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Purpose: The authors examine potential bias when using a reference reader panel as “gold stan-
dard” for estimating operating characteristics of CAD algorithms for detecting lesions. As an
alternative, the authors propose latent class analysis �LCA�, which does not require an external gold
standard to evaluate diagnostic accuracy.
Methods: A binomial model for multiple reader detections using different diagnostic protocols was
constructed, assuming conditional independence of readings given true lesion status. Operating
characteristics of all protocols were estimated by maximum likelihood LCA. Reader panel and LCA
based estimates were compared using data simulated from the binomial model for a range of
operating characteristics. LCA was applied to 36 thin section thoracic computed tomography data
sets from the Lung Image Database Consortium �LIDC�: Free search markings of four radiologists
were compared to markings from four different CAD assisted radiologists. For real data, bootstrap-
based resampling methods, which accommodate dependence in reader detections, are proposed to
test of hypotheses of differences between detection protocols.
Results: In simulation studies, reader panel based sensitivity estimates had an average relative bias
�ARB� of �23% to �27%, significantly higher �p-value �0.0001� than LCA �ARB �2% to �6%�.
Specificity was well estimated by both reader panel �ARB �0.6% to �0.5%� and LCA �ARB
1.4%–0.5%�. Among 1145 lesion candidates LIDC considered, LCA estimated sensitivity of refer-
ence readers �55%� was significantly lower �p-value 0.006� than CAD assisted readers’ �68%�.
Average false positives per patient for reference readers �0.95� was not significantly lower �p-value
0.28� than CAD assisted readers’ �1.27�.
Conclusions: Whereas a gold standard based on a consensus of readers may substantially bias
sensitivity estimates, LCA may be a significantly more accurate and consistent means for evaluating
diagnostic accuracy. © 2010 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3352687�
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I. INTRODUCTION

Computer aided detection �CAD� algorithms aim to assist
radiologists to detect lesions in breast, colon, and lung
cancer.1–3 The current goal of CAD algorithms is to act as a
second reader, pointing out missed potential lesions.4 For
instance, a number of recent studies have found that the ad-
dition of CAD readings improve upon solely radiologist
based readings in terms of sensitivity of lung nodule
detection.5,6,1,7,8

In the absence of a tissue-based reference standard, expert
human reader opinions are used as “gold standard” for evalu-

9
ating the efficacy of CAD assisted reading. The presence of
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considerable variability in expert lesion readings10 suggests
the possibility that they may be imperfect. Imperfect gold
standards can result in biased sensitivity estimates: Consider
an almost perfect reference test �R� with 100% sensitivity
and 95% specificity. Now consider a new perfect diagnostic
test Y with 100% sensitivity and specificity. Assuming �i�
independence of Y and R results conditional on true disease
status and �ii� disease prevalence of 20%, the apparent sen-
sitivity of Y using R as gold standard is only 83% �Appendix
A�. The apparent loss in sensitivity arises because the perfect
test “fails” to detect “lesions” falsely detected by the gold
standard. Even a few “false positives” can have a substantial

impact on apparent sensitivity when prevalence is low �Eq.
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�A5��. Consensus readings from a multiple expert reader
panel have been suggested to reduce the reference reader
error impact.11 Even with consensus panels, we show in this
paper that the problem of bias persists.

To overcome such bias, we have developed a method us-
ing latent class analysis �LCA� for estimation and compari-
son of free-response operating characteristics �FROC� of
lung lesion diagnostic protocols from multiple observer
readings.12 LCA has previously been used for assessment of
other diagnostic tests with imperfect gold standards, e.g.,
nucleic acid amplification tests,13 stool guaiac tests for de-
tecting colon cancer,14 presence/absence of pleural thicken-
ing from chest x rays, etc.14 In LCA, each lesion candidate is
assumed to have an underlying true status �lesion or nonle-
sion�, known as its “latent class.” These are estimated from a
combination of reference panel and CAD assisted readings
using a maximum likelihood procedure detailed in Appendix
B. The latent class is used as gold standard for calculation of
FROC. Because it uses both sets of readings, LCA should
intuitively yield a better gold standard, particularly when
CAD assisted readings are more accurate than reference
panel readings. In Sec. II, we develop a bibinomial model for
counts of the number of detections per lesion candidate by a
reader panel, with or without CAD assistance. This model
assumes conditional independence of detections as well as
uniform operating characteristics �OCs� across readers and
lesion candidates. The simplified model allows us make
simulation based comparisons between reader panel based
OC estimates against LCA based ones, which are unaffected
by potential confounding factors such as dependence on nod-
ule and reader characteristics. Although LCA based estimates
are shown to depend on reader performance �i.e., their oper-
ating characteristics�, our results �Sec. III� show that LCA
estimates are significantly less affected than reader panel
based estimates in our simulation studies across a range of
OC settings. It is to be noted that some assumptions made in
LCA modeling, such as constant OC across lesion candidates
as well as conditional independence in ratings across readers,
are typically not valid for many real settings. These limita-
tions are elaborated in Sec. IV. To overcome these limitations
for application to real data, we develop resampling-based
methodology for comparison of diagnostic methods that
takes into account variation in detection probabilities and
correlations in reader ratings within and across lesions. We
apply LCA to readings �both CAD assisted and free search�
on a collection of marked images from the Lung Image Da-
tabase Consortium �LIDC� database.11 In Sec. IV, we indi-
cate how some of the additional sources of variability may
be incorporated into the model. We also develop methodol-
ogy for comparison of diagnostic methods that takes into
account variation in detection probabilities and correlations
in reader ratings within and across lesions.

II. MATERIALS AND METHODS

II.A. Latent class model

For each candidate lesion i, the data are counts of readers

who rate it as a lesion in the reference group YRi and CAD
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assisted �CAD� group YCi. The latent class of candidate i is
denoted by Li=1 if it is a lesion and 0 if not. For an actually
positive lesion, its probability of detection �sensitivity� is de-
noted TR and TC in the reference and CAD groups, respec-
tively. For an actually negative lesion, the corresponding
probabilities of nondetection �specificity� are 1−FR and
1−FC. In certain studies, ratings may be available on an
ordinal confidence scale �e.g., 0–5�. There, TR and FR would
correspond to a point on the ROC curve of the detection
procedure at a certain confidence threshold.

For initial model building, we assume that �i� OCs are
constant across lesions nodule candidates and readers within
a group �i.e., reference or CAD assisted�; �ii� ratings across
lesion candidates are independent; and �iii� conditional on
the latent class, readers’ ratings on candidate i are mutually
independent. Then the distribution of counts can be charac-
terized by four separate conditional binomial distributions

YRi�Li = 1 � Bin�KR,TR�, YRi�Li = 0 � Bin�KR,FR� ,

YCi�Li = 1 � Bin�KC,TC�, YCi�Li = 0 � Bin�KC,FC� ,

�2.1�

where KR and KC are the number of readers in the reference
and CAD groups, respectively. Further, we model the distri-
bution of latent class variables as Bernoulli, i.e., Li

�Bin�1,��, where � is the fraction of positive lesions among
candidate lesions. When Li are known, maximum likelihood
estimates of OCs, i.e., TR, TC, FR, and FC, are given by
respective proportions of detections within lesion and nonle-
sion classes. Because latent classes are unknown, we propose
joint estimation of OCs and latent classes. Starting from an
initial guess for latent classes, we obtain iteratively refined
estimates. In each iteration, estimated OCs are used to update
latent class estimates and vice versa. This process is contin-
ued till convergence. Appendix B gives technical details. The
algorithm converges to the same set of estimates irrespective
of initial guess �except all zeros�.

II.B. Simulation experiment

A comparison of a reader panel and LCA was conducted
with data generated using model �2.1�, with KR=KC=4 read-
ers and �=0.1. The OCs of individual reference readers TR

and 1−FR are chosen from all possible pairs of values in 0.6,
0.7, 0.8, 0.9, and 0.95. Two examples of CAD OC settings
were chosen: �i� TR=0.70 and 1−FR=0.95 and �ii� TR

=0.85 and 1−FR=0.80. One represents a conservative reader
�lower sensitivity, higher specificity�, the other an aggressive
reader �higher sensitivity, lower specificity�. Reader panel
based estimates of TC and FC are computed using the pro-
portion of “consensus detections,” i.e., a lesion candidate is
identified as actually positive when a predetermined thresh-
old of KR�=3� or more reference readers agree it is positive,
i.e., when YR�KR. Other choices of KR were either too ag-
gressive �2/4 in agreement� or too conservative �4/4 in agree-
ment�, i.e., they would overestimate or underestimate, re-
spectively, the proportion of actually positive nodules. For

each combination of reader panel and CAD OC parameters,
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the experiment was replicated 500 times. Average relative

bias �ARB�=0.04�−1�m=1
5 � j=1

5 ��̂mj −��, where � is the true

parameter value and �̂mj is the average estimate �across 500
replications� at the mth TR and jth FR values, m , j=1, . . . ,5.
LCA and reader panel based sensitivity and specificity esti-
mates are compared using a paired t-test of absolute bias

values: ��̂mj −��. Under the null hypothesis of no difference
between the two methods, the test statistic will follow a Stu-
dent’s t distribution with 24 degrees of freedom, assuming a
normal distribution of the absolute bias values.15 Naïve stan-
dard errors �SEs� of a proportion p, such as TR, FR, Tc, and
FC, are computed using the formula for binomial
proportions16

SE = �p�1 − p�/n . �2.2�

II.C. Application of LCA to LIDC data set

Free search by KR=4 readers �trained radiologists� on 36
thoracic CT scans with section thickness �2.0 mm obtained
from the LIDC repository yielded 250 unique nodule mark-
ings �reference�, which were encoded in an XML file accom-
panying the DICOM data from the CT scans.17 Because pa-
tient deidentification occurred outside of our institutions and
we were never privy to protected health information, our
IRB classified this project as nonhuman subjects research.
Each marking was assigned a count �1–4� based on the num-
ber of readers that indicated it as a lesion �confidence ratings
were unavailable�. Note that these readers had access to each
other’s readings before making a final decision. A CAD al-
gorithm �SNO-CAD� �Ref. 18� was subsequently applied to
all CT scans. A distinct set of 895 candidates with SNO-
CAD scores �independent of reader detections� higher than
1.25 was identified.7 The combined 1145 lesion candidates
were independently reviewed by a separate set of KC=4 ra-
diologists who were blinded to each other’s detections. Sepa-
rate readers were used in the two groups because �i� we did
not have access to the original LIDC readers to perform
CAD assisted readings, �ii� it avoids a learning curve bias,

FIG. 1. Distribution of test statistics for �a� differences of sensitivity
��Sensp� and �b� differences of average false positives per patient ��FPPp�
between reader panel and CAD readings for LIDC data set. Distributions
were calculated under null hypothesis of no difference between reading
methods using a randomization test �with 1000 replications�. The value of
the observed test statistic is indicated by a dotted vertical line.
and �iii� it is consistent with the conditional independence
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assumption inherent in LCA.19 The design of the study also
reflects the role of CAD as a second reader, i.e., to supple-
ment the readings of the first reader. LCA was applied to the
combined detections set. Because the number of true nega-
tives is unknown, we report the average number of false
positives per patient �FPP� instead of specificity.

II.D. Robust standard errors

Naïve standard errors calculated using Eq. �2.2� assume
conditional independence between readers and also indepen-
dence across lesion candidates. These assumptions may not
be realistic. For more “robust” standard errors, we repeatedly
resampled entire cases from the list of lesion candidates to
generate many “bootstrap” samples.20 For each of 1000 such
bootstrap samples, LCA was applied to obtain parameter es-

timates T̂R
b , F̂PPR

b , T̂C
b , F̂PPC

b , �̂b. Robust standard error esti-

mates were computed empirically, e.g., SE�T̂R�
=�999−1�b=1

1000�T̂R
b − T̄R�2, where T̄R is the average across

bootstrap samples. Confidence intervals �95%� of parameter
estimates were constructed from 2.5% and 97.5% quantiles
of their bootstrapped distribution.20

II.E. Hypothesis testing by randomization

To test the hypotheses H0 :TR=TC versus H1 :TC�TR, the

test statistic �Sens= T̂C− T̂R is computed. The null distribu-

FIG. 2. Latent class estimates plotted against true lesion status for one rep-
lication of simulation experiment �n=1000 lesion candidates, 10% true le-
sions, four readers each in reference and CAD assisted groups�. True sensi-
tivity and specificity for individual readers is TR=0.60 and 1−FR=0.95 in
reference group, and TC=0.70 and 1−FC=0.95 in CAD group. Estimated
sensitivity and specificity for individual readers is TR=0.60 and 1−FR

=0.95 in reference group, and TC=0.70 and 1−FC=0.95 in CAD group.
Note that estimated latent class values are probabilities, which can take any
value between 0 �not a lesion� and 1 �lesion�. Using a decision rule of
assigning lesion status if the estimated status value is more than 0.5 �de-
picted by dotted line�, the misclassification error rate is 0.009. Misclassified
points are shown as crossed circles.
tion of �Sens was numerically approximated from repeat-
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edly generated “randomized” samples of reader counts ob-
tained by randomly permuting the original data between
reference and CAD groups within each case.21 For each of
1000 randomized samples p, LCA based parameter estimates

T̂R
p , T̂C

p and �Sensp= T̂R
p − T̂C

p were computed. The empirical
distribution of �Sensp across randomized samples approxi-
mates the desired null distribution �Fig. 1�a��. Randomization
takes into account pairwise correlations between reader rat-

TABLE I. Results of low sensitivity, high specificity simulation experiment. C
from simulation experiment with four readers per group, 1000 lesion cand
Operating characteristics of individual readers in the reference panel are giv
characteristics of the CAD assisted group are set as: sensitivity=0.70, specif
using lesions identified by three or more reference readers as gold standard.
datasets. Each reported value is the average of 500 replicates. For sensitivity,
and 0.03, respectively. For specificity, average standard deviations of the re

Sp 0.6 0.7

Se RP LCA RP LCA

0.6 0.20 0.67 0.30 0.65
0.7 0.24 0.65 0.35 0.65
0.8 0.27 0.65 0.39 0.68
0.9 0.29 0.69 0.41 0.70
0.95 0.30 0.70 0.42 0.70

0.6 0.92 0.97 0.93 0.97
0.7 0.94 0.97 0.94 0.96
0.8 0.95 0.96 0.95 0.95
0.9 0.95 0.95 0.95 0.95
0.95 0.95 0.95 0.95 0.95

TABLE II. Results of high sensitivity, low specificity simulation experiment.
from simulation experiment with four readers per group, 1000 lesion candida
characteristics of individual readers in the reference panel are given in rows a
of the CAD assisted group are set as: sensitivity=0.85, specificity=0.80. W
identified by three or more reference readers as gold standard. Grey shaded
reported value is the average of 500 replicates. For sensitivity, average stan
specificity, average standard deviations reader panel and LCA based estima

Sp 0.6 0.7

Se RP LCA RP LCA

0.6 0.35 0.72 0.45 0.71
0.7 0.39 0.71 0.50 0.71
0.8 0.42 0.71 0.54 0.76
0.9 0.44 0.74 0.56 0.82
0.95 0.45 0.79 0.57 0.84

0.6 0.77 0.85 0.78 0.84
0.7 0.79 0.84 0.79 0.83
0.8 0.80 0.83 0.80 0.81
0.9 0.80 0.82 0.80 0.80
0.95 0.80 0.81 0.80 0.80
Medical Physics, Vol. 37, No. 4, April 2010
ings in a manner similar to the paired t-test.21 A similar pro-
cedure is applied for testing differences in FPP between pro-
tocols �Fig. 1�b��.
III. RESULTS

III.A. Simulation experiments

The estimated latent class L̂i is any number between 0 and
1, rather than exactly 0 or 1 �Appendix B�, but were close to

arison of a� sensitivity and b� specificity estimates of a CAD assisted group
s. The fraction of nodule candidates that are actually positive is �=0.10.
rows as sensitivity �Se� and in columns as specificity �Sp�. The operating
0.95. White columns �RP, reader panel� are estimated apparent sensitivities
shaded columns �LCA� are estimated sensitivities using LCA in the same

ge standard deviations of the reader panel and LCA based estimates are 0.02
panel and LCA based estimates are 0.005 and 0.007, respectively.

0.8 0.9 0.95

LCA RP LCA RP LCA

0.66 0.66 0.70 0.69 0.70
0.69 0.67 0.70 0.70 0.70
0.70 0.67 0.70 0.70 0.70
0.70 0.68 0.70 0.70 0.70
0.70 0.68 0.70 0.70 0.70

0.96 0.94 0.95 0.94 0.95
0.95 0.94 0.95 0.94 0.95
0.95 0.95 0.95 0.95 0.95
0.95 0.95 0.95 0.95 0.95
0.95 0.95 0.95 0.95 0.95

parison of a� sensitivity and b� specificity estimates of CAD assisted group
raction of nodule candidates that are actually positive is �=0.10. Operating

sitivity �Se� and in columns as specificity �Sp�. The operating characteristics
olumns �RP, reader panel� are estimated apparent sensitivities using lesions
ns �LCA� are estimated sensitivities using LCA in the same datasets. Each

deviations of the reader panel and LCA based estimates are both 0.01. For
e 0.008 and 0.017, respectively.

0.8 0.9 0.95

LCA RP LCA RP LCA

0.72 0.81 0.82 0.84 0.84
0.77 0.82 0.84 0.85 0.85
0.83 0.82 0.85 0.85 0.85
0.85 0.83 0.85 0.85 0.85
0.85 0.83 0.85 0.85 0.85

0.82 0.79 0.80 0.79 0.80
0.81 0.79 0.80 0.79 0.80
0.80 0.80 0.80 0.80 0.80
0.80 0.80 0.80 0.80 0.80
0.80 0.80 0.80 0.80 0.80
omp
idate
en in

icity=
Gray

avera
ader

RP

a
0.48
0.52
0.55
0.57
0.57

b
0.93
0.94
0.95
0.95
0.95
Com
tes. F
s sen
hite c
colum
dard
tes ar

RP

a
0.63
0.67
0.70
0.72
0.72

b
0.78
0.79
0.80
0.80
0.80
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their true values in our studies �Fig. 2�. Each detection can be

marked positive or negative by mapping L̂i to either 0 or 1,
whichever is nearest. Using this rule, only 9/1000 cases
would be misclassified in Fig. 2. For all 500�25�2
=25 000 data sets �Sec. II B�, LCA converged within 50 it-
erations. In all 50 cases, LCA estimated sensitivity was more
accurate than reader panel estimates, particularly at low ref-
erence reader specificities �1−FR�0.8� �Table I�. In setting
�i� TR=0.70 and 1−FR=0.95, ARB of sensitivity estimation
by LCA and the reader panel were �2% and �27%, respec-
tively �mean absolute difference of �18%, p-value �0.001
from paired t-test�. In setting �ii� TR=0.85 and
1−FR=0.80, ARB of sensitivity estimation by LCA and the
reader panel were �6% and �23%, respectively �mean ab-
solute difference of �14%, p-value �0.001 from paired
t-test�. ARB of specificity estimation by LCA and the reader
panel were 0.4% and �0.6%, respectively �mean absolute
difference of 0.2%, p-value=0.03 from paired t-test�. Speci-
ficity was uniformly well estimated �average relative bias
less than 1.5% for both reader panel and LCA estimates in
both settings�, with LCA indicating slight overestimation and
reader panel slight underestimation at lower reader specifici-
ties �Table II�.

III.B. LIDC data set

Of n=1145 lesion candidates, 250 were marked as lesions
by at least one reference reader and 313 candidates were
marked as lesions by at least one CAD reader. The reader
panel based sensitivity estimate for CAD assisted readers
was 0.83. LCA converged in 30 steps. Estimates of latent
class indicators suggest most lesion candidates were well
characterized because they are concentrated around 0 or 1
�Fig. 3�. Robust standard errors are considerably larger than
naïve estimates �Table III�.

Based on LCA estimates, the observed difference of

�Sens= T̂C− T̂R=0.69−0.55=0.14 yields a p-value of 0.006
for the test H0 :TR=TC versus H1 :TC�TR using the permu-
tation based randomization procedure �Sec. II E�. A 95%
confidence interval for �Sens computed from bootstrap
samples is �0.03, 0.41� �Sec. II E�. A hypothesis test con-

FIG. 3. Distribution of estimated lesion status values estimated using latent
class methodology for LIDC data set with n=1145 lesion candidates, K=4
readers in both reference and CAD groups �0 is definitely not a nodule, 1 is
definitely a nodule�. Estimated parameters are given in Table III.
ducted using these bootstrap samples yielded a p-value of
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0.004. The observed difference of �FPP=FPPC−FPPR

=1.27−0.95=0.32 yields an empirical two sided p-value of
0.28 for the test H0 :FPPR=FPPC versus H1 :FPPC�FPPR. A
95% confidence interval for �FPP computed from bootstrap
samples is ��1.25, 1.54�.

IV. DISCUSSION

Our simulation study shows that the use of consensus ref-
erence panel readings as a gold standard can lead to substan-
tial bias in estimation of sensitivity of a new diagnostic pro-
tocol, and that this bias can be particularly large when
reference reader specificity is below 0.8. Additionally, the
degree of bias appears to vary with the operating character-
istics of both the reader panel and the CAD algorithm.
Hence, relative rankings of CAD algorithms produced from
reader panel based reference standards may be erroneous. By
contrast, LCA based estimation of sensitivity can deliver
substantial reductions in bias over the reader panel estimate
even at low reader specificities. In addition, LCA produces
estimates of the OCs of reference readers. These can in turn
be used to better assess the accuracy of the estimate. Finally,
LCA is particularly suited to comparisons of two diagnostic
protocols �e.g., free search versus CAD assisted� because
unlike a reader panel, it does not require a third panel of
readers as reference standard.

We used a simple model for detections in our simulation
studies to highlight the problem with reader panel estimates
and the relative success of LCA. We now discuss some pos-
sible limitations of the proposed model and how they might
be addressed in future work. The model presented for reader
detections assumes �i� constant OC across readers lesion can-
didates, �ii� independent reader ratings across lesion candi-
dates, and �iii� conditionally independent ratings across read-
ers. In practice, these assumptions may not hold. For
instance, operating characteristics may depend on factors
such as size, shape, location, etc. They may also depend on
the aggressiveness and/or level of training of the reader. It

TABLE III. Estimates based upon LCA for the LIDC dataset, with n=1145
nodule candidates, K=4 readers in both free read and CAD assisted groups.
TR, TC: Sensitivity of reference �free read� and CAD groups, respectively.
FPPR, FPPC: Average false positives per patient of reference and CAD as-
sisted groups, respectively. �: Fraction of TP nodules in data. Naïve esti-
mates of standard error are calculated using a formula for binomial propor-
tions, which assumes conditional independence of diagnoses across readers
and nodule candidates �third column�. Naïve estimates of standard errors
can’t be computed for FPP because the number of true negative nodules is
unknown. Robust estimates of standard error, which do not assume indepen-
dence, are obtained from bootstrap resampling of data �fourth column�.

Parameter Estimate
SE

�Naïve�
SE

�Bootstrap�

TR 0.55 0.01 0.04
TC 0.69 0.01 0.10
FPPR 0.95 N/A 0.77
FPPC 1.27 N/A 0.22
� 0.22 0.01 0.03
may be possible to model the dependence of detection prob-
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abilities on the aforementioned factors using a variance com-
ponents model.22 Additionally, the conditional independence
assumption may not be tenable. For instance, readers might
agree more readily on large lesions than on small ones, lead-
ing to correlated ratings across readers. In particular, we note
that for the free read detections on the LIDC data set, the
conditional independence assumption is violated because
readers had access to each others’ detections before making a
final judgment. It is likely that this induced a positive corre-
lation between their detections. In turn, this can lead to a
positive bias on estimates of sensitivity and specificity.19

Thus, caution should be exercised in interpreting the esti-
mated sensitivity and false positive per patient values for the
LIDC data set. However, we note that estimates of the dif-
ference of sensitivities �or specificities� between free read
and CAD assisted methods are likely to be relatively less
affected by this bias. Since a common term causes the bias
for both methods,19 taking the difference is likely to elimi-
nate a substantial part of this bias. Development of a vali-
dated model for inter-reader dependence is critical to over-
come such bias because incorrect specification of the
dependence structure can also lead to bias in LCA estimates.9

It is likely, for instance, that the nature of dependence would
be different in the free read and CAD assisted group.23

Despite the aforementioned limitations in our current
model, inferences based on it should remain valid when the
robust resampling-based procedures described in Secs. II D
and II E are used. The resampling procedure mimics the po-
tential dependence in reader ratings described above, thus
generating appropriate standard errors for estimates. For the
LIDC data set, the confidence interval for the difference in
sensitivities between methods is quite wide. This suggests
that incorporating important sources of variability in sensi-
tivity into the model, such as lesion size or location and
differences in decision threshold between readers, may yield
narrower confidence intervals than those generated by the
resampling method.10
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APPENDIX A: CALCULATION OF APPARENT
SENSITIVITY WITH IMPERFECT GOLD STANDARD

Let the sensitivity or true positive fraction and false posi-
tive fraction �FPF� of the binary �1= �disease present�,
0= �disease absent�� reference test R be TR and FR, respec-
tively, and similarly TY and FY for the new diagnostic test Y.
True disease status is denoted by D �1=disease present,
0=disease absent� with prevalence probability �. Then the
apparent sensitivity of Y with respect to R can be calculated
as

P�Y = 1�R = 1� = P��Y = 1� � �R = 1��/P�R = 1� . �A1�
Now
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P�R = 1� = P�R = 1�D = 1�P�D = 1�

+ P�R = 1�D = 0�P�D = 0� = �TR + �1 − ��FR �A2�

and

P��Y = 1� � �R = 1��

= P��Y = 1� � �R = 1��D = 1�P�D = 1�

+ P��Y = 1� � �R = 1��D = 0�P�D = 0� . �A3�

Under the assumption of conditional independence between
the tests Y and R given true lesion status, we have

P��Y = 1� � �R = 1��

= P�Y = 1�D = 1�P�R = 1�D = 1�P�D = 1�

+ P�Y = 1�D = 0�P�R = 1�D = 0�P�D = 0�

= TYTR� + FYFR�1 − �� . �A4�

Substituting Eqs. �A2� and �A4� in Eq. �A1�, we get

P�Y = 1�R = 1�

= 	TYTR� + FYFR�1 − ��
/	�TR + �1 − ��FR
 . �A5�

Note that in the special case that FR=0, Eq. �A5� gives
P�Y =1 �R=1�=TY, which implies that the apparent sensitiv-
ity is unbiased. In general, however, it is biased when FR

�0. The result in the introduction follows by setting TR=1,
FR=0.05, TY =1, FY =0, and �=0.2 in Eq. �A5�.

APPENDIX B: MAXIMUM LIKELIHOOD ESTIMATION
FOR LCA

The following is an operationally correct derivation of the
expectation-maximization �EM� algorithm for LCA as ap-
plied to multiple reader ratings. A more mathematically rig-
orous derivation for the general LCA case can be found in
Ref. 19. Under a latent class model, the unconditional like-
lihood of the reader counts YRi and YCi in the reference and
CAD assisted groups, respectively, is given by

Lik�YRi,YCi� = P�YRi,YCi�Li = 1�P�Li = 1�

+ P�YRi,YCi�Li = 0�P�Li = 0� . �B1�

Now model �B1� postulates that conditional on the latent
class Li of the ith lesion candidate, i=1, . . . ,n, obtained from
N patients, the reader counts YRi and YCi follow independent
binomial distributions, whose likelihood is of the form given
in Eqs. �B3�–�B7� �Lik1 and Lik3 for Li=1, Lik2 and Lik4 for
Li=0�. Under the conditional independence assumption, their
joint likelihood is the product of their individual likelihoods.
Finally, the distribution of the latent class �0 or 1� is Ber-
noulli, with a likelihood of the form �B7�. Conditional on the
latent class Li being observed, it follows from Eq. �B1� that
we can write the likelihood of the reader counts YRi and YCi

as

Lik�YRi,YCi� = Lik5i � �Lik1i � Lik3i�Li�Lik2i � Lik4i�1−Li,

�B2�
where
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Lik1i = �KR

YRi
�TR

YRi�1 − TR�KR−YRi, �B3�

Lik2i = �KR

YRi
�FR

YRi�1 − FR�KR−YRi, �B4�

Lik3i = �KC

YCi
�TC

YCi�1 − TC�KF−YCi, �B5�

Lik4i = �KC

YCi
�FC

YCi�1 − FC�KC−YCi, �B6�

Lik5i = �Li�1 − ��1−Li. �B7�

Thus, the combined log likelihood over all lesion candidates,
i=1, . . .n, can be written as

log Lik�TR,FR,TC,FC,�� = �
i=1

n

log Lik5i

+ �
i:Li=1

�log Lik1i + log Lik3i�

+ �
i:Li=0

�log Lik2i + log Lik4i� .

�B8�

Note that the likelihood is now represented as a function of
parameters rather than data, to facilitate maximization with
respect to them. To maximize log Lik with respect to TR, we
differentiate it and set to 0. Note that TR only appears in the
term log Lik1i, hence,

�

�TR
log Lik�TR,FR,TC,FC,�� = �

i:Li=1
�YRi

TR
−

KR − YRi

1 − TR
�

= �
i=1

n

Li�YRi

TR
−

KR − YRi

1 − TR
� = 0.

�B9�

ˆ
Solving Eq. �B9� gives TR=�LiYRi /KR�Li. Estimates for
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other parameters, obtained by analogous steps, are given as
follows:

M step:T̂R =
�LiYRi

KR�Li
, F̂R =

��1 − Li�YRi

KR��1 − Li�
,

T̂C =
�LiYCi

KC�Li
, F̂C =

��1 − Li�YCi

KC��1 − Li�
,

�̂ =
�Li

N
. �B10�

Differentiating the likelihood a second time gives

�2

�TR
2 log Lik�TR,FR,TC,FC,��

= − �
i=1

n

Li�YRi

TR
2 +

KR − YRi

�1 − TR�2� � 0 ∀ TR � �0,1� .

�B11�

We note that second derivatives of the log likelihood
with respect to other parameters are similarly negative.
Further, because of the separable �product� nature of the
likelihood, the mixed derivatives, e.g.,
�2 /�TR�FR log Lik�TR ,FR ,TC ,FC ,��, are all 0. Together
with Eq. �B11�, this implies that the matrix of second deriva-
tives of the likelihood is negative definite. Hence the estima-
tors of TR ,FR ,TC ,FC ,� given in Eq. �B10� are indeed maxi-
mum likelihood estimates.16

In practice, the latent classes are unknown, so we estimate
them by their conditional expectation given the known data.
Since Li is a binary variable, we observe that E�Li �YRi ,YCi�

24
= P�Li=1 �YRi ,YCi�. By Bayes’s theorem
P�Li = 1�YRi,YCi� =
P�YRi,YCi�Li = 1�P�Li = 1�

P�YRi,YCi�Li = 1�P�Li = 1� + P�YRi,YCi�Li = 0�P�Li = 0�
=

�Lik1iLik3i

	�Lik1iLik3i + �1 − ��Lik2iLik4i

as required. Here Lik1i ,Lik2i ,Lik3i ,Lik4i are defined in Eqs.
�B3�–�B7�.

E step:L̂i = E�Li�YRi,YCi�

=
�Lik1iLik3i

	�Lik1iLik3i + �1 − ��Lik2iLik4i

. �B12�
Estimators in Eqs. �B10� and �B12� are interdependent, in
that computation of one set of estimators requires knowledge
of the other set of estimators. To overcome this problem, the
E and M steps are successively iterated. Each pair of steps
causes some increase in the likelihood.23 The process is con-
tinued till convergence, i.e., an additional iteration does not
produce any appreciable increase in the likelihood. The al-

gorithm can be summarized as follows.
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1. EM algorithm for LCA

�1� Intialize the L̂i; compute Lik�0�=log Lik using Eq. �B8�;
set Lik�1�=Lik�0�+100;

�2� While �Lik�1��Lik�0�+10−5�	

a. Compute T̂F , F̂F , T̂C , F̂C , �̂ using the data and L̂i by
Eq. �B10�.

b. Update L̂i using T̂F , F̂F , T̂C , F̂C , �̂ and the data by
Eq. �B12�.

c. Reset Lik�0�=Lik�1�; recompute Lik�1� using Eq.
�B8�.


�3� Finally, compute FPPF=nF̂F /N ,FPPC=nF̂C /N
where FPP stands for false positives per patient.

This procedure is one of a class of maximum likelihood
estimation procedures known as the EM algorithm.25 The
algorithm converges to the same set of estimates irrespective

of the choice of initial L̂i �except when they are chosen to be
all 0�. The EM algorithm yields the same maximum likeli-
hood estimators one would have obtained had one con-
structed the likelihood without using the unknown data �in
this case the latent classes�.25 This alternative process leads
to a more complex mixture model. However, in the problem
of lesion detection, estimates of the latent classes are of in-
trinsic interest, hence the EM algorithm may be preferable.
Finally, we note that the method of conversion from FPF to
FPP is similar to the approach of Ref. 23.
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