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Purpose: Computer aided detection �CAD� data analysis procedures are introduced and applied to
derive composite diffuse optical tomography �DOT� signatures of malignancy in human breast
tissue. In contrast to previous optical mammography analysis schemes, the new statistical approach
utilizes optical property distributions across multiple subjects and across the many voxels of each
subject. The methodology is tested in a population of 35 biopsy-confirmed malignant lesions.
Methods: DOT CAD employs multiparameter, multivoxel, multisubject measurements to derive a
simple function that transforms DOT images of tissue chromophores and scattering into a probabil-
ity of malignancy tomogram. The formalism incorporates both intrasubject spatial heterogeneity
and intersubject distributions of physiological properties derived from a population of cancer-
containing breasts �the training set�. A weighted combination of physiological parameters from the
training set define a malignancy parameter �M�, with the weighting factors optimized by logistic
regression to separate training-set cancer voxels from training-set healthy voxels. The utility of M
is examined, employing 3D DOT images from an additional subjects �the test set�.
Results: Initial results confirm that the automated technique can produce tomograms that distin-
guish healthy from malignant tissue. When compared to a gold standard tissue segmentation, this
protocol produced an average true positive rate �sensitivity� of 89% and a true negative rate �speci-
ficity� of 94% using an empirically chosen probability threshold.
Conclusions: This study suggests that the automated multisubject, multivoxel, multiparameter sta-
tistical analysis of diffuse optical data is potentially quite useful, producing tomograms that distin-
guish healthy from malignant tissue. This type of data analysis may also prove useful for suppres-
sion of image artifacts. © 2010 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3314075�
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I. INTRODUCTION

I.A. Diffuse optics and automated cancer diagnosis

Diffuse optical spectroscopy �DOS� utilizes light in the low
absorption window1 between 650 and 950 nm to measure
chromophore concentrations and scattering in deep tissues.
Information about concentrations of water, lipid, oxy
�HbO2�, deoxy �Hb�, and total hemoglobin �Hbt�, as well as
blood oxygen saturation �StO2�, and tissue scattering �i.e.,
the reduced scattering coefficient, �s�� are readily derived
with the optical techniques.

Diffuse optical tomography �DOT� utilizes many point
measurements on the surface of tissue to reconstruct concen-
trations of chromophores and scattering parameters in the
interior of the tissue. Images are obtained by inverting the
heterogeneous diffusion equation. A recent review by Ar-
ridge and Schotland2 describes various techniques needed to
perform this inversion. The results are three-dimensional
�3D� maps of optical properties and chromophore concentra-
tions. The reconstructed parameters have been correlated
with the physiological signatures of tumors. For example,
optically measured Hbt has been correlated with microvessel
density measured by histopathology,3 and �s� has been corre-
lated with cellular volume fraction and mean size.4 Leff et
al.5 recently reviewed DOT breast tumor contrasts in Hbt and
StO2. Some disagreements remain in the diffuse optics com-
munity about which optically measured parameters are the
most important indicators of malignancy; recent work, for
example, on water6 and collagen7 has opened up additional
possibilities.

While current incarnations of multiwavelength DOT pro-
vide 3D images of several physiological parameters associ-
ated with cancer metabolism and growth, unambiguous 3D
maps of healthy and malignant tissue are sometimes elusive.
DOT images require simultaneous interpretation of multipa-
rameter data at each spatial point, and images sometimes
exhibit significant inter- and intrasubject variation in the ab-
solute and relative values of these parameters. Together,
these factors limit DOT image analysis to skilled practitio-
ners of the art. In this contribution, we address this issue. In
particular, we introduce a novel algorithm for automated
identification of malignant and healthy tissue based on a sta-
tistical analysis of diffuse optical data from a population of
known cancers.

The requirement for skilled readers is not unique to op-
tics; most clinical imaging technologies have similar con-
straints and various techniques for automated breast cancer
detection and diagnosis have been explored to ameliorate
this situation. Notably, computer-aided detection �CAD� in
x-ray mammography screening relies upon high-spatial-
resolution 2D intensity projections to automatically identify
tumors in images based on structural features such as spicu-
lation and microcalcification.8–10

The formalism presented herein for DOT CAD employs
multiparameter, multivoxel, multisubject measurements to
derive a simple function that transforms DOT images of tis-
sue chromophores and scattering into a “probability of ma-

lignancy” tomogram. The formalism incorporates both intra-
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subject spatial heterogeneity and intersubject distributions of
physiological properties derived from a population of cancer-
containing breasts �the “training set”�. We extract a weighted
combination of physiological parameters from the training
set to define a “malignancy parameter” �M�, with the
weighting factors optimized to separate training-set voxels
from healthy and cancerous tissue. We then examine the util-
ity of M, employing 3D DOT images from an additional
subject �the “test set”�.

I.B. Limitations of current diffuse optics analysis

To better appreciate the need for DOT CAD, consider the
typical analysis scheme currently employed in the field.
First, the lesions in each subject are identified, then tissue is
divided into “healthy” and “lesion” regions, and average op-
tical properties are computed for each region. Finally, these
regionally averaged optical properties and differences thereof
are assessed across the population. With this approach, the
spatial information from DOT images is reduced to a few
numbers. Such an analysis implicitly ignores the spatial het-
erogeneity of cancers11–13 and healthy tissues.14

Grand averages of DOT data across multiple studies sug-
gest that malignant lesions can be differentiated from healthy
tissue by Hbt.

5 In recent work15 using the same data set as in
the analysis to be presented herein, we performed such re-
gional averaging from DOT images; we then demonstrated
that benign and malignant lesions could be separated with a
univariate analysis of the ratio of the mean lesion and
healthy tissue values of Hbt, �s�, and an empirically derived
optical index combining Hbt, �s�, and StO2. For example, this
work found that the benign and malignant lesions had a sta-
tistically significant different ratio of the Hbt region means
�e.g., �Hbt�Lesion / �Hbt�Healthy�.

Volume element histograms of rHbt �Hbt / �Hbt�Healthy�
reveal more information than distribution means. Histograms
of two subjects are shown in Fig. 1. Figure 1�a� shows an
optimal subject wherein the lesion is clearly distinguishable
from healthy tissue. Figure 1�b� shows a problematic subject;
here, variations in the healthy region �which include possible
image reconstruction artifacts� extend the distribution of
healthy tissue rHbt into the range of cancer tissue rHbt. The
first lesion �Fig. 1�a�� can be readily identified with the
simple normalization procedures described above and a cut-
off of rHbt=1.2. The same procedure and cutoff for case two
�Fig. 1�b��, however, would miss the cancer completely; fur-
thermore, adjustment of the cutoff to include the tumor
causes incorrect assignment of some healthy regions. These
observations suggest a more sophisticated analysis using all
available spatial information is desirable. Additionally,
simple thresholding in a single optical parameter ignores the
potential utility of multiparameter data and ignores possible
spatially heterogeneous signatures of cancers and healthy tis-
sues.

Thus far, a few groups applied statistical analysis tech-
niques to multiparameter optical measurements, including
applications to arthritic joints,16 high-risk17 or high mammo-

18,19
graphic density breast tissue, and to various “endo-
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scopic” measurements or excised tissues.20 The data sets em-
ployed thus far, however, have limited spatial information
and orders of magnitude fewer measurements per subject
than, for example, the breast tomograms utilized in the
analysis to be presented herein. A few researchers imple-
mented automated image methods with DOT to identify le-
sions in a particular subject.21–23 This per-subject analysis,
however, neglects information about the common signatures
of cancer across a population. Still other researchers pursued
hypothesis-driven multiparameter optical metrics with
DOS24,25 and DOT.15,26 Such metrics are dependent on the
underlying hypotheses, however, and are often empirically
chosen combinations of equally weighted parameters.
Chance et al.27 explored two-parameter signatures of breast
cancer, graphically identifying malignant lesions, but the
separation lines were manually selected for the specific data
set.

Thus, previous studies fall into two groups. Some consid-
ered spatial variation in cancers, but neglected common sig-
natures across a population. Others considered population
signatures, but used only regionally averaged measurements.
Furthermore, few, if any, applied statistical optimization
techniques to multiparameter optical signatures of cancer
across a population. By contrast, the methods we present
herein utilize data from many voxels in many subjects to
statistically optimize a multiparameter probability of malig-

) Optimal Subject b) Problematic Subject

rHbt rHbt

FIG. 1. �Top row� Slices from 3D tomograms from subjects with breast
cancer. Lesions are denoted by the thick black line. Histogram of rHbt for
healthy �middle row� and cancer �bottom row� voxels, segmented as shown
in the top row. Data are normalized as rHbt=Hbt / �Hbt�H for each subject.
The left column �a� shows a lesion with clearly separated means and distinct
distributions; and the right column �b� shows a subject wherein the healthy
Hbt distribution overlaps that of the cancer region. This normalization ap-
proach is standard in the “typical” DOT analysis, and the example is taken
from our previous work �Ref. 15�. Note that the “typical DOT” scheme
shown in the figure utilizes a normalization that is different from
Eq. �1�.
nancy.
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II. METHODS

II.A. Data set used in this analysis

Our data set consists of 3D tomograms of total hemoglo-
bin concentration �Hbt�, blood oxygen saturation �StO2�, and
reduced scattering coefficient ��s�� in 35 biopsy-confirmed
cancer-bearing breasts. DOT images from these subjects
were collected with a parallel plate optical imaging system
described in previous works.15,36 Table I contains the demo-
graphics of the population used, separated by clinical diag-
nosis.

The cancers in this analysis had an average volume of
6.7�5.2 cm3, corresponding to 841�656 image voxels.
The average size of the entire breast was 374�231 cm3,
corresponding to 4.7�104�2.9�104 image voxels.37 Note,
for each parameter, traditional regional averaging analysis of
these data, as described above, reduces these �5�104 data
points per subject to two numbers �cancer and healthy region
averages�. Figure 1 shows sample intrasubject spatial hetero-
geneity of these regions, and Fig. 2�a� plots the distribution
of Hbt for the healthy regions of all subjects.

We demonstrate the new statistical analysis method with a
leave-one-out cross-validation �e.g., as described by Hastie et
al.28�, in which 34 out of our 35 subjects serve as the training
set and the remaining subject provides the test data. Permut-
ing these sets, such that each subject serves as the test set
once, provides 35 training/test data combinations and en-
ables estimation of classification accuracy. Note that gold
standard segmentation of the DOT images into tumor and
healthy regions is required for the training set to train the
classifier �i.e., for the logistic regression model� and is re-
quired for the test set classification validation �i.e., to assess
how well the classifier performed compared to the gold stan-
dard in a new data set�.

Both training set normalization �described below� and
testing of our method require “gold standard” spatial local-
ization of the cancers; a full description of the procedure
utilized to identify cancer regions is given in Ref. 15. Briefly,
a traditional clinical imaging method, typically MRI, was
used to approximately locate each tumor. We then selected

TABLE I. Demographic breakdown of cancers in this study. IDC: Invasive
ductal carcinoma; DCIS: Ductal carcinoma in situ; ILC: Invasive lobular
carcinoma; LCIS: Lobular carcinoma in situ; and BMI: Body mass index.
Numeric data are given as mean�standard deviation. 16 subjects were pre-
menopausal and 19 were postmenopausal.

No. Diagnosis
Age
�yr�

BMI
�kg /m2�

Tumor size
�cm3�

8 IDC 44�11 27�6.2 2.9�1.2
2 DCIS 60�4.9 29�6.6 0.7�0.28
2 ILC 62�3.5 22�2 1.4�0.35

22 IDC & DCIS 49�10 28�7 1.8�0.97
1 DCIS & LCIS 39�0 19�0 5�0
35 All 49�11 27�6.5 2.1�1.2
nearby regions of high optical contrast as the starting point
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for a region-growing algorithm to identify the spatial extent
of the tumor. A 2 cm border region about the tumor and
voxels within 1 cm of the source and detector plane was
excluded from the training data; the remainder of the breast
is defined as healthy tissue. We exclude these boundary re-
gions to reduce the effect of physiological changes near the
tumor, errors in tumor positioning, and optode artifacts. In
the training set, we assume perfect segmentation into malig-
nant and healthy tissue. In the test set, gold standard segmen-
tation is used only to determine the accuracy of our malig-
nancy prediction.

II.B. Algorithm to calculate probability of malignancy

The image analysis has two parts: First, we determine the
probability of malignancy function based on the population
of known cancers. Then, we test the resulting function on
another data set. We iterate this process, exchanging mem-
bers of the training and test sets to improve the generalizabil-
ity of our results.

We chose Hbt, StO2, and �s� as our fundamental physi-
ological variables. We also tested the combination of Hb,
HbO2, and �s�, but little difference was found �results not
shown�. A schematic of the normalization, analysis, and test-
ing protocol is given in Fig. 3.

II.B.1. Intrasubject normalization

The first step of this analysis is to normalize the tomog-
raphic data across the training sample, as distributions of
optical properties vary significantly between subjects. We
carry out this procedure for each physiological parameter in
both healthy and cancer tissues. To illustrate, consider the
total hemoglobin concentration, Hbt. Figure 2�a� shows the
reconstructed Hbt for all healthy tissue voxels in all subjects.
We see that the spread of Hbt values is quite large, compli-
cating the use of these data across the sample. Therefore, for
each subject, we compute X=ln�Hbt�, the healthy tissue
mean �X�H, and the healthy tissue standard deviation �XH.
Note that �X�H and �XH are calculated individually over the
healthy regions in each subject, thereby capturing both inter-
and intrasubject tissue heterogeneity. A similar set of data
�i.e., X=ln�Hbt�� is obtained for malignant tissue in each
subject in the training set. Together, these quantities permit
calculation of the “Z-score” for each variable in each voxel
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FIG. 2. Intrasubject data normalization brings intersubject data distribution c
the right figure �b� shows the population distribution of zHbt after intrasubjec
Each trace represents the healthy region of one subject. For clarity of present
of each subject, e.g.,
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zHbtd
�s,k� =

Xd
�s,k� − �Xs�H

�XH
s =

ln�Hbtd
�s,k�� − �ln�Hbt

s��H

��ln�Hbt
s��H

. �1�

Here, the subscript index d=H ,M specifies healthy �H� and
malignant �M� regions; the superscript index s=1:Ns, speci-
fies a subject in the training set, and the superscript index
k=1:Nv

�s,d� specifies voxel number within the healthy or ma-
lignant region in each subject. Note that the Z-score for both
the healthy and malignant regions depends on the mean and
standard deviation of the healthy region.

After the Z-score procedure, the distributions of physi-
ological parameters in each voxel across subjects in the
sample are much more similar. Figure 2�b� shows this for
Hbt in the healthy regions across 35 subjects. Note that this
intrasubject normalization brings the intersubject voxel
chromophore distribution close to a zero-centered Gaussian
distribution, permitting us to more sensibly combine data
across multiple subjects.

A particularly attractive feature of this data normalization
is the explicit inclusion in the normalized variable of the
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o a normal distribution. The left figure �a� shows absolute values of Hbt; and
alization �see Eq. �1� and note that each subject is normalized individually�.
the vertical axis is normalized to the total number of voxels in each subject.

FIG. 3. Data processing flow chart for each iteration of the leave-one-out
0

lose t
t norm
protocol. See text for details.
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subject-dependent characteristic spatial fluctuations in each
parameter via the distribution width ��XH�. Previous work in
the field �e.g., as reviewed by Leff et al.5� used only the ratio
of cancer to healthy values for each parameter; the previous
approach accounts for the wide variation in mean parameter
values between subjects, but ignores the differences in opti-
cal parameter distribution widths found in each subject’s
healthy tissue. With the normalization scheme described
here, lesion contrast is scaled to the variation in healthy tis-
sue. Similarly, we compute the Z-score for StO2 and �s�.

For the remainder of this paper, we will be computing and
manipulating the normalized physiological variables:
zHbtd

�s,k�, zStO2d

�s,k�, and z�sd
��s,k�. Since we use identically sized

voxels for all subjects, we expect that each tissue type
�H ,M� in each subject to have a different number of voxels;
i.e., Nv

�s,d�, is not constant. In order to avoid weighting the
data unduly toward healthy or malignant tissue, we set
Nv

�s,d�=Nv=40. Therefore, the same number of voxels ran-
domly selected from each region and each subject is used for
the next level of our analysis. We chose Nv=40 because the
smallest tumors in our data set had �140 voxels and our
analysis scheme depends on independent measurements from
each voxel. With this choice for Nv, the median voxel sepa-
ration in the 35 tumor regions was 1.2 cm. We therefore do
not expect spatial correlation due to DOT resolution to
strongly affect results by reducing the independence between

measurements.
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Drawing Nv=40 voxels from the tumor and healthy re-
gions in each of 35 subjects provides a set of 1400 tumor and
1400 healthy voxels defined by our gold standard segmenta-
tion. We utilize this set of voxels in our leave-one-out proto-
col, removing all voxels of the test subject from the total data
set so that the remaining 1360 voxels from each region serve
as the training set for classification. The trained classification
rule is then applied to the test set to predict malignancy. The
entire procedure is then repeated for the other test subjects.
Choosing an equal number of voxels from each region im-
proves our estimate of the accuracy of our classification tech-
nique under the leave-one-out cross-validation protocol,
which will be discussed in Sec. III.

II.B.2. Training set analysis procedure

The tomographic data of all subjects in the training set,
i.e., data from all chromophores in Nv voxels of the healthy
and malignant regions of each of Ns subjects, are combined
into a single matrix. Using a logistic regression model with
the known malignancy status of each voxel as the outcome
and the normalized tomographic data as predictors, we fit a
weight vector �� = ��zHbt

,�zStO2
,�z�s�

,�0� and compute the
vector Md

�s,k�, whose elements define a scalar malignancy
parameter for each voxel in each region of each subject. For
the logistic regression model, M is the log odds of

malignancy,
Md
�s,k� =

⎣
⎢
⎢
⎢
⎡

MH
1,1

]

MH
1,Nv

]

�
]

MH
Ns,1

]

MH
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MM
1,1
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MM
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]
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In forming Md
�s,k�, we thus account for measurements

taken across multiple subjects and measurements taken
across multiple spatial locations in each subject. The right
most column of 1’s in the Z-matrix relates to �0 and intro-
duces an offset that could, in principle, include effects from
additional parameters �e.g., variations in tissue fat content,
age, etc.� not considered in the present analysis �see Refs. 29
and 30 for more details on this latter point�.

From M, we compute a probability of malignancy using
the function

P�Md
�s,k�� =

1

1 + e−Md
�s,k� . �3�

Our goal is to identify a weighting vector �� that maximizes
the difference in probability between voxels in healthy
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FIG. 4. Example of training �34 subjects, top row� and test �1 subject, bot-
tom row� set M and P�M�. Nv=40 voxels were randomly selected from
each region in each subject, as described in Sec. II B 1 �i.e., 1360 voxels
from each of the training healthy and tumor regions and 40 voxels from the
healthy and tumor regions of the test subject�. Left column: Malignancy
parameter �M� for each subject �s�, voxel in training set �k�, and diagnosis
Md

�s,k�. Right column: Optimized probability of malignancy P�Md
�s,k��. The

test subject is also shown in Fig. 1�a�; note the improved separation between
the malignant and healthy regions.

a) Invasive Carcinoma b) In Situ Carcinoma
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FIG. 5. Example probability of malignancy �P�M�� calculated for two test
subjects. The function P�M� �blue line� is derived from the training set, as
described in Sec. II B 2. This function is then applied to the remaining test
subject in each case; using the gold standard segmentation described in Sec.
II A, voxels are labeled as healthy �green crosses� or malignant �red dots�.
Image slices from the same subjects are shown in Fig. 6. For clarity, only
every hundredth voxel is plotted. �a� Typical invasive cancer that shows very
good separation between healthy and malignant regions. �b� Case study: In
situ lesion; this lesion is not as well separated from the background healthy
tissue. P�M� for this in situ lesion is more heterogeneous, with a lower
average than the invasive lesion and more overlap between malignant and

healthy tissue.
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�P�MH
�s,k��� and malignant �P�MM

�s,k��� regions in our training
set. In performing this logistic regression, we assume that
each element of M is independent. �� is optimized by mini-
mizing the difference between P�M� and the gold standard
diagnosis, plotted against M �see Ref. 31 for a more detailed
description of logistic regression�.38 This results in a �� such
that P�MH

�s,k���0 and P�MM
�s,k���1. Optimized M and

P�M� are shown in Fig. 4 for typical training and test sets.

II.C. Test subject normalization

The output from the logistic regression described in Sec.
II B 2 is the parameter weighting vector, �� , which we then
apply to data from an independent test subject �i.e., DOT
data from the “leftover” subject�. Such an application derives
a predicted probability of malignancy for each voxel in the
test subject.

Normalization of the test data set is slightly more compli-
cated than that of the training data, as we must not assume
knowledge of the cancer location in the test subject’s breast.
We therefore empirically define the healthy region as those
voxels in which both Hbt and �s� lie within the whole-breast
mean and the whole-breast mean plus 2 standard deviations.
Note that the results turned out to be only mildly sensitive to
the particular choice of healthy criterion, as the cancers usu-
ally do not occupy a large fraction of the breast.

III. RESULTS

Figure 5 shows P vs M for two subjects; example slices
through the center of the cancers for the same subjects are
shown for rHbt �Fig. 6�a�� and P�M� �Fig. 6�b��. A probabil-
ity cutoff is readily applied to the data �i.e., a horizontal line
in Fig. 5� in order to provide a concrete criterion to create
spatial masks of regions that are highly suspicious for malig-
nancy �Fig. 6�c��. One can then compare these masks to the
gold standard malignant and healthy regions for each test
subject.

To quantify the quality of probability maps, such as those
shown in Fig. 6�b�, we examine the distributions of M and

In
va

si
ve

In
S
it
u

a) Hbt Images b) Probability Map c) Cancer Mask

FIG. 6. Slices from 3D images of subjects in Fig. 5, showing total hemo-
globin concentration ��a� Hbt�, probability of malignancy ��b� P�M��, and a
binary cancer mask �c� using a cutoff of P�M�=0.95. This in situ lesion
provides an interesting case study, with the P�M� falling between the ma-
lignant lesions and the healthy regions.
P�M� for N =40 voxels in gold standard healthy and ma-
v
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lignant regions across the entire set of test subjects; for this
task, we use the same randomly selected voxels, as described
in Sec. II B 1. Figure 7�a� shows a histogram of M drawn
from test subject healthy and malignant regions in each it-
eration of the leave-one-out protocol; Fig. 7�b� is a box plot
of the P�M� distributions. Notice that the voxels from the
tumor region are distributed narrowly about P�M��1, but
the distribution has a small tail of outliers. Similarly, the
healthy region voxels are concentrated near P�M��0.1, but
the central quartiles of the distribution extend from �0.01 to
�0.2 and the fourth quartile extends to �0.6, with outliers
up to �1. This wide distribution of values in the healthy
region can also be seen in Fig. 5.

We next impose a probability of malignancy cutoff, Pcut:
Voxels with probability above Pcut are predicted to be malig-
nant, those below Pcut are predicted to be healthy. Finally, we
compare this prediction to the gold standard diagnosis. For
each value of Pcut, some test subject voxels are malignant
and correctly predicted to be malignant �true positive �TP��;
some test subject voxels are malignant, but incorrectly pre-
dicted to be healthy �false negative �FN��; some test subject
voxels are healthy, but incorrectly predicted to be malignant
�false positive �FP��; and some test subject voxels are healthy
and correctly predicted to be healthy �true negative �TN��.

These quantities can be expressed as rates by dividing
each of these classifications by the total number of voxels in
the healthy or malignant regions. We can thus calculate true
and false positive rates �TPR=TP / �TP+FN� , FPR
=FP / �TN+FP�� and true and false negative rates �TNR
=TN / �TN+FP� , FNR=FN / �FN+TP�� as functions of Pcut.
The receiver operator characteristic �ROC� curve plots TPR
against FPR; ROC curves are shown in Fig. 8. Note that
these quantities are often referred to as sensitivity �TPR� and
specificity �1−FPR�. Rates are averaged over 35 permuta-
tions of our training/test subjects. Average TPR, FPR, FNR,
and TNR across all test subjects for several values of Pcut are
tabulated in the insets of Fig. 8.

FIG. 7. �a� Histogram of M for the healthy and tumor regions of 35 test
subjects, used to generate the box plot in �b�. �b� Box plot of probability of
malignancy �P�M�� of Nv=40 voxels from all test subjects �bold lines mark
median values, boxes denote interquartile range, dashed lines indicate outer
two quartiles, and squares mark outliers�. See insets in Fig. 8 for a tabulation
of mean classification rates at several values of Pcut. Median P�M�
=0.998 for tumor voxels and 0.019 for healthy voxels.
For the purposes of cancer detection, FNR is critical, as
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this determines how many cancers are missed. With the
sample used in this analysis, a probability cutoff of Pcut

=0.95 yields FNR of 11%. At the same cutoff, 89% of the
voxels predicted to be cancerous are correctly classified
�TPR� and 6% of the voxels in the healthy region are incor-
rectly predicted to be cancerous �FPR�, while the remaining
94% of the healthy region voxels are correctly labeled. The
cutoffs can be tuned to suit particular clinical needs �see
insets in Fig. 8 for classification rates corresponding to other
values of Pcut�.

Since the Z-score is in “units” of standard deviation, we
can directly compare the magnitudes of the derived coeffi-
cients �� to determine the relative importance of each param-
eter for identifying malignancy. Averaging over 35 combina-
tions of 34 subjects in the training set gives,
��zHbt

�=0.83�0.06, ��zStO2
�=−0.19�0.04, and ��z�s�

�
=2.68�0.12,37 suggesting that of the three optical param-
eters, the difference in �s� offers the strongest evidence of
malignancy. It should be noted that the weights are coeffi-
cients derived from a logistic regression model and can be
interpreted precisely in terms of changes in the log odds of
malignancy. For example, a one unit change in z�s� implies
an estimated 2.7-fold increase in the log odds of malignancy
for that voxel or, equivalently, a 14.9-fold increase in the
odds of malignancy. However, when �� is calculated across
all 35 subjects, we find the significance �“p value”� of each
element in �� to be �0.005, suggesting that all three param-
eters should be retained in the model.

The analysis described above assumes that each 2�2
�2 mm voxel in the 3D tomogram is independent of the
others. However, it is well known that the spatial point
spread function of light transport in tissue limits DOT spatial
resolution to �0.5–1 cm �Refs. 32–35� in breast tissue at
biological contrast levels. Furthermore, there are likely to be
physiological correlations between different spatial locations
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FIG. 8. �a� Average ROC curve for all healthy and tumor voxels for each of
35 test subjects. ��a�, inset� Classification rates calculated using all voxels
from cancerous and healthy tissue, as defined by our gold standard. Black
diamonds mark TPR�Pcut� vs FPR�Pcut� values for Pcut given by the numeric
labels. �b� Rates calculated only using the Nv=40 training voxels from each
region in each subject. ��b�, inset� Average classification rates calculated
over Nv voxels. �Insets� Mean TPRs, FPRs, FNRs, and TNRs as a function
of Pcut. Healthy voxels are defined as P�M�� Pcut. Note that a low FNR is
desirable for cancer diagnosis. Rates are averaged over all test subjects used
in the leave-one-out protocol and given as percentages.
in the breast �e.g., all voxels drawn from adipose tissue�. We
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explored a simple model of correlated voxels, in which we
identified “clumps” of the same size as the tumor in each
breast and then compared the average value of the probabil-
ity of malignancy in these clumps to that of the tumors.
Interestingly, we found the distribution of P�M� to have
fewer outliers than Fig. 7 and values in the confusion matrix
to be within ��5% of the per-voxel values presented in the
insets of Fig. 8 at Pcut=0.95.

IV. DISCUSSION

This study suggests that multisubject, multivoxel, multi-
parameter statistical analysis of diffuse optical data is poten-
tially quite useful. Using a relatively simple statistical clas-
sification approach, we have reproduced most of the results
described in Ref. 15. Furthermore, a lengthy analysis by a
skilled researcher was not required and several different can-
cer types were included �see Table I�. Initial results also sug-
gest that this type of data analysis may be useful for suppres-
sion of image artifacts, but we have not yet systematically
studied the issue. Interestingly, in the small number �3, see
Table I� of in situ cancers contained in our sample, we have
noted a lower value of the malignancy parameter M than for
the more common invasive cancers �see Fig. 5 for an ex-
ample�.

In Sec. III, we noted ���z�s�
��� ���zHbt

��� ���zStO2
��, and

therefore z�s� is the most important parameter for identifica-
tion of malignancy, followed by zHbt. The value of �z�s�

and
�zHbt

differed little between training sets. ��zStO2
�, on the

other hand, was both smaller than the other coefficients and
had a much larger variation between subjects ��20% vs
�5%�. StO2 is thus less important for differentiation of ma-
lignant regions in this data set, an observation consistent
with earlier results.15

This preliminary study has several limitations. The most
significant limitation is its small sample size. The current
analysis uses a “leave-one-out” protocol. Future work with
larger samples will use “leave-M-out,” for M �1, a better
approach to probing the generalizability of the method.

A more subtle issue that deserves further exploration was
our assumption that each voxel used in the training is inde-
pendent. As we discussed at the end of Sec. III, we expect
spatial correlations from both biological sources and recon-
struction artifacts from DOT mammography. The logistic re-
gression classification scheme assumes independent mea-
surements; future work will utilize more sophisticated
classifiers to take advantage of the biological correlation
�e.g., between voxels from glandular tissue� and minimize
the effects of correlation arising from DOT �e.g., resolution
limits�. The use of correlated measurements in the training
set will result in underestimation of the variance in �� ; how-
ever, our classifier does not use this variance: We only apply
the point estimate of �� , which is unbiased even when the
data are correlated, to the test set. Therefore, the classifica-
tion rates remain valid even though we did not explicitly take
into account potential correlation between adjacent voxels.

We also explored possible effects on this analysis tech-

nique from DOT resolution limits by eliminating the smallest
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tumors from our data set. The smallest tumor included in the
sample has a total volume of 1.1 cm3 �139 voxels�. The
median separation between the Nv=40 randomly chosen
voxels in this tumor is 0.85 cm with an interquartile range
�IQR� of 0.71 cm; this separation is within the expected
�0.5–1 cm resolution of the optical reconstruction tech-
nique. For comparison, in the same subject, the median sepa-
ration in the Nv=40 healthy tissue voxels was 4.5 cm and the
IQR 3.5 cm. We then repeated the leave-one-out protocol
described above on a sample of the 31 subjects with tumor
volume greater than 2 cm3 �250 voxels�. We found that the
classification rates at Pcut=0.95 changed very little �i.e.,
�1%�. Furthermore, �� remained consistent within our calcu-
lated error. We also tested the possibility of overweighting
small tumors through correlated measurements by extracting
a fixed percentage �10%� of the total tumor voxels from each
subject and using 10% of the total tumor voxels, up to a
maximum of 40. These shifts in the training set selection
changed the classification rates at Pcut=0.95 by only �2%.
Alternately, we could select voxels from a sparse grid in the
tissue regions to enforce a consistent or minimal voxel sepa-
ration.

To test the effects of our random voxel selection, we re-
peated our analysis on the data sample five times, randomly
selecting new training voxels with each iteration. The stan-
dard deviations of �� extracted from the entire training set
were ��0

=2%, ��z�s�
=6%, ��zHbt

=11%, and ��zStO2
=29%.

Recall that �zStO2
had the smallest magnitude and most varia-

tion between different training sets ��20%�.
Another potential source of error is the imperfect tissue

segmentation we relied upon as the gold standard for assign-
ment of each voxel as healthy or cancerous. This segmenta-
tion relies upon both nonconcurrent clinical imaging �e.g.,
MRI� to locate the tumor and a region growing algorithm on
each subject’s optical tomogram to define the tumor bound-
aries, therefore potentially introducing discrepancies in the
tissue segmentation. We excluded a 2 cm thick boundary
region about each tumor from the corresponding healthy re-
gion to reduce effects of errors in spatial localization of the
tumor boundary on the training healthy tissue data.

Although the analysis includes more spatial data than
typically used, most of the data were still discarded, i.e.,
Nv=40	4.5�104 voxels drawn from the healthy region in
each subject. We chose this limit for data selection in order
to weight tumor and healthy regions equally and take only
�30% of voxels from the smallest tumors. Furthermore, this
choice permits a more intuitive interpretation of P�M� and
improves quantification of classification accuracy. We are
currently exploring other weighting schemes which permit
use of all or most of the healthy tissue voxels. Additionally,
no healthy subjects or benign lesions were included in the
present sample; inclusion might raise false positive rates, as
the relative optical properties of some benign tumors over-
lapped those of cancers in our previous work.15

Logistic regression is a fairly simple binary classification
scheme, which permits use of both continuous and classifi-

cation variables. The analysis presented here did not include
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other classification variables �menopausal status, age, etc.�,
as our total sample is fairly small. For the same reason, we
did not attempt to separate cancer types; we will apply such
analysis to larger samples in future work. More sophisticated
classification techniques, for example, could include more
than two output categories �e.g., image artifact, malignant,
benign, and healthy regions�; again, sufficiently large data
sets will permit us to differentiate between types of benign
and malignant lesions. Additionally, we will apply a variation
in this technique to larger samples �e.g., nonimaging studies
of many subjects� and more complete data sets �e.g., concur-
rent optical/MR imaging�. Finally, future work will imple-
ment classification approaches such as support vector ma-
chines or neural networks that have demonstrated better
predictive capability in other applications, as in Klose et al.16

V. CONCLUSION

The potential for population-based statistical image pro-
cessing of diffuse optical data using logistic regression of
three optically measured physiological parameters �Hbt,
StO2, and �s�� and a leave-one-out paradigm for 35 subjects
was demonstrated. Our voxel-level diagnosis produced an
average TPR of 89% and FPR of 11% with no human inter-
pretation of test data set required. These results are a starting
point for development of diffuse optical tomography CAD
algorithms. Such multiparameter optical signatures of cancer
may enhance the utility of an adjunct or standalone optical
device in the clinical imaging environment.
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