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ABSTRACT Neuronal membrane potentials vary contin-
uously due largely to background synaptic noise produced by
ongoing discharges in their presynaptic afferents and shaped by
probabilistic factors of transmitter release. We investigated
how the random activity of an identified population of inter-
neurons with known release properties influences the perfor-
mance of central cells. In stochastic models such as thermo-
dynamic ones, the probabilistic input-output function of a
formal neuron is sigmoid, having its maximal slope inversely
related to a variable called "temperature." Our results indi-
cate that, for a biological neuron, the probability that given
excitatory input signals reach threshold is also sigmoid, allow-
ing definition of a temperature that is proportional to the mean
number of quanta comprising noise and can be modified by
activity in the presynaptic network, a notion which could be
included in neural models. By introducing uncertainty to the
input-output relation of central neurons, synaptic noise could
be a critical determinant of neuronal computational systems,
allowing assemblies of cells to undergo continuous transitions
between states.

ber of release sites issued by this afferent fiber and to the
chance that, after a spike, each of these sites undergoes
exocytosis (13, 14). Synaptic noise is also quantal: "sponta-
neous" inhibitory postsynaptic potentials occur in discrete
steps of the same size, q (15). It thus becomes a predictable
sum of individual binomial release functions, each charac-
terizing one presynaptic neuron, and reflecting its state of
activity (16). This property was used to determine the ability
of noise to prevent the M cell from being activated by various
excitatory inputs.

MATERIAL AND METHODS
For a stimulation rate of 1 Hz, each of 42 previously
investigated cells was characterized by one set of optimal
parameters (2, 14) ranging from 0.17 to 0.74 and from 3 to 52
for p and n, respectively. Then, population histograms of
quanta were computer-modeled by summing the individual
binomial functions according to the relationship

A major characteristic of the nervous system is its probabil-
istic nature, which introduces a large degree of uncertainty at
the level of its connectivity and functions. This feature has
hampered attempts to model higher brain functions, but it can
also be taken as allowing a large degree of operational
freedom-for example, in the context of a "selectionist"
perspective (references in ref. 1). Among sources of random-
ness, the transmission of signals between neurons is an
important one, and it has two origins. The first is structural:
"synaptic connections" (2) encompass different numbers of
active zones, or release sites. The second is functional:
synaptic transmitter release is stochastic, so that postsynap-
tic potentials are made of a fluctuating number of basic units
or quanta (3). In most structures, these two components of
synaptic strength have not been assessed directly.

In mathematical neural networks (4) the introduction of
stochastic input-output functions (5, 6) improved circuit
performance, especially in "thermodynamic" models, where
a formal parameter called "temperature" represents "noise"
(7-10). This factor determines the range of uncertainty
influencing whether a given excitatory input reaches the
threshold for an all-or-none output. We asked if a similar
function could be served in a real neuron by synaptic noise
and if there is a mechanism for controlling the degree of this
randomness.

Activation of the teleost Mauthner (M) cell requires over-
coming a strong background inhibition (11, 12). In this
neuron, a particular set of binomial parameters, n and p,
describes adequately the release properties of a given indi-
vidual presynaptic interneuron; they correspond to the num-

N

P(x) =
1 Iv

()x~1 - P)ix [1]

where P(x) is the mean probability of quanta in the M cell, N
= 42, N; is the number of active zones of a given cell, and pi
is the cell's mean probability of release per site, q being
treated as constant (15). In this equation, N inputs are
independent and quanta add linearly, as shown by physiol-
ogy. Such a population histogram is illustrated in Fig. 1A.
However, there may be different rates of presynaptic activ-
ity. When afferent cells increase their firing rate, an expo-
nential decrease in p solely accounts for the reduction of
inhibitory potentials in the M cell (17). Thus all values of pi
were replaced by pi(f) in Eq. 1. The resulting distributions,
shown in Fig. 1 B-D, illustrate the effect of this scaling. They
correspond to the range determined experimentally (15) when
extracting quanta (Fig. 1E) from real synaptic noise: as f
increases, the mean number of quanta (ni) is shifted to the
left.
To evaluate the effectiveness of the inhibitory noise vis-a-

vis excitatory signals the latter were set at various values
corresponding to neqe (ne and qe, number and size of
excitatory quanta), all above threshold for firing a spike in the
absence of inhibition. For simplicity, ne = 0 at threshold.
Inhibitory noise reduces the probability of output whenever
niqi exceeds neqe, and if we assume that qi = qe, the
probability of output is

Jx~~~~~~~~P(1)= 1 - Po. p(xi)dxi,
n,

[2]

where xi is the probability density function of inhibitory
quanta. Their probability of occurrence, po, was set at 0.5,

Abbreviation: M cell, Mauthner cell.
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FIG. 1. Distribution of quanta issued by a population of inhibitory interneurons as a function of firing rate. (A-D) Computer-determined
histograms of 1000 predicted responses obtained by adding binomial curves of 42 cells [each of which represents the best fit of the probability
density function of fluctuating inhibitory postsynaptic potentials (IPSPs) recorded in the M cell after stimulation of this interneuron]. A.Z. is
the number of active zones established on the M cell by each interneuron. pi was weighted, as indicated in the boxes in the figure, for stimulus
rates increased from 1 Hz (A) to 20 Hz (B), 33 Hz (C), and 50 Hz (D). Note that the mean number of inhibitory quanta (ni) is progressively shifted
to the left. These predicted population histograms were used to determine the probability that the number of inhibitory quanta (horizontal bar
in B) was greater than a given number of excitatory quanta (ne). The Gaussian variability around each peak (a, = 0.24q) is mainly due to
instrumental noise. (E) Sample trace of synaptic noise obtained in conditions in which excitatory inputs were silent (single-electrode
voltage-clamp record; inhibitory currents are outward because the M cell was loaded with Cl-). Individual inhibitory components produced by
activities in presynaptic interneurons are indicated by arrows, and their amplitudes are expressed in quanta (crossed arrows indicate possible
responses rejected because of uncertainties about their baseline or shape index). The histogram of individual currents recorded during this
experiment was similar to that shown in D, and the activity in presynaptic neurons was greater than 50 Hz.

since it was postulated that excitatory and inhibitory quanta
had equal chances to occur.

RESULTS

Stochastic Transfer of Information in a Real Neuron: De-
termination of a Physical Correlate of Temperature. A simple
situation is when the excitatory input occurs in synchrony
with a specific inhibitory event as schematized in Fig. 2A:
monosynaptic excitatory afferents (11) also inhibit the M cell
via interneurons. Thus, a given excitatory signal was suc-
cessively paired with the activation of each characterized
inhibitory cell. The probability of output of the M cell, P(1),
at different firing frequencies of the network is then defined
by a family of curves (Fig. 2C, solid lines) resembling those
obtained for various values of the theoretical temperature T
(Fig. 2B), where

P(1) = 1/(1 + e-AE/T). [3]

In confirmation, best fits of the curves, using this equation
(broken lines) and replacing AE, the variation of the compu-
tational energy (7), by ne, allowed definition of a temperature
that progressively increases the effectiveness of inhibitory

noise as this parameter increases. The relationship between
the mean number of inhibitory quanta, ni, and the computed
temperature is linear, according to T = kni, where k = 0.64.
Thus temperature and ni have essentially similar roles and

the logistic functions pertaining to formal (Fig. 2B) and more
"real" (Fig. 2C) neurons would be equivalent, with the
resulting form

P(1) = 1/(1 + e-n/lknji) [4]

Introduction of the Time Dimensions: Conditions for an

Effective Inhibitory Noise. In most physiological states, (i) the
number of active interneurons can vary and (ii) the afferent
signal is asynchronous with the inhibitory inputs and occurs
even during noise-free periods, particularly at moderate firing
rates. This time dimension was added to the model by
expressing the fraction of time occupied by inhibitory noise
as the product NfT; these parameters stand, respectively, for
the number of cells activated, their firing rate (in Hz), and the
relative duration of quanta, taken here as equal steps of 6
msec [the mean life-time of Cl- channels opened by quanta
in the M cell (18)]. Two extreme states of the network, low
and high frequencies of presynaptic firing, were compared.
At 1 Hz or less, noise does not alter the coefficient of
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transmission unless a large population of interneurons (at
least 150 cells) generates a continuous bombardment in the
target M cell. In contrast, at 50 Hz, four to six interneurons
are sufficient to affect the output.
Noise recorded in central cells is even more complex, as

responses often overlap (Fig. lE). The distribution, Pk, of
quanta in multiple events is then equated with the convolu-
tion product of as many histograms P(x) as the number (k) of
simultaneously active presynaptic cells. Fig. 3A, obtained in
this manner, indicates that overlap increases temperature,
because the population histogram shifts to the right. In fact,
about 33% of "real" noise is closely spaced responses at high
frequencies (15), a case represented in Fig. 3B, which shows
that this ratio can be simulated with as few as four interneu-
rons. In other words, with this approach, one can infer how
many cells are necessary to produce a particular input-output
function, given knowledge of input firing rates.

Predictive Aspects of a Model Incorporating Stochastic
Aspects of Release. To sum up, the distribution P of quanta
results from the combination of (i) a convolution product, Pk,
for the amplitude of multiple responses, where k is the
number of coactive cells, and (ii) the probability that k cells
fire in unison, computed by using a Poisson law PN(k) =
em1tuk/k! (where ju is Nfr). Therefore,

N

P(x) = I PN(k)-Pk(x).
k=l

[5]

The mean of this product, ni(Nfr), is more easily derived and
is instrumental for predicting how the state ofthe presynaptic
network shapes noise. It allows definition of a more accurate
temperature term, Ta, which is the product of T. (i.e.,
synchronous, standing for the effect of individual inhibitory
events arriving at the time of the excitatory input) and NfT.
The ratio Ta/Ts increases as the number of active cells
becomes larger, and this relation becomes steeper as their
firing rate increases (Fig. 3C).

FIG. 2. Equivalence between the average number
of inhibitory quanta and "temperature" of thermody-
namic models. (A) Diagram of afferent connections of
the M cell. Trains of spikes illustrate random activities
which generate synaptic noise. (B) Probability of at-
taining threshold of output (ordinate) for different
values AE of excitatory inputs (abscissa) in a Gibbs-
Boltzmann model. The different logistic curves ob-
tained by using the included equation indicate that, for
a given value of input, uncertainty to reach threshold
increases for progressively larger values ofa parameter
T called temperature (modified from ref. 4). (C) Effect
of inhibitory noise on transmission of excitatory sig-
nals. Solid lines, computer-determined probability to
reach threshold (ordinate) as a function of the net
number of excitatory quanta in the signal (abscissa).
Each curve was calculated by using the population
distributions of Fig. 1. Broken lines, best fits obtained
by assuming logistic functions as in B, which yielded
values of 1.4, 2.2, 3.0, and 3.9, respectively, for the
parameter T. (Inset) Linear relationship between tem-
perature (ordinate) and the mean number of inhibitory
quanta (abscissa). This relationship allows computa-
tion of the probability to reach threshold by replacing
energy and temperature in the equation of B with the
average number of excitatory (ne) and inhibitory (ni)
quanta, respectively.

The net value of Ta, which corresponds to a synaptic noise
close to that recorded in the M cell, combines (Fig. 3D) two
opposing effects asf increases (as seen above), that is (i) the
reduction of ni and (ii) the increase of multiple responses with
f (see Fig. 3C), an association leading to

Ta = Cfni(f), [6]

where the parameter C = kNT depends upon the number of
active cells. Ta increases with f but tends to saturate as the
firing rate reaches high values, a phenomenon related to
intrinsic release properties.

Generalization of the Model to Excitatory Noise. Excitation,
in addition to being synchronized as modeled here, can
contribute to noise. Since release at excitatory inputs is also
probabilistic and quantal (see ref. 19), the complete shape of
the input-output function of the M cell is most likely similar
to that of Fig. 2B. We assumed quantal excitatory conduc-
tances equalled inhibitory ones. If they were smaller (see ref.
20), the constant k would be larger and replaced in Eq. 4 by
K = kqi/qe. Also, the two halves of the probability curves
would be asymmetric (it can be noted that neqe replaces AE,
which thus also finds a physical location at the junctional
level). Finally, the probability of output of a real neuron can
be generalized as

P(1) = 1(1 + e-ne/K), [7]

with -n being the mean number of excitatory or inhibitory
quanta if one of them dominates. When they overlap, the
computation of temperature remains essentially the same,
but K is multiplied by a factor a depending upon the ratio of
excitatory and inhibitory events at any time (for example, a
- \/ when their distributions are similar). In general,
excitatory noise tends to boost weak signals and thus might
be the major determinant of the left side of the logistic curve:
biological "temperature" would have two components, orig-
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FIG. 3. Variation of temperature when activity increases in the inhibitory network. (A and B) Effect of the overlap of two responses. (A)
Comparison of the distributions ofquanta when synaptic noise includes only simple (solid curve representing the envelope of Fig. iD) and double
(histogram) responses (firing rate: 50 Hz). The distribution of double responses was computed by the convolution product P2(a + b = k) = k
Pi(a = k - t) Pl(b = t). (Inset) Sample recording showing two components (arrows) including four and nine quanta, riding on top of each other.
(B) Probability of reaching threshold obtained by using the distribution ofA, as a function of the excitatory input, for the indicated proportions
of doublets (solid lines), and best fits with logistic curves (broken lines), illustrating the associated increase of temperature. Symbol 4* stands
for equivalent to. (C and D) Increase of temperature by multiple overlaps of responses. (C) Variations of the number of activated interneurons
N (abscissa) for different frequencies (f) ofdischarge in the inhibitory network versus relative temperature (ordinate) defined as the ratio between
asynchronous (T5) and synchronous (Tj) temperatures (see text). (D) Relation between asynchronous temperature (ordinate) and frequency of
presynaptic firing (abscissa) for various pools of interneurons. Note that the asynchronous temperature can be computed as shown in the figure
(box), using a parameter C = kNT which depends upon the number of active cells (symbols defined in text).

inating at separate classes of synapses, a refinement allowing
more flexibility than in present theories.

DISCUSSION

Our results indicate that stochastic synaptic noise determines
the uncertainty of the input-output relation in the M cell,
which is typical of central neurons (discussed in ref. 11),
according to a function similar to that used in thermodynamic
models (10). "Temperature" therefore finds a physical sub-
strate solely represented, in the right halfofFig. 2B, by the
mean number of inhibitory quanta building up noise, and it is
enhanced when the number of active cells and/or their
individual firing rates are increased. An extension of these
laws to excitatory noise can be considered.

In formal networks, each input is weighted by deterministic
coefficients which at most vary according to Hebbian rules
(21), a restriction that does not reflect the full repertoire of
synaptic plasticity. Along this line, simple binomial predic-
tions imply that p is the same at all terminals of a given
neuron. But the mean of the distributions of quanta compos-
ing noise would be the same if this were not the case (22)
because the quantal content np of each cell would still
correspond to the mean of the simple binomial which best fits
the histogram of the evoked responses (19).

It has been recognized that noise, whatever its physical
meaning, can improve the performance of neuronal networks
(8, 23-27) and the concept of temperature has been applied
to characterize this term in various neural models (23, 28, 29).
This noise was related to fluctuations of membrane potential

in real neurons in some studies (25, 30, 31), but consider-
ations about its origin were only inferential. For instance, it
has often been taken as Gaussian (27, 32), as an extreme case
of Poisson distributions (33), or with large variances (25, 30,
31), partly due to observations at pharmacologically treated
neuromuscularjunctions. In real neurons, it is a composite of
binomial functions and is under the control ofthe presynaptic
network. Relevant synaptic factors are therefore (i) the
average quantal content of the population (which in this
series was 5.75 3.38 at 1 Hz) and (ii) the probabilistic
all-or-none mode of transmitter release, which guarantees a
wide spectrum of inhibitory events.
During computations by formal models, temperature is

modified a priori to control the uncertainty of output. It is
remarkable that in the nervous system, this process can be
guaranteed by the architecture ofthe presynaptic circuit (34),
by its pattern of activation, and by intrinsic regulation of p
producing a depression or a facilitation (19) of background
noise. Also, the inhibitory network has physiological and
structural constraints limiting its range of efficacy. For
example, the M-cell inhibitory circuitry includes about 150
cells (11), which sets an upper limit for meaningful compu-
tations of the equations above. The distribution of inhibitory
quanta would be Gaussian if a large population of cells were
coactive, as postulated by the central limit theorem, a
situation achieved only when the collateral network is syn-
chronized during recurrent collateral inhibition (11, 12),
which cuts off excitation with absolute certainty. It can be
noted that even in extreme cases a sigmoid (or Fermi-Dirac)
distribution is an excellent approximation of a cumulative
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Gaussian (9). Yet the binomial aspect of release should be
preferred, given its synaptic meaning.

Synaptic noise is often considered as a contaminant of
biological signals, so that the notion that it may be of
functional importance for the nervous system is often disre-
garded. As demonstrated by models (27, 35), it helps a
network to associatively store and memorize even weak
inputs which would otherwise be lost. More generally,
stochasticity guarantees that the diversity of states accessible
to a given assembly is explored, as postulated in a generalized
theory of learning (1, 36, 37). This capacity raises the
question of its status in the processing and learning of
information by the nervous system.
Noise from various sources, including intrinsic oscillators,

is always present in central cells. Several propositions can be
advanced. First, since the number of quanta in it is propor-
tional to structural factors, there must be limitations to its
variability due to (i) the degree of innervation relating a
presynaptic cell to its target, which is set during epigenesis
(references cited in ref. 1) and may be controlled after
maturation; one example may be an inverse relation between
p and the number ofactive zones so that the product np varies
within a well-defined domain (17) and (ii) the range of firing
of the presynaptic network. Second, in a central neuron such
as theM cell, which triggers a vital escape reaction (11), noise
must vary discontinuously to adjust the criteria for selecting,
at any time, stimuli which among many may be relevant for
an appropriate response. Its fluctuations leave a certain
degree of freedom to this choice. If an external input is
strong, the resulting behavior is stereotyped-i.e., the cell
fires a spike. If not, stochastic factors dominate and the
discharge of the cell remains probabilistic, a behavior which
also may be adaptive for survival.
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Faber (State University of New York, Buffalo) for kind and helpful
discussions during this work.
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