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Abstract
Nitric oxide synthases belong to a family of dual-flavin enzymes that transfer electrons from NAD
(P)H to a variety of heme protein acceptors. During catalysis, their FMN subdomain plays a central
role by acting as both an electron acceptor (receiving electrons from FAD) and an electron donor,
and is thought to undergo large conformational movements and engage in two distinct protein–protein
interactions in the process. This minireview summarizes what we know about the many factors
regulating niric oxide synthase flavoprotein domain function, primarily from the viewpoint of how
they impact electron input/output and conformational behaviors of the FMN subdomain.
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Introduction
Flavoproteins are a versatile group of biological catalysts that may represent 1–3% of all genes
in prokaryotic and eukaryotic genomes [1,2]. Nitric oxide synthases (NOS; EC 1.14.13.39) are
members of a dual-flavin reductase family, which transfer electrons from NADPH to a variety
of heme protein acceptors [3–5]. The electron transfer occurs in a linear manner from NADPH
to FAD to FMN. During catalysis, the FMN subdomain plays a central role by acting as both
an electron acceptor (receiving an electron from FADH2) and an electron donor (transferring
an electron typically from FMNH−), and is thought to undergo large conformational
movements in the process. How this process occurs and is regulated in dual-flavin enzymes
like NOS is a topic of current interest.

Characteristics of NOS
NOS enzymes catalyze the NADPH- and O2-dependent conversion of L-arginine (Arg) to
citrulline and nitric oxide (NO) via the intermediate N-hydroxyarginine (Scheme 1) [6–9].
There are three mammalian NOS enzymes: neuronal (nNOS), endothelial (eNOS) and
inducible (iNOS). nNOS and eNOS are reversibly activated by the Ca2+-binding protein
calmodulin (CaM) to enable their participation in biological signaling cascades. By contrast,
iNOS binds CaM regardless of the Ca2+ concentration and can remain continuously active
[7,10].
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NOS enzymes are homodimers (Fig. 1). Their subunits are modular and are comprised of an
N-terminal ‘oxygenase domain’ (NOSoxy) that binds iron protoporphyrin IX (heme),
(6R)-5,6,7,8-tetrahydro-L-biopterin (H4B) and Arg, and a C-terminal flavoprotein or reductase
domain that binds NADPH, FAD and FMN. The two domains are separated by a CaM-binding
motif. During catalysis, NADPH-derived electrons transfer into the FAD and FMN in each
NOS subunit and then on to the ferric heme in the partner subunits of the homodimer (Fig. 1).
Heme reduction, which is rate limiting for NO synthesis [11–13], enables O2 binding and
substrate oxidation to occur within the NOSoxy domain [14–16]. The individual NOS domains
and subdomains can be expressed separately, which has facilitated biochemical and structural
studies. The protein structural elements that bind heme, Arg, H4B, CaM, NADPH, FAD and
FMN have been identified based on crystallography, mutagenesis and homology studies [17–
22].

NOS enzymes have novel features
NOS are heme-thiolate enzymes and catalyze oxygen activation by a mechanism similar to
that of the cytochrome P450 (CYP) enzymes (Fig. 2). The oxygen activation involves a two-
step heme reduction with protons donated to help break the O–O bond and generate reactive
heme-oxy enzyme species. However, in NOS, the second electron is provided to the heme-
dioxy species by a bound H4B cofactor rather than by the flavoprotein domain [16]. The H4B
radical is then reduced within the enzyme by the flavoprotein domain in order to continue
catalysis [23]. NOSoxy domains also have a unique protein fold compared with CYPs, a shorter
heme-binding loop and a distinct proximal heme environment with different hydrogen bonding
to the cysteine heme ligand [17–19,24]. The attached flavoprotein and heme domains of NOS
are also an unusual feature shared by only a handful of prokaryotic CYP proteins [4,8,25].

In comparison, the NOS flavoprotein domain is related to a family of dual-flavin enzymes that
contain FAD and FMN, and transfer NADPH-derived electrons to separate hemeprotein
partners or to attached heme domains [5,14,20,22,26]. Other members from eukaryotes include
cytochrome P450 reductase (CYPR) and methionine synthase reductase. Typically (except
bacterial CYPBM3), these flavoproteins are isolated in their 1-electron reduced forms
containing oxidized FAD and a stable FMN semiquinone radical (FMNH•). After reduction
by NADPH occurs, they utilize a 3-2-1 electron-transfer cycle in which their FMN group redox
cycles between its electron-accepting semiquinone form (FMNH−) and its fully reduced,
electron-donating hydroquinone form (FMNH2 or FMNH−). However, the NOS flavoprotein
displays a number of unique features within this enzyme family. These include NOS electron-
transfer reactions being suppressed in the native state by up to three unique protein regulatory
inserts: an autoinhibitory insert in the FMN domain [27–30], a C-terminal tail (CT) [31–33]
and possibly a small insertion or β-finger in the connecting domain [34,35] (Fig. 3A,B). CaM
binding to NOS relieves the suppression at three points in the electron-transfer sequence [36–
40] (Fig. 3C). NOS electron- transfer activity can also be impacted by phosphorylation [41–
46] and by extrinsic proteins like caveolin-1 [47,48], dynamin-2 [49] and heat-shock protein
90 [50]. Finally, NOS enzyme activity is controlled by self-generated NO, which binds to the
NOS heme as an intrinsic feature of catalysis [12,13,51] (Fig. 4). This forces the NOS heme
reduction rate (kr in Fig. 4) to remain relatively slow in order to minimize an inherent NO
dioxygenase activity in NOS that destroys the NO it makes (futile cycle, Fig. 4).

In summary, NOS enzymes display at least four features that distinguish them from other dual-
flavin and heme-thiolate enzymes: (a) the FMN subdomain interacts with its partner donor and
acceptor domains all within an enzyme dimer; (b) electron transfer is suppressed in the basal
state and the suppression is relieved by CaM binding; (c) bound H4B provides the second
electron for oxygen activation in place of the flavoprotein, and then redox cycles within NOS;
and (d) heme–NO binding is an intrinsic feature of catalysis that constrains the rate of heme
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reduction by the flavoprotein domain. How these features shape NOS flavoprotein domain
function is discussed below.

Key function of the FMN subdomain
Figure 5 depicts a three-state, two-equilibrium model that can describe FMN subdomain
function in a NOS dimer. The FMN subdomain receives electrons from the NADPH/FAD
subdomain (FNR) in subunit 1 (green), and then shuttles electrons to the NOSoxy domain in
subunit 2 (black). This process is thought to require relatively large (70 Å) movement of the
FMN subdomain [22], and to involve two reversible and temporally distinct protein binding
interactions:

Equilibrium A describes the FNR–FMN subdomain interaction that is required to generate
FMNH− or FMNH2:

Equilibrium B describes the FMN–NOSoxy interaction that enables heme reduction:

Large movements of the FMN subdomain are constrained by two hinge elements (green, H1
& H2) that connect it to the electron-donating (FNR) and electron-accepting (NOSoxy)
components within the NOS dimer. The CaM-binding site (gray box) in the H2 hinge enables
CaM to influence the movements. The same face on the FMN subdomain (red) is expected to
interact with each partner subdomain to receive and give electrons. Thus, at either end of a
larger movement, the FMN subdomain likely engages in distinct short-range conformational
sampling motions with each of its partner subdomains [52,53]. Basic tenets of this model have
previously been used to describe FMN subdomain function in other dual-flavin enzymes that
shuttle electrons to hemeprotein partners [54,55] and even across subunits as in the dimeric
CYPR–BM3 [56,57].

Studying conformational equilibrium A
Equilibrium A is critical because it helps define electron entry and exit from the FMN
subdomain. Obtaining the KeqA and associated kon and koff kinetic parameters for the FNR–
FMN subdomain complex is a worthwhile and important goal. To date, conformational studies
on the NOS flavoprotein domain have involved ensemble measures with the bound FMN
poised in its oxidized, semiquinone and hydroquinone states. These studies measured
fluorescence intensity of the oxidized flavins, the interaction of bound FMNH• with a soluble
paramagnetic agent by EPR spectroscopy, and rates and extent of reaction of bound FMNH2
(FMNH−) with cytochrome c in single turnover or pre-steady-state conditions by stopped-flow
spectroscopy [58–62]. In general, these methods can report on any dual-flavin enzyme that is
poised in the 0-, 1- and 4-electron reduced states which, practically speaking, are the reduced
states most attainable for experimentation. Some strengths and limitations of the measures have
been discussed recently [63]. The flavin fluorescence and EPR methods provide
semiquantitative information regarding equilibrium A that is useful for comparative studies,
whereas the stopped-flow/cytochrome c method can provide quantitative estimates of KeqA
and in some cases measures of koff for the FMN subdomain (Fig. 5), as recently reported for
eNOS and nNOS (described below) [58]. Experimentally, it is challenging to study equilibrium
A because dual-flavin enzymes are difficult to poise in all the intermediate states that are likely
to be populated during catalysis. For example, this includes the 2- and 3-electron reduced state,
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with accompanying variations in NADP(H) binding site occupancy. Recently, Salerno and
colleagues discussed a kinetic modeling approach that might help to address these issues
[64].

Electron flux and equilibrium A
In general, electron flux through a protein depends on the rates of electron input and output,
with either process being rate limiting. In the case of the NOS flavoprotein (or for dual-flavin
enzymes in general), the question becomes, how is the electron flux affected by the rate of
FMNH2 formation and by the rate of FMNH2 (or FMNH−) reaction with the electron acceptor?
Electron flux through NOS enzymes can be measured by the steady-state activities of
cytochrome c reduction, NO synthesis and/or accompanying rates of NADPH or O2
consumption. Among these, cytochrome c reductase activity is the most straightforward way
to measure electron flux through the flavoprotein domain. This is because cytochrome c is
reduced very slowly by the FNR subdomain [62], and instead is reduced by the FMN
subdomain only when it contains FMNH2 or FMNH−, in a quasi-irreversible single-electron
transfer reaction that is rapid, not rate limiting, and that can occur only when the FMN
subdomain is in an open or deshielded conformation away from its partner subdomains [58,
59,63]. By contrast, electron flux measures that rely on a ‘downstream’ event like NOS heme
reduction (or subsequent NO synthesis activity) are more complicated to interpret, because
heme reduction is relatively slow, CaM dependent and subject to thermodynamic constraints
[65], and NO synthesis activity is a culmination of many steps that are prone to influences
beyond conformational equilibrium A [51].

The features that make cytochrome c reductase activity an excellent measure of electron flux
also make it a useful predictor (but never proof) of changes in equilibrium A in dual-flavin
enzymes. Figure 6 contains curves showing how electron flux through the FMN subdomain of
a dual-flavin enzyme, as measured by cytochrome c reductase activity, might change with the
value of KeqA, according to a simple kinetic model (Fig. 6A). One can compare the model with
the equilibrium A that is depicted in Fig. 5, with k1 = koff and k2 = kon. The calculated kobs
values shown in Fig. 6B assume that there are fast rates of electron input (k3) and output (k4 =
1000 s−1) relative to the rates of conformational change for the FMN subdomain (k1 + k2 = 10
s−1), and also that any change in the FMN redox state (FMNH2 versus FMNH•) does not change
the k1 or k2 values. Each curve in Fig. 6 was calculated using a different electron input rate
(k3, the rate of FMNH2 formation). Calculations of the concentrations of each species with
time were carried out using GEPASI v. 3.30 [66]. The model predicts that there is always a
Keq position for maximum electron flux through the enzyme. On either side of this optimum,
the electron flux drops off because either the formation rate (k2) or dissociation rate (k1) of the
FNR–FMN subdomain complex becomes slower. At relatively fast rates of FMNH2 formation,
electron flux through the flavoprotein is primarily a function of the rates of conformational
change (k1, k2) that determine KeqA. However, when the rate of conformational change begins
to approach the rate of FMNH2 formation (either from speeding up k1 and k2 or by slowing
FMNH2 formation), then the rate of electron input (k3) becomes an important factor for
governing the electron flux, and consequently electron flux would be more sensitive to changes
in the rate of FMNH2 formation. Thus, one could envision three ways that electron flux through
the FMN subdomain might be controlled in a dual-flavin enzyme: changing the ratio or speed
of k1 and k2, changing the rate of FMNH2 formation or by a combination of these effects. In
addition, further tuning could be achieved if the changes in the FMN redox state that occur
during catalysis (FMNH2 versus FMNH•) do cause the k1 or k2 values to change.
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Factors that may modulate equilibrium A and/or the FMNH2 formation rate
Although the model in Fig. 6 is conceptually useful, the situation is more complicated in dual-
flavin enzymes because of a number of factors, including the k1 and k2 of KeqA possibly being
influenced by changes in the FAD and FMN reduction state or by changes in NADP(H)-binding
site occupancy during catalysis. Another factor to consider is the thermodynamic driving force
to generate FMNH2. The midpoint potential of the FMNH2/FMNH couple in NOS enzymes
(and in most other dual-flavin enzymes) is similar to the FADH2/FADH couple and is
somewhat more negative than the FADH/FAD couple [67]. These data indicate that a relatively
poor driving force exists for FMNH2 buildup, which then occurs to different incomplete extents
as the flavoprotein cycles through its 3- and 2-electron reduced states during catalysis. This,
in turn, can impact the rate of electron exit and flux through the flavoprotein. Two studies have
investigated how changes in the flavin midpoint potentials may alter FMNH2 formation and
the resultant electron flux through the FMN subdomain of NOS [68,69].

Factors that may alter equilibrium A conformational rates k1 and k2 and/or alter the rate of
electron input into the NOS flavoprotein are listed in Table 1. These include proteins, small
molecules, NOS regulatory inserts and point mutations. For many of the factors, our only
indication currently that they might alter KeqA is from their changing the steady-state
cytochrome c reductase activity. Thus, more work needs to be done to obtain measures of
KeqA and the associated k1 and k2 values for dual-flavin enzymes, particularly when they are
poised in all catalytically relevant intermediate redox states (1-, 2-, or 3-electron reduced),
perhaps ultimately using single molecule spectroscopic approaches.

Relationship between CT, bound NADPH and equilibrium A in NOS
Among the factors listed in Table 1, only the roles of CaM, the CT and bound NADPH have
been studied in detail. An interesting and possibly novel connection appears to link regulation
of KeqA by the CT and bound NADPH. Basically, the CT of nNOS and eNOS contain a
conserved Arg residue whose side chain makes a salt bridge interaction with the 2′-phosphate
of bound NADP(H) [22]. Mutagenesis studies suggest that this interaction helps transduce the
effect of bound NADP(H) on KeqA (it causes KeqA to decrease), presumably by strengthening
the CT to act as a clasp for the FMN subdomain [60]. NADP(H) binding may have a similar
influence on KeqA in the related enzyme CYPR [55,70], although it has no CT regulatory
element. This suggests that multiple modes of regulation are in play, even for the relatively
fundamental circumstance of NADP(H) binding. Some other modes have been explored in the
FNR, CYPR and NOS enzymes [61,71–76].

Is there a correlation between NOS reductase activity and KeqA?
That a relationship exists between the KeqA and the cytochrome c reductase activity of the
CaM-free reductase domain of neuronal NOS (nNOSr) was first considered based on measures
taken with the 4-electron reduced nNOS flavoprotein in three different states (NADPH-free/
CaM-free, NADPH-bound/CaM-free and CaM-bound) [59]. Subsequent measures made with
CT point mutants of nNOS (R1400E, R1400S or F1395S) [60,61], and nNOS mutants
possessing graded CT truncations [33], allowed the relationship to be examined over a wider
range of KeqA than was previously possible. Figure 7 shows that a good correlation appears to
exist (R = 0.96) between the cytochrome c reductase activities of the various CaM-free nNOS
flavoproteins and their degree of FMN deshielding, which is directly related to the KeqA for
each flavoprotein (greater FMN deshielding = higher KeqA). Curiously, several of the CaM-
free mutant enzymes depicted in Fig. 7 appear to be in a super-deshielded state compared with
the CaM-bound wild-type nNOSr. This may be at odds with more recent data [63,77],
indicating that the FMN deshielding level in CaMbound nNOSr is near its maximal value,
because it is similar in magnitude to the isolated FMN subdomain, which should exhibit the
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maximal possible FMN deshielding. This discrepancy may reflect the inherent difficulty in
precisely measuring FMN shielding and the value for KeqA in nNOS, because of its small
dynamic range (FMN shielding values only range between 50 and near 100%) [63,77]. At this
point, the data suggest that KeqA and the associated kon and koff conformational rates are
primary factors in regulating the cytochrome c reductase activity of NOS enzymes, particularly
in the CaM-free state.

Do the conformational motions describing equilibrium A limit electron flux
through NOS enzymes?

Daff and colleagues [59] first proposed that the conformational opening of the FNR–FMN
subdomain complex (koff in Fig. 5 and k1 in Fig. 6) might limit electron flux through the NOS
flavoprotein, and they presented the first data to support such a mechanism. There have been
several subsequent investigations, culminating in a recent report by Ilagan et al. [58] that
provides the first ensemble rate measures (Table 2) for the conformational steps in the nNOS
and eNOS flavoproteins (dissociation and association of the 4-electron reduced FNR–FMN
subunit complex, kon and koff in Fig. 5). Remarkably, the results suggest that koff is the sole
kinetic parameter that limits steady-state electron flux to cytochrome c for both the CaM-free
eNOS and nNOS flavoproteins (Table 2). So the answer to the question posed above is yes, in
the CaM-free nNOS and eNOS, the rate of FMNH2 formation appears to be relatively fast and
not rate limiting, and instead a specific conformational step (koff, dissociation of the reduced
FMN subdomain) is rate limiting for cytochrome c reductase activity. How these
conformational movements are regulated in NOS, and whether similar conformational motions
may limit electron flux through other dual-flavin enzymes, are exciting questions that could
be approached through similar experimental means.

Does the rate of electron input (rate of FMNH2 formation) limit electron flux
through NOS enzymes?

As noted above, for CaM-free eNOS and nNOS, the answer to this question appears to be no
[58]. But in the CaM-bound enzymes, or in other dual-flavin enzymes, it remains an open
question. Electron input into NOS has been studied by monitoring flavin reduction kinetics
[33,60–62,78]. Hydride transfer from NADPH to FAD is relatively fast and does not limit the
rate of FMNH2 formation or electron flux through NOS, except in mutants that retard this
hydride transfer [62]. FMN reduction is often difficult to discern because of its similar spectral
properties to the bound FAD. In addition, the observed rate of FMN reduction in a dual-flavin
enzyme may depend to a variable extent on the KeqA parameter kon, which is the formation
rate of the FNR–FMN subdomain complex (Fig. 5). The kinetics of interflavin electron transfer
(FAD and FMN) in dual-flavin enzymes has been studied using a T-jump method [79] and by
observing rates of flavin semiquinone formation (FADH• and/or FMNH•) during pre-
equilibrium reduction reactions with NADPH [61,80–85]. In such studies, kobs ranged from
20 to 100 s−1 at 10°C for nNOS, but appeared to be slower in eNOS. Several factors appear to
influence the rate of flavin reduction in NOS enzymes (Table 1). CaM increased the rates of
NOS flavin reduction in most studies. The mechanism appears to involve specific domains of
CaM [86,87]. A faster interflavin electron transfer may conceivably help explain how CaM
increases electron flux through NOS enzymes (cytochrome c reductase activity; the effect of
changing k3 in Fig. 6). Indeed, some correlation exists between the rates of flavin reduction
and the cytochrome c reductase activity of nNOS bound to a series of CaM analogs [88,89].
However, it is difficult to interpret these data because a means to exclusively alter the rate of
FMNH2 formation without causing coincident changes in conformational equilibrium A and
in the kon and koff parameters is still unavailable. Indeed, CaM shifts equilibrium A in NOS
enzymes to the more open conformation, and therefore likely increases the koff parameter of
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equilibrium A [58] and may possibly increase the kon parameter as well. Unfortunately, the
shift in KeqA caused by CaM prevented an accurate measure of the koff parameter in CaM-
bound eNOS and nNOS [58], and thus prevented assessment of the relative importance of
conformational change rates versus rates of FMNH2 formation in limiting electron flux through
the CaM-bound NOS enzymes. In general, as the kon and koff of equilibrium A increase, it
becomes more probable that the rate of electron input (specifically, FMNH2 formation) or some
other step like NADP+ release, as in F1395S nNOS [61] and the analogous CYPR mutants
[73], will limit electron flux through NOS or other dual-flavin enzymes. Further work should
continue to clarify this issue.

Creating an intrinsic set point for equilibrium A
Common structural features in dual-flavin enzymes may determine their set points for KeqA.
Among these are complementary charge pairing interactions that are present to various extents
in the FNR–FMN subdomain interface, including the interface in NOS (Fig. 8). Point mutations
that neutralize charge pairing or introduce charge-repelling interactions may increase the
KeqA set point to various degrees, at least as judged by the increase in cytochrome c reductase
activity that they cause [90]. Remarkably, CaM-free eNOS and nNOS have significantly
different set points for KeqA [58] (Table 2), but CaM binding shifted the KeqA of eNOS to a
value closer to that of nNOS (Table 2). Their different basal set points for equilibrium A explain
why eNOS has much slower electron flux through its FMN subdomain (as measured by
cytochrome c reductase activity) [58]. The structural basis for their different set points is
unclear at this point, but may certainly involve apparent differences in their CT and
autoinhibitory insert elements, or elsewhere in the enzyme.

Changing the set point for KeqA may influence electron flux through the NOS flavoprotein in
interesting ways (Fig. 6). For example, the basal set points of eNOS and nNOS, although
different from one another, appear to both lie to the left of their optimum, and support a
suboptimal electron flux. CaM binding shifts their KeqA set points to a value that supports
increased electron flux. According to this model, introducing a mutation that shifts the intrinsic
set point, say, by weakening the FNR–FMN subunit interaction, would be expected to boost
electron flux through either of the CaM-free NOS enzymes. However, this is only true to a
point, because the mutation could conceivably cause the KeqA to shift so far that upon CaM
binding, the mutant KeqA would lie beyond the optimum, and therefore would actually support
a slower electron flux in the CaM-bound versus CaM-free state. Real-life examples may already
exist, in particular the FNR–FMN subdomain interface mutant R1229E nNOS [77] and the
nNOS CT truncation mutant tr1397 [32,33]. In these cases, the rate of FMNH2 formation may
be limited by a conformational change, namely, the kon for FNR–FMN subdomain complex
formation may be so slow that it becomes rate limiting for FMNH2 formation during the steady
state (also see k2 in Fig. 6A). A means to measure the reduction state of the bound FMN
(FMNH2 versus FMNH•) during steady-state catalysis in dual-flavin enzymes would be
generally useful, as was done in other flavoproteins modified to contain reporter flavin analogs
[91]. In any case, the set point for KeqA is a fundamental parameter whose varied settings
[58] could both up- and downregulate electron flux through the dual-flavin enzymes.

Conformational equilibrium B
We know comparatively little about the FMN–NOSoxy interaction and the associated
equilibrium described by KeqB (Fig. 5). A crystal structure of this domain–domain interaction
is not available. Nevertheless, a conserved electropositive surface on the NOSoxy domain is
proposed to provide a potential docking site for the FMN subdomain [18], and this idea is
supported by limited mutagenesis studies [92]. Combining the known structures of nNOS
flavoprotein, the NOSoxy dimer and CaM when it is bound to the eNOS binding peptide,
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Garcin et al. [22] constructed a model for full-length nNOS that indicates that an allowable
large motion of the FMN module could bring the FMN cofactor within an acceptable electron-
transfer distance from the heme in the partner NOSoxy domain. Although this model suggests
feasibility, whether it is an accurate depiction of the FMN–NOSoxy interaction is still unclear.
However, recent crystal structures of CYPR mutants now support the feasibility of the long-
range movement that is required for the FMN subdomain to support heme reduction in NOS
enzymes [85].

Measuring the FMN–NOSoxy interaction and KeqB
NO synthesis activity is too complex to be a reliable indicator of the FMN–NOSoxy interaction.
Measuring heme reduction is better but is still indirect and may have inherent limitations.
Measuring the rate and extent of back electron transfer from the ferrous NOS heme to FMNsq
following flash photolysis of CO can indicate precisely the rate of electron transfer, but cannot
reveal the extent of the FMN–NOSoxy interaction [93–95]. Recently, Ilagan et al. [63]
investigated KeqB by studying single-turnover electron-transfer reactions between a fully-
reduced FMN–NOSoxy construct of nNOS and excess cytochrome c. Their evidence shows
that KeqB is poised at values far below unity in nNOS, such that the dissociated conformation
predominates and the KeqB value is little changed in the presence or absence of bound CaM.
Thus, broad differences appear to exist in the set points of KeqA and KeqB in NOS enzymes,
and in how the two set points are regulated. The FMN–NOSoxy complex formation described
by KeqB appears to be infrequent and/or transient in practically all circumstances, such that
the FMN subdomain may interact far less with NOSoxy than it does with the FNR subdomain
in a NOS homodimer. These concepts are consistent with the poor ability of isolated nNOS
flavoprotein and nNOSoxy domains to interact with one another and catalyze heme reduction
or NO synthesis when they are mixed together [96], and is consistent with NOS enzymes having
slow rates of heme reduction compared with other flavo-heme proteins [51]. Moreover, this
likely distinguishes NOS from related flavoproteins that do not have attached heme acceptor
domains and thus make higher affinity interactions between their FMN subdomains and their
detached electron acceptor partners (e.g. the interaction of CYPR with heme oxygenase 1)
[97,98]. Additional measurements of KeqB and the associated conformational rates in NOS
enzymes will certainly improve our understanding of this essential FMN subdomain
interaction.

Relationship of KeqA to equilibrium B and to NOS heme reduction
At the limit, KeqA can impact KeqB, heme reduction and NO synthesis because the reduced
FMN subdomain must become dissociated from the FNR sub-domain in order to interact with
NOSoxy and to reduce the heme (Fig. 5). However, the lowest possible rates for the FMN
subdomain dissociation step (koff) in the CaM-bound eNOS and nNOS are ~1 and 20 s−1,
respectively [58] (Table 2), and these rates are still 4–10 times faster than the observed rates
of heme reduction in the CaM-bound eNOS or nNOS at the same temperature and conditions
(0.1 and 5 s−1, respectively) [99,100]. This indicates that the electron transfer from the reduced
FMN subdomain to the NOS heme is considerably less efficient than is its electron transfer to
cytochrome c, which has turnover numbers of 1 and 20 s−1 for CaM-bound eNOS and nNOS,
respectively, under the same conditions [58]. Indeed, greatly increasing the KeqA in nNOS via
CT truncations enables only a small NO synthesis by the CaM-free enzyme [33]. This, and a
variety of other evidence [33,51,68,90,99,101–103] suggest that shifting KeqA toward the
FMN-deshielded state is not enough on its own to support heme reduction and NO synthesis
in nNOS. Instead, additional and distinct effects on the FMN–NOSoxy interaction must be
required, and the effects of CaM binding cannot be totally ascribed to the flavoprotein domain
as suggested by others. Interestingly, these additional CaM effects need not cause a significant
change in KeqB [63], but could rather have more subtle effects on structural elements that
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restrict motions of the FMN subdomain or present physical barriers that prevent the FMN
subdomain from docking in a subset of conformations that allow electron transfer to the
NOSoxy heme.

Factors that may regulate equilibrium B
Table 1 lists factors that may influence KeqB in NOS enzymes, mostly as indicated by their
effects on NO synthesis activity or on the heme reduction rate. A few are discussed below.

Calmodulin
CaM has been assumed to promote the FMN–NOSoxy interaction, as judged by its ability to
trigger NOS heme reduction and NO synthesis. Early hypotheses that the autoinhibitory insert
and CT elements were critical in the process are not supported by deletion studies showing that
NOS mutants missing either one or both of these control elements for the most part require
CaM for NO synthesis, and then achieve an NO synthesis activity that is ≥ 50% of wild-type
[28,30,31,102,104,105]. Studies with CaM variants [60,86–89,106–110] indicate that several
structural features of CaM may be important. However, the recent results of Ilagan et al. [63]
suggest that CaM binding may not alter KeqB to a great extent, implying it may primarily
function through additional mechanisms.

Connecting hinge domains
The composition of the two hinges that connect the FMN subdomain in NOS enzymes (H1
and H2 in Fig. 5) defines the allowable movements of the FMN subdomain and thus controls
the FMN–NOSoxy interaction (equilibrium B). This in turn may greatly impact the extent and
rate of heme reduction in NOS enzymes. Precedent includes flavocytochrome b2, where
altering its hinge length caused a 10-fold change in the heme reduction rate [111–114]. The
FMN–FNR subdomain hinge (H1 in Fig. 5) is one of the least conserved motifs and is shorter
in eNOS than in nNOS. Swapping the H1 hinge of nNOS into eNOS increased its heme
reduction rate and increased its NO synthesis activity fourfold [99]. This confirms that the NOS
H1 is a structural element that helps define the FMN–NOSoxy interaction, but whether it
impacts KeqB is still unclear. Analogous studies have been carried out on the H1 hinge of CYPR
[55,85].

Challenge of H4B reduction
During NO synthesis, the NOS FMN subdomain must provide an electron to reduce the ferric
heme and the H4B radical at two distinct points during the catalytic cycle (Fig. 2). A recent
study found that reduction of the H4B radical in nNOS requires CaM binding and occurs at a
rate similar to ferric heme reduction [23]. These results, along with distance constraints
suggesting that direct electron transfer from the FMN subdomain to the H4B radical would be
too slow, led the authors to propose a through-heme model for H4B radical reduction by the
FMN subdomain in NOS (Fig. 9). This mechanism essentially has the heme porphyrin ring
acting as a wire to deliver an electron from the FMN subdomain to the H4B radical. It eliminates
the problem of electron transfer over a long distance, and also eliminates the need to invoke a
separate docking site for the FMN subdomain on NOSoxy or the need for the flavoprotein to
sense when an electron is required by the heme versus the H4B radical at discreet steps in the
reaction cycle (Fig. 2). Because reduction of the H4B radical presents a novel function for the
FMN subdomain, it will be important to further test the validity, kinetics and thermodynamics
of the through-heme pathway in NOS enzymes.
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Conclusions
Although the NOS flavoprotein domain has fundamental structural, thermodynamic and
mechanistic features in common with the dual-flavin family of reductases, there are unique
aspects related to NO synthesis that constrain and shape its function. Both common and unique
features govern electron flux through the NOS flavoprotein domain. Many of these appear to
act by influencing a conformational equilibrium (KeqA) that defines the interaction between
the FMN subdomain and the FNR subdomain, although some may also influence the rate of
electron import into the FMN subdomain and the resulting formation of FMNH2. The extent
to which KeqA or the rate of FMNH2 formation influences electron flux through the NOS
flavoprotein can vary depending on the circumstances. However, the KeqA, and specifically
the dissociation rate of the reduced FMN subdomain, appears to be the primary factor that
determines electron flux through the CaM-free nNOS and eNOS flavoproteins. A second
conformational equilibrium (KeqB) defines the interaction of the reduced FMN subdomain
with the NOSoxy domain that is required for heme reduction and NO synthesis. This
equilibrium appears to have a different set point and regulation compared to KeqA, but has not
been as thoroughly studied. An intrinsic heme–NO binding event occurs in NOS enzymes
during catalysis and is likely to restrict the electron transfer function (heme reduction) of the
NOS FMN subdomain relative to its function in related dual-flavin enzyme systems.
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Abbreviations

CaM calmodulin

CT C-terminal tail

CYP cytochrome P450

CYPR cytochrome P450 reductase

eNOS endothelial nitric oxide synthase

FADH• one-electron reduced (semiquinone) FAD

FADH2 two-electron reduced (hydroquinone) FAD

FMNH• one-electron reduced (semiquinone) FMN

FMNH2/FMNH− two-electron reduced (hydroquinone) FMN

FNR ferredoxin NADP+ reductase-like subdomain

H4B (6R)-5,6,7,8-tetrahydro-L-biopterin

iNOS inducible nitric oxide synthase

nNOS neuronal nitric oxide synthase

nNOSr reductase domain of neuronal NOS

NO nitric oxide

NOS nitric oxide synthase

NOSoxy oxygenase domain of NOS
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Fig. 1.
Domain arrangement and electron flow in the NOS dimer.
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Fig. 2.
Simplified model of arginine hydroxylation in NOS enzymes. Ferric heme receives an electron
from FMNH2/MNH− enabling oxygen binding and formation of a ferrous dioxygen species.
A second electron must be delivered from H4B to eventually form a high valent iron-oxo species
that hydroxylates Arg. The H4B+• radical has to be reduced before the next catalytic cycle can
proceed.
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Fig. 3.
(A) Domain organization in NOS and related enzymes. NOS includes regulatory elements that
are absent in other closely related proteins. (B) Structure of nNOS flavoprotein domain. The
FNR and FMN subdomain are shown in green and yellow, respectively. Regulatory elements
(β-finger; AI, autoinhibitory insert; CT, C-terminal tail) are shown in pink. The coenzymes
FMN (orange), FAD (dark blue) and NADP+ (cyan) are shown as sticks. Modeled fragments,
not visible in the crystal structure, are shown in light gray. The visible parts of the hinge element
between FMN and FNR subdomains are shown in dark blue. (C) CaM exerts an enhancing
effect in three electron-transfer steps.
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Fig. 4.
Global kinetic model for NOS catalysis. Ferric enzyme reduction (kr) is rate limiting for the
biosynthetic reactions (central linear portion). kcat1 and kcat2 are the conversion rates of the
FeIIO2 species to products in the Arg and NOHA reactions, respectively. The ferric heme–NO
product complex (FeIIINO) can either release NO (kd) or become reduced (kr) to a ferrous
heme–NO complex (FeIINO), which reacts with O2 (kox) to regenerate the ferric enzyme.
Adapted from Stuehr et al. [51].
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Fig. 5.
Model of NOS FMN subdomain function in electron transfer and heme reduction. Electron
transfer in NOS can be regarded as a three-state model. Equilibrium A indicates the change
between a conformation in which FNR and FMN subdomains are interacting (left) and a
conformation where the FMN subdomain is deshielded and available for interaction with
electron acceptors such as cytochrome c (center). Equilibrium B indicates the transition from
the FMN deshielded conformation to a FMN–NOSoxy domain interacting state. See text for
details.
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Fig. 6.
Model and simulations of cytochrome c reduction by NOS enzymes. (A) Scheme of
cytochrome c reduction. The model uses four kinetic rates: dissociation (k1) and association
(k2) of the FMN and FNR subdomains; FMNH• reduction rate (k3) and cytochrome c reduction
rate (k4). For simplicity, k1 and k2 are assumed to be independent of the flavin reduction state,
k4 is assumed to be much faster than the conformational equilibrium so the backwards rates
are negligible, oxidized cytochrome c concentration is constant and in 100-fold excess. (B)
Apparent rates of steady-state cytochrome c reduction for different FMNH• reduction (k3)
values. kobs values were determined by fitting the apparent change in the concentration of
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reduced cytochrome c versus time to a straight line. The percentage of deshielding is (k1/(k1 +
k2)) × 100. See text for details.
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Fig. 7.
Correlation between nNOS cytochrome c reductase activity and FMN deshielding. The figure
plots relative cytochrome c reductase activities of various CaM-free nNOS flavoproteins and
CaM-bound wild-type versus their degree of FMN deshielding. All values are relative to
NADPH-bound wild-type enzyme, which was given activity and shielding values of unity.
Line is a least squares best fit. Adapted from Tiso et al. [33].
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Fig. 8.
Complementary charges in the FMN–FNR subdomain interface. The electrostatic potential
surfaces of the FMN (left) and FNR (right) subdomains show complementary negative charges
in the FMN surface that interact with a positively charged surface patch in the FNR module.
Adapted from Panda et al. [90].
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Fig. 9.
Through-heme model for H4B radical reduction in NOS. H4B is 17 Å away from the putative
FMN-docking surface. Placing the FMN domain in conformations where Lys423 and Glu762
are in close contact enables feasible distances (9–15 Å) for FMN to heme electron transfer but
too long (26–32 Å) for direct FMN to H4B electron transfer. It is proposed that electron transfer
proceeds through heme (dashed line) involving two short-distance (< 15 and 3 Å) electron
transfer steps. Adapted from Wei et al. [23].
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Scheme 1.
Reaction catalyzed by NOS.

Stuehr et al. Page 28

FEBS J. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Stuehr et al. Page 29

Ta
bl

e 
1

Fa
ct

or
s t

ha
t m

ay
 a

lte
r c

on
fo

rm
at

io
na

l e
qu

ili
br

iu
m

 A
, B

 a
nd

/o
r t

he
 ra

te
 o

f e
le

ct
ro

n 
in

pu
t i

n 
ni

tri
c 

ox
id

e 
sy

nt
ha

se
 (N

O
S)

 e
nz

ym
es

.a  A
I, 

au
to

in
hi

bi
to

ry
 in

se
rt;

B
2R

, b
ra

dy
ki

ni
n 

re
ce

pt
or

 B
2;

 C
aM

, c
al

m
od

ul
in

; C
T,

 C
-te

rm
in

al
 ta

il;
 H

SP
-9

0,
 h

ea
t-s

ho
ck

 p
ro

te
in

 9
0;

 iN
O

S,
 in

du
ci

bl
e 

ni
tri

c 
ox

id
e 

sy
nt

ha
se

; N
D

, n
ot

de
te

rm
in

ed
; N

A
, n

ot
 a

pp
lic

ab
le

; ?
, d

iff
er

en
t m

od
ifi

ca
tio

ns
 (m

ut
at

io
n,

 d
el

et
io

n)
 g

av
e 

di
ff

er
en

t r
es

ul
ts

.

K e
qA

K e
qB

C
yt

 c
 r

ed
uc

tio
n

Fl
av

in
 r

ed
uc

tio
n 

ra
te

H
em

e 
re

du
ct

io
n

N
O

 sy
nt

he
si

s

Fa
ct

or
−C

aM
+C

aM
−C

aM
+C

aM
+C

aM
+C

aM
R

ef

C
aM

N
A

↑b
N

A
↑

↑
↑

[3
7–

39
,5

9]

N
A

D
PH

↓b
=b

↑
↑

=
↑

[5
8,

59
,6

1,
90

,9
9]

C
Tc

↓
↓d

↓
↓e

,i 
=n

↑n
 =

e,
i

↓i
 ↑

e,
ne

[3
1–

33
,1

02
,1

05
]

A
I(

e/
n)

c
↓

↓e
↑n

N
D

N
D

N
D

↓e
 ↑

n
[2

8,
10

2,
10

5,
11

5]

β-
fin

ge
r (

e/
n/

iN
O

S)
?

?
N

D
N

D
N

D
?

[3
4,

35
]

R
12

29
E 

nN
O

S
↑b

=b
↑

↑
N

D
↓

[7
7]

F1
39

5S
 n

N
O

S
↑b

=b
↑

=
↓

↓
[6

1,
72

,1
16

]

R
14

00
E 

nN
O

S
↑b

↑b
↑

↓
↑

↓
[6

0]

S1
41

2D
 n

N
O

S
↑

↑
↑

=
↑

↓
[8

8]

S1
17

9D
 e

N
O

S
↑

↑
N

D
N

D
N

D
↑

[1
17

]

C
av

eo
lin

-1
↓

↓
N

D
N

D
N

D
↓

[4
7,

48
]

H
SP

-9
0

=f
↑f

N
D

N
D

N
D

↑
[5

0,
11

8–
12

2]

D
yn

am
in

-2
N

D
↑

N
D

N
D

N
D

↑
[4

9,
12

3]

B
2R

N
D

=
N

D
N

D
N

D
↓

[1
24

,1
25

]

a U
nl

es
s o

th
er

w
is

e 
st

at
ed

, c
yt

oc
hr

om
e 

c 
re

du
ct

io
n 

an
d 

N
O

 sy
nt

he
si

s c
ha

ng
es

 c
or

re
sp

on
d 

to
 st

ea
dy

-s
ta

te
 m

ea
su

re
m

en
ts

, f
la

vi
n 

re
du

ct
io

n 
an

d 
he

m
e 

re
du

ct
io

n 
ra

te
s a

re
 d

er
iv

ed
 fr

om
 st

op
pe

d-
flo

w
 e

xp
er

im
en

ts
. e

,
i o

r n
 re

fe
r t

o 
st

ud
ie

s o
n 

eN
O

S,
 iN

O
S 

or
 n

N
O

S,
 re

sp
ec

tiv
el

y.
 F

or
 a

n 
ex

te
ns

iv
e 

lis
t o

f p
ro

te
in

s t
ha

t i
nt

er
ac

t w
ith

 N
O

S 
th

e 
re

ad
er

 is
 re

fe
rr

ed
 to

 o
th

er
 re

vi
ew

s [
10

,1
26

,1
27

]. 
R

eg
ar

di
ng

 N
O

S 
ph

os
ph

or
yl

at
io

n,
 o

nl
y

th
e 

ph
os

ph
or

yl
at

io
n 

m
im

ic
s S

11
79

D
 e

N
O

S 
an

d 
S1

41
2D

 n
N

O
S 

ar
e 

sh
ow

n;
 fo

r m
or

e 
de

ta
ile

d 
in

fo
rm

at
io

n,
 se

e 
H

ay
as

hi
 e

t a
l. 

[4
4]

 a
nd

 M
ou

nt
 e

t a
l. 

[1
28

].

b Pr
e-

st
ea

dy
-s

ta
te

 c
yt

oc
hr

om
e 

c 
re

du
ct

io
n 

m
ea

su
re

m
en

ts
.

c Th
e 

ef
fe

ct
 o

f t
he

 e
le

m
en

t i
s i

nf
er

re
d 

fr
om

 d
el

et
io

n 
m

ut
an

ts
, t

he
re

fo
re

 th
e 

ef
fe

ct
s r

ep
or

te
d 

in
 th

e 
ta

bl
e 

ar
e 

th
e 

op
po

si
te

 o
f t

he
 o

bs
er

ve
d 

ef
fe

ct
s.

d A
ll 

bu
t o

ne
 re

po
rt 

in
di

ca
te

 d
ec

re
as

ed
 c

yt
oc

hr
om

e 
c 

re
du

ct
io

n 
+ 

C
aM

 in
 Δ

C
T 

nN
O

S 
[3

3]
.

e A
ll 

bu
t o

ne
 re

po
rt 

in
di

ca
te

s i
nc

re
as

ed
 N

O
 sy

nt
he

si
s i

n 
ΔC

T 
eN

O
S 

[1
05

].

f O
nl

y 
eN

O
S 

da
ta

 [1
21

], 
no

t d
et

er
m

in
ed

 fo
r i

N
O

S 
or

 n
N

O
S.

FEBS J. Author manuscript; available in PMC 2010 August 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Stuehr et al. Page 30

Table 2

Parameters describing conformational equilibrium A for the 4-electron reduced nNOS and eNOS flavoproteins.
a CaM, calmodulin; ND, not determined.

Protein Condition KeqA kon (s−1) koff (s−1)

eNOS −CaM 0.1 4 0.5

+CaM 8–9 ND ≥ 0.9–1.2b

nNOS −CaM 1 8 8

+CaM 8–9 ND ≥ 14–21b

a
Data are taken from Ilagan et al. [58]. Equilibrium A is depicted in Fig. 5. All measures were performed at 10 °C.

b
Estimated from the initial rates of cytochrome c reduction activity.
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