geometry and motion, both in normal function
and in pathology [40,41,42,43]. Since ischemic mitral regurgitation flows from myocardial
dyskinesis that affects the posterolateral papillary muscle, that symmetry is further broken.
Although, further evolutions of the model did include the entire valve allowing for the
analysis of asymmetric perturbations [44,45,46], these were not included in the FSI analysis.
Most importantly, the chordae and leaflets were topologically one- and two-dimensional,
respectively. For accurate fluid-structure interaction of the whole mitral geometries,
especially in the neighborhood of the interface, chordae tendinae and leaflets must be both
geometrically and topologically three-dimensional. These goals are now achievable with
advanced image analysis, as will be later described.

2.3. FSI
Our early approach to FSI has been presented elsewhere [33,47,48,49]. Here we reiterate the
key points and results as they apply to our early FSI analysis of the mitral valve in order to
give context to the newer approaches presented herein. A laminar Eulerian formulation was
used to model the blood domain, which was assumed to be a compressible, Newtonian fluid.
Specifically, the deviatoric stress depended linearly on the shear rate, while compressibility
was governed by the equation of state

(3)

where p is the pressure, K the blood bulk modulus and J the Jacobian or volume ratio. For
computational efficiency, the bulk modulus was lowered to 2:5 × 104 kPa from an estimated
value of 1:0 × 107 kPa. All other fluid variables were assigned their physical, if linear,
properties. Fluid and solid domains were topologically distinct; equations of motion for each
were solved by explicitly integrating in a staggered fashion. Momentum was advected with a
second-order Van-Leer method. To effect the exchange of momentum between fluid and
solid, the nodes of the Lagrangian membrane elements were made to interact as boundary
nodes with the fluid. The Lagrangian solid mesh was advanced one time-step. Thereafter,
the boundary nodes were applied as boundary conditions to the Eulerian fluid elements,
which reacted by altering their velocity and pressure. These were then treated as boundary
constraints on the Lagrangian structure at the next time-step.

More specifically, at each time step all of the fluid elements containing a structural node
were identified. The structural nodal mass was then distributed to the fluid element nodes
according to

(4)

where i is the nodal index and h is a weighting coefficient between 0.0 and 1.0. Similarly,
the structural nodal force was distributed to the fluid according to

(5)
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The new fluid nodal acceleration was

(6)

The structural nodal acceleration was constrained or matched to the fluid elemental
acceleration as

(7)

Note the above summation implies that the formulation is limited to hexahedra. In addition,
the structural nodal momentum was distributed to the fluid element nodes according to

(8)

with a new nodal velocity of

(9)

Finally, the structural nodal velocity was constrained to the fluid velocity, as

(10)

2.4. Validation
Streamlines at four time points in the cardiac cycle before and after coaptation are shown in
Figure 2. Notable are the vortices that develop upon coaptation. The predicted transmitral
pressure and flow showed excellent agreement with published in vitro trans-mitral pressure
and flow data from the Georgia Tech left heart simulator [50]. Specifically, the peak closing
flow of 3.1 L/min compared well with a measured peak closing flow of 3.6 L/min (Figure
3B). The well-known non-stationarity of the acoustic vibrations radiating from the mitral
valve was observed in both the computational model and measured thoracic S1 from sheep
in our laboratory. The predicted time-frequency signature was found to have a downward
glide in frequency with a maximum at 72.0 Hz occurring at 0.0604 seconds from pressure
crossover. Similarly, the average maximum peak frequency for the measured thoracic
sounds was 71:7 ± 2:8 Hz and occurred 0:071 ± 0:003 seconds from the peak of the QRS
wave in the EKG. To further test model acoustic predictions, we varied both the absolute
pressure gradient across the valve at coaptation as well as the pressure derivative (dP/dt).
The linear relationship between the ventricular pressure derivative and the root-mean-
squared amplitude of the acoustic pressure has been amply documented [51,52,53,54,55].
Our model was able to predict the linearity of these relationships - remarkable given the
strong nonlinearity of the system. The relationship between papillary muscle force and the
left ventricular pressure curve (Figure 3F) is also well-documented [50,56,57]. The
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predicted value of 2.6 N for the summed papillary muscle agrees quite well with both in-
vivo and in-vitro papillary muscle force measurements.

In short, model predictions showed excellent agreement with a variety of available data, and
therefore was appropriate for the modeling questions we posed at the time: 1) what are the
hemodynamics of the mitral closing sound; 2) what influence do collagen orientation,
organization, density and stiffness have on mitral valve dynamics; 3) what is their
relationship to disease of the mitral tissue; 4) how are all of these influenced by or
manifestations of flow. We found that the flow was abruptly decelerated upon closure,
resulting in large scale eddies behind the valve accompanied by lesser eddies on the
ventricular side. Superimposed on the large scale motion of the fluid, pressure oscillations
exchanged momentum between tissue and fluid. These oscillations were in the audible range
but were quickly damped by the fluid viscosity. The effect of the coupled system was to
lower the frequency of these pressure waves over time, resulting in the commonly observed
non-stationary glide of the first heart sound. Furthermore, we found that the energy in these
vibrations was sufficient to account for the total acoustic power measured on the thorax, and
that the peak frequency was a nonlinear function of both the transvalvular pressure as well
as the pressure derivative - a complicating factor for those who would correlate frequency
with disease. With regard to the influence of the microstructural constituents of the mitral
valve tissue, we found that perturbations that preserved valvular anisotropy - for example
increased fiber stiffness or volume fraction - also preserved valve function, albeit with
increased stress. In contrast those that did preserve valve anisotropy - for example a modest
increase in the isotropic component or an increase in the fiber splay - led to both substantial
regurgitation and increased stress. This functional relationship between anisotropy and
regurgitation.

As a final note, we point out that non-stationary acoustics is an attractive component to
validation of FSI models of cardiac valves. This is because in strongly coupled systems the
modes of vibration will have components that belong to the fluid, and to the solid as well as
to the coupled system [58]. In turn, the frequency components of the tissue will be
proportional to stress. Thus, while stress cannot be directly measured, it can be indirectly
measured.

3. Strategies for Modeling Ischemic Mitral Regurgitation: Present Work
Modeling ischemic mitral regurgitation and its surgical correction requires an accurate,
imaging-based representation of in-vivo geometries and automatic quality construction of an
interface-compatible computational grid. Due to the topological and geometrical complexity
of the problem, reconstruction and discretization must be fully automatic, scale-invariant
and reflective of the physical and computational demands of fluid and solid domains
separately but compatibly. In this section we present novel schemes for distilling geometry,
grid generation, voxel-to-grid mapping from imaging data to an arbitrary unstructured grid,
warping of ex-vivo geometries to in-vivo landmarks, inverse analysis, Lagrangian fluid-
structure interaction numerics and validation.

3.1. Data Collection
Data for detailed left-heart geometry and myofiber architecture come from standard proton
magnetic resonance imaging with a Fluorocarbon contrast agent and from magnetic
resonance diffusion tensor imaging, respectively. Here we focus on image processing and
computational geometry.

3.1.1. Image Segmentation—A full description of our segmentation is beyond the scope
of the present manuscript. Here we outline the main points. To assure proper segmentation
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of the heart tissue and enclosed blood, a multimaterial voxel assignment segregates voxels
into four material types: blood (Mb), heart tissue (Mh), other (Mo), and disputed (Md).

(11)

where Md is a fuzzy set that is the intersection of blood and tissue, and tn are intensity
thresholds. Encapsulated disputed material is reassigned to the surrounding material when
the enclosing material is all of the same material type (blood or tissue). This is accomplished
by a depth-first recursive search algorithm that follows the 26-adjacency connectivity of
disputed material points and tracks the range of material types bounding the 3D pocket of
disputed material. In cases where the disputed material is bound by more than one other
material type, those voxels remain disputed, but are flagged for guided manual resolution in
a custom 3D image material editor, allowing rapid reassignment of material as appropriate.
A secondary function of this editor is to highlight adjoining voxels of the same material with
ambiguous connectivities, such as two voxels of the same material connected only at a
corner. These connectivities require modification in order for the Marching Cubes algorithm
[59] to produce valid surfaces. Figure 4 shows an ex-vivo segmentation of a sheep heart,
with a physical resolution of ~ 250µm.

3.1.2. Diffusion Tensor Imaging and Mapping—As with the mitral valve alone, it is
necessary to associate fiber angles with our computational grid. However, unlike the 2D
SALS data for the mitral valve, myofiber orientations have a complex three-dimensional
architecture and must be determined using magnetic resonance diffusion tensor imaging
(DTMRI). Our collection of this data has been previously described [60]. Here we focus on
the mapping, and formulate the problem in such a way that the data could come from
volumetric imaging data or indeed volumetric histology data.

To associate the diffusion tensor data with our computation grid, we developed a fast
algorithm for mapping cell fields between unstructured meshes that cohabit the same three-
dimensional geometric domain, within a tolerance [61]. The tolerance is necessary because
geometry in an image is implicit, while the geometry of a computational grid is explicit.
Furthermore, operations of smoothing and surface adaptivity imply some deformation of the
geometry. The imaging data is of course a Cartesian grid. However, we formulate the
problem as an unstructured-to-unstructured mapping in order to address the general class of
problem. The approach consists of computing a sparse matrix of intersection volumes Vij
between the j’th element of the ’source’ mesh and the i’th element of the ’destination’ mesh
in N log N) time, where N is the number of nonzero Vij. To efficiently find corresponding
local neighborhoods of intersecting cells we perform a coordinated walk on source and
target grids, which is an N) process. Subsequently, all Vij are reordered such that they can
be packed into a sparse matrix. This need only be done once, and then a sparse matrix-vector
multiply can be rapidly performed once for each direction cosine (Figure 5). It is important
to note that the algorithm requires no a priori mapping between the image and the grid. With
a geometry as complex as that represented by Figure 4, such an a priori mapping would be
clearly impossible. As a final note, we point out that the mapping is geometric and that
therefore any cell field can be mapped. We have previously speculated that the secondary
and tertiary diffusion tensor diffusivities may encode other tissue parameters such as
extracellular volume fraction [62]. This raises the possibility of directly characterizing
constitutive parameters as part of an inverse analysis.

3.1.3. Inverse Analysis—From a microstructual point of view, myofiber orientation is
but one component of a mechanical framework that is not only both anisotropic and highly
nonlinear, but also, and more importantly, heterogeneous and still somewhat unknown [63].
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From a mechanical point of view, of course, it is convenient to make an assumption of a
continuum, but challenges remain. For example it is well-known that continuum properties
differ greatly in-situ and ex-situ due to residual or "pre-stresses", water content, degree of
cross-linking (as a result of fixation), temperature and so on. Furthermore, the heterogeneity
remains. If tissue is a continuum, it is what we have termed a "slowly-varying continuum".
These factors recommend nonlinear inverse methods as an important part of model
parameterization. In general, these methods consist of a series of forward simulations that
generate a dataset to be compared to the experimental data. Because inverse methods are
designed for problems with complex boundary conditions they may be particularly well
suited for enhancing information from medical imaging modalities such as MRI. Our efforts
to date have been based on the Successive Response Surface Method (SRSM), and have been
applied to valvular tissues [64], inflation testing of aorta [65] and most recently to the
parameterization of myocardial material properties from tagged MRI data. Strain analysis
and model versus computational predictions from this latter study are shown in Figure 6 &
Figure 7.

Details of the method may be found in the above and related citations, particularly [66] &
[67]. Here we simply state that the SRSM differs from serial and gradient approaches to
minimization by constructing a smooth approximation - a response surface -to model
responses in multi-dimensional space. Parameter combinations are chosen by design of
experiments criteria, in our case D-optimality [68,66]. The global nature of the approach
derives from its sequential application. The minimum of one set of simulations, or of one
response surface, becomes the starting point for the next set of simulations. This cycle of
forward solutions at selected points followed by the minimization of the objective function
with respect to the response surface is repeated until the prescribed tolerance in the residual
is reached. With each successive iteration, the parameter space is condensed and possibly
moved with each set of experiments, such that the sampling is conducted on a smaller and
smaller region [67]. This assures that, in the neighborhood of the global minimum, the
response surface captures finer and finer features of the system response. Conversely, the
approximate nature of the response surface over a wider parameter space at the start of
optimization assures that the method is relatively insensitive to local rather than global
minima, and similarly relatively insensitive to experimental noise [67].

For determining the active systolic myocardial parameters (see [69] for detials of the
constitutive model), the mean squared error (MSE) was minimized. The MSE was defined
as the difference between the computed finite element and experimental results (end-
diastolic and end-systolic volumes and strains).

(12)

where n is the in-vivo strain point, N is the total number of in-vivo strain points, Eij,n is the
computed strains at each strain point, VED and VSD are the computed end-diastolic and end-
systolic LV volumes, respectively. The overbar represents experimental in-vivo
measurements. Strain in the radial direction, E33, is excluded as it cannot be measured with
sufficient accuracy with tagged MR images. So defined the MSE was minimized to 4.7, the
results of which can be seen in Figure 7. While the fit is reasonable, two improvements are
likely warranted, both of which imply a potentially large increase in the parameter space.
First, passive constitutive parameters were not adjusted but assigned from previous studies.
Second, we identified three distinct material zones rather than a more full discretization
implied by the concept of a slowly-varying continuum. The trade off of an increased
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parameter space is increased computational expense, as well as increased covariance. This
motivates the search and development of new methods.

3.2. Geometry
Below we outline our approach to constructing computable, quality grids from imaging data
that are designed to support Lagrangian bio-FSI problems by automatically creating
compatible interfaces between fluid and solid. We remand our discussion of registering
these grids to in-vivo data in the section on future work.

3.2.1. Grid Generation—Imaging-based geometries, such as that represented by the
sheep heart shown in Figure 4, represent clear challenges for generating quality
computational grids for Lagrangian FSI in that the grid must be organized both by geometric
scale and intrinsic properties, while resolving fluid-structure interfaces compatibly. Here we
have to emphasize compatibility since we are adopting a Lagrangian approach to FSI.
Generally speaking, we need only achieve geometric compatibility at the interface as
solution variables can be interpolated at the interface. However, we impose the more
rigorous constraint that nodal connectivity must be exactly matched at the interface. With
regard to intrinsic properties, the wall of the heart is a laminated muscle consisting of three
separate layers, each with a separate family of fiber and myocyte orientations. Thus, a grid
of the heart muscle must be similarly layered. That same layering persists at the smaller
scale of the heart, where, for example the musculature transitions into the connective tissue
of the cardiac valves; or at an even smaller scale where the heart muscle involutes to become
a network of coronary arteries. These transitions of scale are of course mirrored in the blood.
The lumen of a coronary artery, for example, may be several orders of magnitude smaller
than the span across a ventricle, and thus there is a need to equilibrate error over a range of
meaningful scales.

Our approach to this challenge is based on the gradient-limited feature size (GLFS) [70], and
is articulated in two complimentary scale-invariant gridding algorithms for quality layered
tetrahedra for heart tissue [70] and quality prismatic-tetrahedral hybrid grids for the fluid
[71]. The defined GLFS serves three functions: 1) a field for tangential adaptation of the
surface grid, 2) a metric for creating layered tetrahedra, and 3) a speed function for
construction of a prismatic boundary layer by application of the Generalized Huygens’
Principle [72]. Below we define the gradient-limited feature size and outline these
algorithms with examples.

Let S be an oriented closed triangulated surface, which is derived from the isosurface of
imaging data by the Marching Cubes algorithm [73,74]. We allow S to consist of one large
enclosing closed surface S0 and possibly any number of closed surface holes S1;…Sn inside
S0. Any of the surfaces S0; S1;…Sn may have handles (i.e., have nonzero genus). As
illustrated in Figure 8, we modify S to produce a high-quality surface mesh S′ by performing
the operations of smoothing, refinement and de-refinement while limiting perturbations to a
small fraction of a voxel. For any point x ∈ S, we define the “raw feature size” or “local
diameter” F[x] as the length of the line segment formed by first shooting a ray from x in the
direction of n̂[x], the inward normal at x, and then truncating the ray at its first intersection
with S. That is

(13)

Since S is closed, with a robust normal n ̂ (i.e. accurate and stable [75]) the ray proceeding
from x in the direction n ̂ will intersect S at least once, and hence F[x] is well-defined.
Similarly, we also perform an “outwards” interrogation of the geometry to compute another
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raw feature size field Fout[x] using n ̂out = −n ̂in. This outwards value is finite in some areas
(e.g., at concave parts of S). Fout[x] and is applied only to the adaptation of surface meshes,
where it is necessary to respect a minimum sampling frequency [76].

The raw feature size computed by ray tracing is bounded (Fout may be unbounded), but it is
sensitive to abrupt changes in the geometry. To address this, we first impose user-specified
lower and upper bound to the feature size, denoted by Lmin and Lmax respectively.
Thereafter, we compute a new feature size f[x] by modifying F[x], so that the spatial
gradient is relatively insensitive to these changes in S. We accomplish this by performing a
gradient-limiting procedure [70]. First, we initialize f[x] to F[x]. Given a bound G on the
surface gradient of f[x], the algorithm places the directed edges that violate the gradient limit
into a max-priority queue, ranked by the key

(14)

which measures how much the gradient violates the gradient limit for a directed edge 
on S. Let  be the directed edge with the largest measure in the queue. We relax f[xi] to
satisfy the gradient limit, recompute the measures for the incident edges of xi, and update the
priority queue accordingly. The process continues until the queue is empty. For
computational efficiency, ray-triangle intersections are queried within an axis-aligned
bounding box (AABB) tree [77,78] that contains at its leaf nodes the bounding box for each
triangle. This algorithm has a complexity of N log N), where N is the number of triangles
in S. Figure 9 shows both f[x] and fout[x] for an aortic valve from micro-CT. Note that the
leaflets are separated by a single voxel, but that the integrity of the layers is preserved.

As described in [70], once a suitable tissue surface mesh has been obtained with edge
lengths on the surface equal to about ctf[xi], where ct is a user definable parameter, we
construct a layered tetrahedral volume grid (Figure 9, Figure 8 & Figure 10 by casting mi
points in the direction n ̂ (xi)

(15)

where here we have defined  to be the surface points in S′. These points are
connected with a modified Delaunay algorithm, where we disallow the insertion of  if

. In other words, if if  is an interior point greater than a distance  but less

than a distance  from xi, it is not inserted. Finally, the tetrahedral grid is improved with
layer-aware, edge-flipping operations and a ’crushing algorithm’ that inserts nodes on the
opposed diagonals of slivers and then merges the nodes together, eliminating the slivers. We
note that the surface density ctf[xi] is independent of the normal direction layering, a concept
that we use again for generating the fluid grid. The total process required 20 minutes and 90
minutes for aortic and sheep heart grids, respectively; once the user parameters are set, the
process is fully automatic. Quality statistics for the sheep heart and porcine aortic valves are
given in Table I.

Having generated a quality layered tetrahedral grid for the heart tissue, we wish to create
several layers of prisms at the Lagrangian interface between tissue and blood. There are
several reasons for this. First, prismatic boundary layers are desirable for viscous flows,
which tend to have strong gradients at the boundary due to wall shear stress, an effect that -
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as we have already mentioned - has been shown to be extremely important in cardiac/
cardiovascular biomechanics. In addition, prismatic layers have been shown to be effective
in reducing errors in turbulence, particle deposition, and mass-transfer problems
[79,80,81,82]. There is another reason, which we mention here but elaborate on in a future
work. In biological fluid-structure interaction problems with a Lagrangian interface,
prismatic boundary layers are also desirable near the interfaces, such as closing cardiac
valves. In these cases, the direction of impaction is locally normal to the boundary, so it is
aligned with axis of the prisms. Thus, prisms as opposed to tetrahedra are less prone to
entanglement.

Our method advances a surface layer by solving the Lagrangian evolution equation,

(16)

where t denotes time, n ̂ denotes unit surface normal, and f(x; t) denotes the GLFS, as
defined above. Generating a layer of prisms reduces to marching the vertices in time by
discretizing Equation 16. To avoid “swallowtails” [83] in strongly concave regions and in
regions with large curvatures, we apply the face offsetting method in [72], which is based on
a geometric construction called the generalized Huygens’ principle and numerical
techniques of least-squares approximation and eigenvalue analysis. A comprehensive
exposition of the approach is given in [71]. Here we simply note that unlike previous
approaches, which propagate vertices along some vertex normals, our algorithm propagates
faces and reconstructs the vertices. Mesh quality is achieved by applying a novel prismatic
variational smoothing procedure to improve base triangle shapes and edge orthogonality.
Following face-offsetting, we tetrahedralize the interior with a boundary constrained
Delaunay method [84]. The three topological regions - layered tissue tetrahedra, prismatic
boundary layer and constrained Delaunay fluid interior - are shown in Figure 10, with
quality statistics shown in Figure 11. The interested reader is refereed to [71] for a formal
definition of scaled aspect ratio for prisms. We note that the mesh quality is excellent and
the Lagrangian interface perfectly compatible in the sense that nodes are shared exactly.

3.3. Lagrangian FSI
Our previous approach to fluid-structure interaction of the mitral valve was both successful
and validated. However, for a fluid-structure interaction of the whole or left heart it is
lacking in three key ways. First, it required explicit, staggered integration of both fluid and
solid equations of motion. This made it a poor candidate for adaptive meshing, since a small
element would sharply decrease the time step leading to prohibitive solution times.
Secondly, for FSI problems with moving boundaries such as a contracting ventricle, it was
necessary to model the fluid domain in an Eulerian manner [20,25,7]. Thirdly, like many
competing algorithms, it was an interface capturing approach. In other words, fluid and solid
domains were overlapping and topologically distinct; thus the blood-tissue interface was
interpolated. This approach, unfortunately, compromises the accuracy of interfacial shear
stresses, which are intimately linked to cell life/death and indeed to gene expression. For
example, it is well known that wall shear stresses regulate coronary endothelium and that
inappropriate wall shear stresses can lead to build up of atherosclerotic plaque
[87,88,89,90,91,92]. In a similar vein, but less well known, wall shear stresses have been
shown to regulate the phenotypes of valve endothelium and by extension valve interstitial
cells on the ventricular and aortic sides of the aortic valve [93,94,95].

To address these shortcomings, we have implemented a technique based on a framework
first introduced as the Particle Finite Element Method (PFEM) [96,97,98,99]. This method
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was developed for problems involving large deformations and topology changes within the
domain. Its first application was the solution of the Navier-Stokes equations in the presence
of free surfaces. In this setting, the entire fluid domain was modeled in a Lagrangian
manner, allowing for the breaking of waves. To allow for topological changes, the mesh was
efficiently updated. Rather than imposing time-consuming mesh smoothing operations,
highly distorted elements were merged into arbitrary convex polyhedral cells, supported by
dedicated basis functions. Two features about this method stand out: 1) all boundary
conditions were exactly imposed; and 2) no advection terms were needed, resulting in a
linear conservative convection approach with symmetric matrices.

A natural evolution of the PFEM for FSI problems was to add an arbitrary Lagrangian-
Eulerian (ALE) term to the equation of motion [100]. In this way, it was possible to preserve
the Lagrangian approach, while decreasing the number of re-meshing steps in the areas of
the domain where the deformation was small. The result was a method that is very c
onservative on all boundaries and that provides a robust handling of problems with large
deformations and topological changes. In contrast to our previous fluid-structure simulations
of the mitral valve, the equations of motion for both the fluid and the structure are integrated
in time using an implicit formulation.

In its current from, fluid-structure coupling is based on a novel pressure segregation scheme
[101] with a Laplacian interface term that ‘correctly’ segregates pressure in a monolithic
framework, such that strongly coupled problems that are typically solved monolithically can
be efficiently solved in a staggered manner. The overall approach has excellent convergence
behavior in three areas that are critical to cardiac fluid-structure interaction problems: 1)
strong coupling due approximately equal fluid and solid densities; 2) large solid deformation
of soft-tissues whose nonlinear moduli range from 20 kPa - 20 MPa; and 3) large variations
in grid size. The first and second of these are of course required of any biofluid-structure
interaction framework. However, many solvers experience convergence instabilities in these
cases, while our approach is robust. The last of these is important because it enables efficient
adaptivity of the grid due to vortices, convolutions in the geometry and due to collapsing
interfaces, such as opening and closing cardiac valve leaflets. Below, we briefly outline our
approach with examples and separately address the question of mesh adaptivity, which will
be pickup again in the section on future work.

3.3.1. Equations of Motion—The momentum equations for the fluid and the structure
are presented in a unified form as:

(17)

where D is the material derivative, ν is the velocity, σij is the stress tensor, expressed in
terms of a constitutive model for either the fluid or the tissue, ρ is the density and fi is a
vector of external body forces. In the context of cardiac fluid-structure interactions, we are
concerned with incompressible fluid flows. Thus, the continuity equation takes the form:

(18)

Blood is non-Newtonian, and our method easily accommodates non-Newtonian behavior.
However, here we consider only a Newtonian fluid:
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(19)

where p is the pressure, µ is the coefficient of viscosity and τ is the deviatoric part of the
stress tensor. For nearly incompressible flows we obtain:

(20)

Boundary and initial conditions for an incompressible flow are:

(21)

(22)

For the fluid an ALE formulation is adopted, thus the material derivative is expressed as:

(23)

where µj is the mesh velocity. Note that the solid is defined once the proper constitutive
model is chosen (e.g. Equation 1, or the constitutive model presented in [102]) and the
momentum Equation (Eq. 17) is written in terms of velocities instead of displacement. The
boundary and initial conditions for the solid may be written in terms of velocities as:

(24)

(25)

3.3.2. The FSI problem—Having defined the continuous equations of motion (Equation
17–Equation 23), we define the corresponding discrete differential operators and rewrite the
equations of motion in compact form. Without loss of generality the weighted residual
method will be applied following a Galerkin approximation where the test functions as well
as the interpolation functions will be piecewise linear. As this is a classical finite element
approximation, we omit the details.

Equation 17 and Equation 18 may be written in a matrix form as:

(26)

where M is the mass matrix, B is the discrete gradient operator, Bt is the discrete divergence
operator and F is the vector of external body forces. The matrix K = K1 + K2 + K3 consists
of three parts: (K1) the diagonal terms of the deviatoric stress tensor in the fluid, (K2) the
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discrete advection operator plus the stabilization terms added to circumvent the instabilities
that arise from the Galerkin approximation of the advection differential operator, and (K3)
the stiffness matrix that depends on the constitutive model of the solid. F is the vector of
external body forces and P0 is an arbitrary vector such that δP = P−P0. The variable δt
represents the time step size such that tn+1 = tn+δt or tn+1 = t0 + n δt where n is the iteration
number. Herein a simple first order backward Euler approximation is used to integrate the
velocity in time, although in practice a more sophisticated higher-order method may be used
(e.g. BDF2 [103]). Finally, the matrix S is a stabilization matrix to avoid the instabilities
caused by the equal order approximation of the pressure and velocity. No details about
stabilization techniques will be given in this manuscript; the interested reader is referred to
[104].

Equation 26 is a monolithic approach to the FSI problem. From the FSI point of view this is
a robust solution process in so far as no special consideration needs to be taken in the fluid-
structure coupling. On the other hand this approach may result in large linear systems that
very often are poorly conditioned requiring expensive pre-conditioning steps to provide
convergence, which may not be guaranteed. Below, we present a new staggered scheme
which is computationally efficient, enabling the practical solution of large scale problems,
and which more importantly has good convergence characteristics for the biomedical
problem. Biomedical FSI problems such as the beating, pumping heart are characterized by
strongly coupled flow, as fluid and tissue densities are nearly equal, and by highly nonlinear
tissue stiffness which may vary nonlinearly 5–6 orders of magnitude over a single cardiac
cycle. While many solvers experience convergence instabilities in these cases, our approach,
whose convergence behavior has been systematically tested over a wide range density ratios,
tissue stiffnesses and cases of element size heterogeneity [101], is robust.

Apart from the computational expense and the convergence difficulties, there is another
practical reason why the monolithic approach might not be so appealing: re-usability of pre-
existing code. Re-witting a non-linear computational solid dynamics (CSD) code with
complicated material models to fit a monolithic approach is a highly costly operation.
Furthermore, maintaining this code when the formulation changes or new material models
are added to the solver is burdensome. Modularity is mandatory for multi-disciplinary
development groups to improve productivity and decrease debugging times.

The approach taken in this work is to partition Equation 26 in such a way that the fluid and
solid solvers are treated separately. We introduce the pressure segregation by applying a
static condensation of the velocity [101] in Equation 26 such that:

(27)

Replacing Equation 27 in the second row of Equation 26 and re-grouping we obtain the
following system:

(28)

(29)
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(30)

Observe that in the case where advection is fully Lagrangian, as is the case for ventricular
and arterial wall, the previous system of equations is fully decoupled. It should be pointed
out that so far no approximation has been introduced in the splitting. If, for instance, we
neglect the matrix K in Equation 29 the classical Chorin-Temman fractional step scheme is

recovered. Of course, the term  can not be explicitly computed in a practical
problem. Therefore, we will introduce an approximation of this term performed at the
elemental level which is extensively discussed in [101] such that:

(31)

where M is the lumped mass matrix. Recall that we have not yet separated the fluid from the
solid, thus the matrix M still contains all the mass terms for the fluid and the solid domains.
The parameter τe depends on the time discretization scheme, the mesh size and physical
properties. For instance in the fluid domain we have:

(32)

where h is the elemental mesh size and Vm is the elemental mesh velocity. In the solid
domain the value of τe depends on the constitutive model implemented. For instance, in the
case of an hypoelastic isotropic solid we have:

(33)

where λ and G are the Lamé parameters and J is the elemental Jacobian. One further
approximation, not mandatory from a formal point of view but useful from the
implementation point of view, especially for the biomedical problem, comes from the

observation that  represents a discrete version of the Laplacian operator:

(34)

where the matrix L is the standard approximation to the Laplacian operator [105].

The approximations introduced above will lead to numerical error when Equation 29 is
evaluated. This error could be diminished by performing successive sub-iterations. Indeed,
ep → 0 at the same rate as δP → 0, given a good approximation of the left hand side. The
modified set of equations takes the form:
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(35)

(36)

(37)

where k is the index that indicates the sub-iteration step, Pk is initialized with the pressure
from the previous time step such that when k = 0 then P0 = Pn.

The approximation given by Equation 31 applies separately for both domains; at the
interface the summation of both contributions must to be computed:

(38)

The incompressibility constraint given by Equation 18 is only applied to the fluid degrees of
freedom. Therefore, the matrix B has non-zero entries only for the degrees of freedom that
belong to the fluid domain, plus those on the solid-fluid interface. In this way, Equation 34
may be decomposed into two parts, one that belongs only to the fluid nodes and another part
that includes the solid nodes at the interface:

(39)

The interface Laplace matrix L̄ is built using the shape functions of the solid problem. It
serves to provide critical stability and to improve convergence in situations that are
characteristic of the biomedical problem, where motion is strongly coupled (ρf ≈ ρs), the
solid material is soft and time steps are potentially small. As many of these conditions are
commonly found, it has application beyond biomedical computing as well.

The segregated scheme presented herein where pressure and velocity are solved separately,
greatly simplifies the linear algebra operations. An even more simplified version of this
algorithm arises from segregating the fluid and solid momentum equations, converting the
system of equation 35–equation 37 into:

(40)

(41)
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(42)

(43)

where (·)f means evaluated on the fluid domain, (·)s is evaluated on the solid domain and
(·)Γfs is evaluated on the FSI interface. The validation and example cases presented in the
following sections were solved using this last expression.

The methodology presented in this section provides a general framework for the solution of
a large number of nonlinear FSI problems. In the next section we will show how to expand
the applicability of the method for the case where large deformations may produce non-
acceptable mesh distortions.

3.3.3. Mesh Adaptivity—Obtaining a dynamic, compatible Lagrangian interface between
fluid and solid that accommodates closing valves while maintaining accuracy requires 1)
distillation of accurate geometries from medical imaging data, 2) fast and accurate
generation of a compatible, quality grid for both fluid and solid phases (see Sections 3.1 and
3.2), as well as 3) management of the grid topology over the course of the simulation. In this
section, we outline our approach to dynamically adapting the computational grid according
to a local error metric to assure the accuracy of the simulation, as well to accommodate
dynamically evolving surfaces.

The term mesh adaptivity is usually associated with some kind of error estimator that
automatically controls the mesh size in such a way that the error of a given variable is kept
approximately constant throughout the domain. There are several approaches to error
control. The simplest ad-hoc method is to provide a size map that must be maintained even
when large deformations or rotations occur. This approach does not require a rigorous
evaluation of the error. Another source of error that may trigger a re-meshing stage is large
distortion of mesh elements that may result in poor element quality thus degrading the finite
element solution. Whatever the trigger, mesh topology is updated in critical areas of the
domain, generally close to the Lagrangian boundaries, by performing the operations of edge-
flipping, as well as nodal insertion and/or deletion.

A more economical approach - in terms of element counts - is to evaluate the “true” error
coming from the numerical approximation with a residual type error estimator. In this way,
an a posteriori estimate of the error may be used to determine a new size map that will guide
nodal insertion or deletion. For example, a robust and effective estimate that has been
widely used in the past years is the Zienkiewicz-Zhu [106,107] error estimator. The main
idea is to recover a nodal gradient that converges faster to the exact solution than the finite
element solution. An approximation of the error is computed by comparing both the
recovered gradient and the one computed using the finite element method. In the validation
section, we apply both an ad-hoc error estimator as well as the Zienkiewicz-Zhu error
estimator and compare the results.

In the present work the node insertion and deletion algorithm was based on classical
Delaunay methods (see [108]). With the introduction of the Watson insertion algorithm
[109], the Delaunay method has become a popular option in problems that require fast re-
meshing. Although Delaunay operations are conceptually simple, their robust
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implementation is not. Thus, the fact that the same operations may be used to both build the
initial mesh and to adapt it makes Delaunay tetrahedralization attractive for a Lagrangian
FSI. The term “fast re-meshing” only makes sense in the framework of an implicit solver.
Indeed, Figure 12 compares the complexity of inserting n nodes in a tessellation using the
Delaunay algorithm to solving a linear system (like any of the ones proposed in Equation
40–Equation 43) using an iterative method like conjugate gradients in three-dimensions. We
can observe how for a large number of nodes both curves separate making the Delaunay
algorithm faster than the linar algebra solver from the operation count point of view. There
are other operations that add to the meshing complexity but that are common to any other
meshing technique.

3.3.4. Validation—To validate our approach to FSI, we have replicated the numerical
experiments presented in [110] and compared the results with the experimental data that was
generously provided to us by Dr. Stijnen. The fictitious-domain approach taken in the cited
work has many merits and has been explored in many publications, e.g.
[110,23,22,111,112,14,113]. In this manuscript we limit our simulation to the experimental
configuration presented in [110] even though the solid leaflet is rigid for three reasons: 1)
because those were the data that were available to us, 2) the problem is reducible to two-
dimensions which gives us confidence in the experimental measurements and 3) because the
problem contains contact. Following the presentation of the validation case, we present a
three-dimensional solution of a neo-Hookean leaflet undergoing large deformation. No
experimental data are available for this case however.

3.3.5. 2D Validation Case—The validation simulation domain and initial angle for the
leaflet are shown in Figure 13. Details of the experimental setup and data collection can be
found in [110]. Here we briefly summarize the most important points. The leaflet was
assigned a thickness of 0.00015 m and a density of 1000 kg/m3. Fluid properties were a
density of 1000 kg/m3 and a constant viscosity of 0.0043 kg/m · s. The input flow rate to the
problem is reproduced in the lower right sub-panels of Figure 14 & Figure 16. Based on the
input flow profile a time varying input velocity profile was interpolated by a fourth order
polynomial according to:

(44)

where t is the time. This velocity was applied at the left hand inlet in Figure 13. To simulate
the hinge of the rigid leaflet, spring elements were placed at the pivot with a spring constant
of 2.0E06 N/m. The boundary condition at the right hand side of Figure 13 consisted of
imposing the pressure to a relative value.

Figure 14 shows the velocity profiles at five points in time, labeled according to the graphic
in the lower right hand panel. Mesh adaptivity for this example was based on keeping a
constant mesh size around the leaflet. Correspondence between experimental and predicted
profiles were in generally good agreement, with some notable exceptions in the aortic sinus.
These differences may be due to the approximation of the inflow velocity which does not
match exactly the experimental flow measure. Another source of error could be related to
the model of the articulation at the top of the leaflet, where a small gap between the leaflet
and the wall allows the flow to pass to the aortic sinus. Figure 15 shows the opening angle
for the rigid leaflet over the course of the simulation for both model predictions and
experiment. Significantly, the simulation predicted contact between the rigid leaflet and the
bottom wall of the domain, as can be seen by the flat profile of the opening angle roughly
between 0.7 and 0.9 seconds. This was expected. It is unclear why a similar profile is absent
in the experimental data. Perhaps, experimental conditions were precisely tuned to prevent
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contact and the differences between simulation and experiment, such as they are, can be
explained in part by slightly different initial conditions and by the manner in which the rigid
pivot was achieved in our simulation. Rigid pin-joints are difficult - though not impossible -
to implement in a Lagrangian framework.

In the case of real three-dimensional boundary conditions such as exist in deformable valve
leaflets, this obstacle disappears, as is demonstrated in the follow-on simulation of a flexible
valve leaflet in three-dimensions. Figure 16 shows the velocity vectors predicted in and
around the valve sinus at the five time points labeled in the lower right graphic. These bear
qualitative resemblance to the measured PIV velocity vector fields published in [110],
though these specific data were not available to us so we cannot make more than a
quantitative comparison.

Figure 17 & Figure 18 show two cases of grid adaptivity. In the first case, a simple ad-hoc
scheme was applied based on element distortion and relative size of neighbors. As can be
seen, the nodal density is increased in the neighborhood of the Lagrangian leaflet, but
adaptivity is excessive, resulting in large element counts. In the second case, nodal density is
computed based on an a posteriori error estimate, resulting in a much more efficient
addition and deletion of elements at the two time points shown in Figure 18. Throughout the
simulation, the element count increased to account for the development of complex flow in
the sinus and near the leaflet, increasing sharply with the onset of contact between the rigid
leaflet and rigid wall. Following contact, when the solution became more quiescent and the
leaflet was again open, the element count sharply decreased (Figure 19).

3.3.6. 3D neo-Hookean Leaflet—To illustrate the application of our method to a three-
dimensional valve-like problem, with a deformable leaflet, we have simulated a nearly
incompressible neo-Hookean flap in a cylinder. We chose the neo-Hookean model because
it is nearly-incompressible, non-linear model that is a commonly used isotropic analogue for
soft tissues. Specifically, the neo-Hookean model was given by

(45)

where S is the 2nd Piola-Kirchhoff stress, C is the Cauchy deformation, J is the Jacobian, κ
is the bulk modulus, µ is the shear modulus, Īc is the first invariant of the Cauchy
deformation, and DEV is the deviatoric operator, defined as

(46)

Parameters for the neo-Hookean model were κ = 2:0E06 kPa, and µ = 1000 kPa. Both the
bulk modulus and the stiffness, µ are are reasonable values for an isotropic approximation to
heart valve tissue. The problem domain, initial mesh and inflow velocity profile are shown
in Figure 20A. The initial configuration presents a flow locking since the leaflet is
completely closed and the boundary conditions at the wall are non-slip. As the
incompressible flow develops the leaflet moves deforming the mesh. Element quality norms
and error estimators trigger local topological mesh updates and node insertion-deletion
already explained in the previous section. This kind of problem presents a challenge for
ALE formulations without topological mesh modifications due to the proximity between the
leaflet and the wall. Figure 20B shows the inlet velocity and the total force transmitted from
the fluid to the valve as a function of time. The inflow velocity is a sinusoidal profile
multiplied by an exponential function:
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The total simulation time covers four full cycles where the valve open and closes. Figure
20C shows the velocity vectors and streamlines at five time points during simulation. It
provides information about recirculation areas as well as parts of the valve that undergoes
high shear stresses. The simulation was run on a laptop computer with an Intel CPU at
1.83Mhz and 2GB of RAM memory. The total computation time for 4 complete opening
and closing cycles was 6.6 hours for a mesh of approximately 200K elements.

Finally it must be pointed out that this case is an idealization. At the start of valve opening a
jet-like stream of fluid passes the valve. As the flow slows and valve begins to return to its
starting configuration and an eddy is set up on the upstream side. These are both features
observed in both chorded and non-chorded native valves. However, the bending stiffness in
the isotropic flap is close to two orders of magnitude greater that of a real tissue valve. In the
native aortic valve, for example, the vortices set up behind the valve in the aortic sinuses are
responsible for valve closing. In addition, valve tissue is both highly non-linear and
anisotropic, whereas we have presented an isotropic case. Despite these idealizations and
despite the lack of experimental validation data to compare against, it does represent a good
“proof of concept” example. It is a simplified geometry that allows to evaluate the strength
of the algorithm in a three dimensional case.

4. Fluid-Structure Interactions in the Whole Heart: Future Challenges
4.1. Data Collection

We have successfully developed methods for processing ex-vivo magnetic resonance
imaging for geometry and myofiber characterization. A larger amount of in-vivo MR data,
with and without tags, will be needed to develop refined methods for strain measurement. In
addition, as described above, time-dependent phase contrast data will be needed. However,
the greatest development focus for the future will be needed in two principle directions:
inverse analysis and 3D collagen microstructural characterization. Our approach to inverse
analysis has been successful for problems characterized by a limited parameter space. It is
likely that an effort to make models of cardiac structure and function that are truly predictive
will require thousands, if not tens of thousands of parameters. This is problematic because in
such a large parameter space, parameters are highly covariant and convergence becomes
either impossible, or worse it becomes meaningless. What are needed are methods that are
spatially aware. In this respect the biomedical inverse problem is not unlike inverse
problems encountered in geophysics and atmospheric modeling, where automatic
differentiation and its derivatives have been applied. The problem of such approaches is that
they must be integrated with the FSI solver; yet open tools for their implementation do exist
and continue to evolve. With regard to 3D characterization of collagen architecture, in the
context of mitral ischemic regurgitation the most pressing need is to characterize the fiber
orientations in the non-contractile tissue - particularly those of the mitral valve - where
collagen is the dominant mechanical component. We have developed methods for
histological reconstructions [114,115,116,117], but our efforts must be applied to these
tissues, the appropriate markers for fibrilar collagen must be identified and the algorithms
for fiber connectivity must be developed.
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4.2. Geometry
4.2.1. Deformable Registration—In order to resolve the mitral leaflets and chordae in
the ventricle, we must image an ex-vivo heart. This is problematic since the heart is subject
to multiple deformations upon excision from the chest due to fixation, handling, gravity and
lack of confinement. In short, the ex-vivo geometry is different from the in-vivo geometry.
We propose to solve this problem by solving a nonlinear deformable registration problem
between the high-resolution ex-vivo (source) dataset and a lower resolution in-vivo (target)
dataset, the solution of which would be high-resolution deformation field. The proposed
approach follows an affine transformation based on landmarks with a non-affine approach
based on discrete labeling and linear programming, wherein the registration is redefined as a
minimal path extraction in a weighted graph [118,119]. This work is ongoing.

4.3. Lagrangian FSI
A fluid-structure interaction study of the whole heart or even just the left heart in support of
an investigation of surgical interventions to correct mitral ischemic regurgitation will be a
computationally intensive effort, albeit one that will open new avenues in cardiac research.
In this manuscript, we have presented a new Lagrangian segregated scheme for biofluid-
structure interactions that has excellent convergence properties that make it well suited to
the task. In addition, contact, once thought to be the stumbling block for the Lagrangian
approach, has been addressed. Clearly, the scheme will have to be parallelized to run on
massively parallel architectures. An advantage of adopting a segregated scheme is that
parallelism can be handled separately for fluid and solid domains. This is a clear advantage
as the continuum structural solver has already been parallelized and already scales quite
well. Efforts are currently underway to parallelize the linear algebra developed in Section
3.3.2. However, a similar effort will have to be made to parallelize the mesh adaption
operations. Currently, these only account for roughly 10% of the solution time. With the
linear algebra parallelized this percentage may be become a bottleneck. We are investigating
strategies toward this aim. Another clear challenge towards good scalability is the
development of an efficient contact algorithm in the framework of Lagrangian FSI, where
load balancing will require a new mesh partition in the fluid as well as in the solid domain.

4.4. Validation
In this manuscript, we have presented a simple 2D validation of our approach to Lagrangian
FSI, by comparing model predictions with experimental data. The task of validating
simulations of the left heart with mitral valve will be monumentally more difficult, but are
critical. Despite our fidelity to imaging-based geometry and microstructural data, many
simplifications will necessarily be introduced to the problem. Not the least of these is how to
account for boundary conditions represented by cardiac motion, sure to have an impact on
fluid flow, and how to account for truncations of the computational domain. Validations for
FSI simulations of the left heart will need to be to be of two kinds. First, we will need to
acquire phase contrast velocity data to validate blood flow predictions. Here it will be
necessary to register 3D measured velocity vectors with computational predictions. Second,
we will need to measure and compare myocardial strain with predicted strains and
predictions. The current state of the art for dynamic myocardial strain measurements is
based on magnetic resonance tagging, and is an approach that we have used successfully in
the past [120,121,10]. However MR tagging does have limitations, not least of which are
necessary manual interaction, uncertainty whether material points move orthogonally to the
imaging plane and limited resolution. We are currently investigating the use of optical flow
to overcome these limitations. Due to resolution limitations of MR and even echo, in-vivo
valvular motion and strain are more difficult. The data provided by Dr. Stijnen and his

Einstein et al. Page 21

Int J Numer Methods Eng. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



colleagues are invaluable, but three-dimensional in-vitro flow, deformation and strain data
with a native mitral valve are sorely needed.

5. Conclusions
In this manuscript we have presented a comprehensive strategy for carrying out a predictive
analysis of mitral ischemic regurgitation. From a description of our early work, we have
described our current work in the areas of data collection, geometry, fluid-structure
interactions and validation. Our efforts are integrated. Thus, for example, our grid
generation algorithms were developed in support of a Lagrangian approach to FSI. The
strategies for image analysis, data analyses and mapping were all driven by a recognition
that imaging based approaches were necessary to bring together efforts to model both mitral
valve and left ventricle in a predictive framework.

A novel approach for Lagrangian FSI was also introduced and applied to a benchmark
problem with experimental results and to a 3D problem where large deformations occur. The
CSD solver and the CFD solver were coupled through a Laplace matrix computed on the
interface that provides good stability for problems that show added mass effects. The fully
Lagrangian interface allows the exact imposition of boundary conditions and provides a path
towards boundary layer meshing, a difficult task for embedded or immersed interface
methods. The algorithm is complemented by adaptive meshing based on an a posteriori
error metric. Good agreement was observed between the numerical model and the
experimental results. The ability of the method to handle contact was also evident, which is
a fundamental requirement for any numerical technique applied to cardiovascular problems.
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Figure 1.
Axisymmetric geometry of the fluid-coupled mitral valve model. The fluid-domain was
modeled as an Eulerian box. Pressure curves were applied to the atrial and ventricular
surfaces. The model was axisymmetric; the half indicated by the light blue shading was not
modeled.
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Figure 2.
Streamlines at four time points during the simulation: A) the beginning of the simulation
before diastolic flow has reversed; B) the end of the simulation after coaptation and as the
atrial flow begins to settle; C & D the moments preceding and immediately following
coaptation, respectively. Note: chordae have been omitted from the figure for clarity. Panels
C & D are cross-sections at the symmetrical midline shown in Figure 1.
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Figure 3.
Predictions of the computational model compared to experimental in-vitro (A & B) and
animal (D, E & F) data: (A) transvalvular pressure, (B) trans-mitral flow. Solid line -
reference. Dotted line - computational model. The predicted closing flow shows excellent
agreement with in vitro data over the simulation window [50]. Simulated intraventricular S1
(C) and measured thoracic S1 (D). Linear relationship between dP/dt max and S1 RMS
(open squares). Linear relationship between dP and S1 RMS (open circles) (E). The
increased dP/dt has a more profound effect on acoustic power. (F) Predicted anterolateral
papillary muscle force (solid line with squares) and ventricular pressure (broken line).
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Figure 4.
Semi-automatic multi-material segmentation of ex-vivo sheep heart. A) volumetric
visualization of whole heart. B) left and right ventricular blood masses in whole heart
transparency. C) whole heart transparency. D & E) cut-away sections though the long-axis
of the heart, showing both atrioventricular valves (tricuspid and mitral on the left and right
hand sides respectively). F) blood with long-axis cut-away. G & H) details of tricuspid and
mitral valves.
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Figure 5.
Automatic mapping of 3D cellular information. Data is the direction vector of the myofibers
in a sheep heart, as revealed by diffusion tensor MRI. A) the direction and magnitude of the
vector in a voxelated MRI dataset. B) The overlap between the unstructured grid (grey) and
the voxel grid (green). Note that the algorithm is very tolerant of small geometric
mismatching. C) The vector field mapped onto the unstructured grid.
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Figure 6.
3D cardiac strain analysis from in-vivo tagged MR images. Endocardial and epicardial
contours as well as segmented tag-lines were traced from (A) short and (B) long-axis MR
images to create (C) a 3D geometry. (D) Each short axis slice was divided into 12 sectors
and a 4D B-spline-based motion tracking technique was applied to the tag-line (dotted lines)
deformations in order to calculate the Lagrangian Green’s strains in cylindrical coordinates.
For each sector of each short axis slice, longitudinal, radial, (E) circumferential and shear
strains throughout systole were determined.
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Figure 7.
Circumferential strains predicted from the present FE model are generally in reasonable
agreement with the values measured in-vivo from tagged MR images. Slice 1 is the most
basal while slice 16 is the most apical. I is the posterior right ventricular insertion, II is the
free wall, III is the anterior right ventricular insertion and IV is the septum. The area of
largest discrepancy between the measured and predicted circumferential strains is at the
insertion points of the right ventricle to the left ventricle since the right ventricle was not
included in the model. Overall the minimized mean square error was 4.7, motivating the
development of improved methods.
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Figure 8.
Automatic layered tetrahedral grid generation of the imaging data shown in Figure 4. Panels
A & B: feature size field from two points of view. Panels D–I: details of the layered
tetrahedral mesh. Shown are the mitral and tricuspid valves, with chordae. Note the size
variation of the tetrahedra with respect to the local feature size.
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Figure 9.
Automatic layered tetrahedral grid generation of micro-CT data of a porcine aortic valve.
Panel A: feature size field f[x]. Panel B: fout[x] field. Note the automatic detection of leaflets
in close apposition. Panel C shows the surface adaptation by both f[x] and fout[x]. Panels D–
F: details of the layered tetrahedral mesh. Note the preserved layering throughout. Also
notable is the thick muscular shelf below the aortic cusps that are generally omitted in
idealizations of the aortic geometry.
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Figure 10.
Multi-material boundary layer mesh of a human heart, consisting of heart tissue, blood
boundary layer and blood domains. Panels A and B show the feature size field on the outer
surface of the heart tissue domain and the blood domain, respectively. Panel B shows the
feature size field on the outer surface of the blood domain. Panel C shows a cut through the
heart muscle tessellated with layered tetrahedra [70], where the orientation of the cut plane
is indicated in Panel A. Panel D shows the detail of the layered tetrahedral mesh of the heart
tissue. Panels E and F are zoomed-in views on the regions of the cardiac valves, showing the
prismatic boundary layer alone. Panels G, H and I show the prismatic boundary layer at
about 25% of GLFS of the blood domain, sandwiched between the layered tetrahedra of the
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tissue and the Delaunay tetrahedra of the blood. Heart model and un-refined surface mesh
are courtesy of the NYU Medical Center and Zhang et al. [85,86].
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Figure 11.
Mesh quality statistics for the prismatic layers and interior tetrahedra of the human heart
mesh generated using layered tetrahedra and face-offsetting. Panel A shows the the scaled
aspect ratio for prisms of each prismatic layer (1 is ideal, and a negative value would
indicate an inverted prism). Panel D shows the aspect ratio for tetrahedral elements (1 is
ideal)
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Figure 12.
Comparison of complexity between the Delaunay algorithm and the cojugate gradient
algorithm.

Einstein et al. Page 41

Int J Numer Methods Eng. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 13.
Sketch and dimensions for the aortic valve validation case.
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Figure 14.
Interpolated velocity profiles matched to experimental profiles at five time points labeled
according to the lower right hand panel. The dashed line represents the experiment and the
solid line the numerical results.
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Figure 15.
Computed opening angle (full line) compared to experimental results (dashed line).
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Figure 16.
Predicted velocity vector field for the 2D rigid aortic leaflet and sinus.
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Figure 17.
Re-meshing step preserving the local node density around the flap for two consecutive time
steps.
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Figure 18.
Comparison of two re-meshing techniques as explained in section 3.3.3. In (A) and B the
nodal density is kept constant throughout the computation. In (C) and D the nodal density is
adapted based on a local error metric.
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Figure 19.
Number of elements as a function of time for the adaptive re-meshing with an error estimate.
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Figure 20.
Lagrangian fluid-structure interaction study of a large deformation, solid neo-Hookean
leaflet coupled with a dynamic tetrahedral fluid grid: A) problem domain and input
parameters, B) input velocity profile and transfered force, c) velocity streamlines at five
points in time.
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