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Abstract

Human perception of ambiguous sensory signals is biased by prior experiences. It is not known how such prior information
is encoded, retrieved and combined with sensory information by neurons. Previous authors have suggested dynamic
encoding mechanisms for prior information, whereby top-down modulation of firing patterns on a trial-by-trial basis creates
short-term representations of priors. Although such a mechanism may well account for perceptual bias arising in the short-
term, it does not account for the often irreversible and robust changes in perception that result from long-term,
developmental experience. Based on the finding that more frequently experienced stimuli gain greater representations in
sensory cortices during development, we reasoned that prior information could be stored in the size of cortical sensory
representations. For the case of auditory perception, we use a computational model to show that prior information about
sound frequency distributions may be stored in the size of primary auditory cortex frequency representations, read-out by
elevated baseline activity in all neurons and combined with sensory-evoked activity to generate a percept that conforms to
Bayesian integration theory. Our results suggest an alternative neural mechanism for experience-induced long-term
perceptual bias in the context of auditory perception. They make the testable prediction that the extent of such perceptual
prior bias is modulated by both the degree of cortical reorganization and the magnitude of spontaneous activity in primary
auditory cortex. Given that cortical over-representation of frequently experienced stimuli, as well as perceptual bias towards
such stimuli is a common phenomenon across sensory modalities, our model may generalize to sensory perception, rather
than being specific to auditory perception.
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Introduction

Natural stimuli are variable and often mixed with noise. Our

perception of these stimuli is thus derived from ambiguous sensory

inputs. Psychophysical experiments in humans and primates

indicate that this ambiguity is partly compensated for by

incorporating information about the probabilities of previously

experienced stimuli directly into the percept in a Bayesian manner

[1–3]. However, it is not known how this prior information is

encoded, retrieved and combined with sensory information by

neurons [4,5].

Previous theoretical investigations of Bayesian inference were

often based on homogeneous stimulus representations—i.e., all

possible values of stimulus parameters are evenly represented [5].

In such a representational system, prior information is typically

modeled as the activation of a sub-population of neurons by top-

down influences or cross-modal interactions [5,6]. This population

activity may be linearly combined with sensory-driven activity for

optimal integration of information [5]. These prior storage and

integration processes are believed to occur in higher-level/multi-

sensory cortical areas, but not in low-level sensory cortices.

Although such a mechanism of dynamic prior information

encoding and integration may underlie perceptual bias arising in

the short-term and in a context-dependent manner [1], it does not

account for the often irreversible, robust and context-independent

changes in perception that result from long-term, developmental

experience [7,8]. Extensive experience of native speech sounds, for

instance, warps the perceptual space so that speech sound variants

near a frequently heard prototype are perceived as being more

similar to the prototype than they actually are [8,9]. Such a

phenomenon, also known as the perceptual magnet effect, has

been interpreted as an example of Bayesian inference in language

perception [3], and has been correlated with experience-altered

stimulus representations in the sensory cortices [7,10].

Cortical stimulus representations are not homogeneous. Sensory

experience during early development results in robust changes in

primary cortical sensory representations that persist into adult-

hood. A very consistent finding is that more frequently

experienced stimuli gain greater representations in primary

sensory cortices [7]. The influences of inhomogeneous represen-

tations on sensory perception have not been fully explored. We

reasoned that the sizes of cortical stimulus representations carry

long-term prior information [11], and could play an important

role in Bayesian inference in sensory perception. Using a

computational model of auditory perception, we investigated the

effect of increasing cortical frequency representations on the

perception of pure tones. The results indicate that prior

information stored in primary auditory cortex frequency repre-
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sentations can be read-out by locally generated neuronal activity

and combined with sensory-evoked activity to generate a percept

that conforms to Bayesian integration theory.

Materials and Methods

Modeling frequency representations in AI
We modeled primary auditory cortex (AI) frequency representa-

tions with 800 independent Poisson-firing neurons. The parameters

of the model were chosen based on properties of the primary auditory

cortical neurons documented in the literature and our unpublished

results. In particular, our experimental finding that the firing rates of

neurons in auditory cortex exhibit significant variability, with a mean

Fano factor value of 0.98+/20.21 [12], led us to model neuronal

firing as a Poisson process. Each neuron had a Gaussian-shaped

response-frequency tuning curve as:

Ti fð Þ~ae

{(frequency{m)2

2s fð Þ2 zd ð1Þ

where m is the characteristic frequency, a is the maximum response

magnitude, 2s is the tuning bandwidth and d is the baseline

spontaneous firing rate. The distributions of tuning bandwidths (2s)

and maximum response magnitudes (a) are approximately lognormal,

and based directly on our experimental observations. Lognormal

distribution is characterized by two parameters—the mean and

standard deviation of the logarithm of the investigated response

property. The baseline spontaneous firing magnitudes exhibit an

exponential distribution, which is characterized by a population mean.

The tuning bandwidths, maximum response magnitudes and baseline

spontaneous firing magnitudes of the model AI neurons were

independently and randomly drawn from the corresponding

distributions. The parameters of the distributions are listed in Table 1.

To replicate frequency representations seen in AI of naı̈ve

animals and animals with extensive prior experience of a specific

tone (7 kHz) [7], model characteristic frequencies (CFs) were

either uniformly distributed on a logarithmic scale in the range of

1–32 kHz (naı̈ve) or skewed such that more neurons were tuned to

7kHz (7-kHz-over-represented) (Fig. 1). For the 7kHz-over-

represented AI, CFs from 5 to 10 kHz were shifted to have a

Gaussian distribution centered at 7kHz and with a standard

deviation of 0.1 octave (Fig. 1). Consistent with our experimental

findings the bandwidths of neurons in the over-represented range

were slightly smaller (Table 1) [7].

Modeling frequency perception
We modeled auditory perception by decoding the simulated

population response to an input frequency using the maximum-

likelihood decoding method [7,12,13]. Assume that, when stimu-

lated with a tone of frequency f , the ith neuron of the model AI

responds with Rstimi spikes. As the model neurons fire spikes in a

Poisson-random fashion, Rstimi is a Poisson-random number with

a mean of Ti(f ), where Ti is the neuron’s response-frequency tuning

curve. The probability of the neuron responding to f with Rstimi is

P Rstimi Dfð Þ~ Ti fð ÞRstimi

Rstimi!
e{Ti fð Þ ð2Þ

The stimulus likelihood distribution derived from the population

response Rstim of all N model neurons (1, 2, … N) is:

L f jRstimð Þ~P Rstimjfð Þ~PP Rstimijfð Þ

~P
Ti fð ÞRstimi

Rstimi!
e{Ti fð Þ

ð3Þ

When given the population response to an unknown frequency f ,

we can calculate the maximum-likelihood estimate of f , denoted as

F , by maximizing the following log-likelihood function [13,14],

using a sequential quadratic programming method [15],

ln L Fð Þ~
XN

i~1

ln Li Fð Þ~
XN

i~1

ln P RijFð Þ

~
XN

i~1

ln
Ti Fð ÞRi

Ri!
e{Ti Fð Þ

 !

~
XN

i~1

Ri ln Ti Fð Þ{
XN

i~1

Ti Fð Þ{
XN

i~1

ln Ri!ð Þ

ð4Þ

where Ri is the response of the ith neuron and in this case refers to

Rstimi (however, see below).

Modeling Bayesian integration. According to Bayesian integration

theory, frequency perception depends both on prior-based expecta-

tion and sensory input [1,3,16]. In order to return an optimal stimulus

estimate, the probability distributions representing each quantity

should be combined according to Bayes’ rule [1]. The stimulus

probability derived from the sensory stimulus-evoked responses

Rstim is the frequency likelihood L f DRstimð Þ~P RstimDfð Þ. Here

we explore the idea that prior probability is read out from the

frequency representation by elevated spontaneous activity Rspont

across the whole population of neurons: L f DRspontð Þ~
P RspontDfð Þ. It is important to distinguish Rspont from d, as in

contrast to d, which is part of the neuron’s tuning curve and used in

the maximum likelihood algorithm, Rspont represents elevated

spontaneous activity that the maximum likelihood decoder is not

aware of.

We therefore modeled Bayesian integration of sensory input and

prior-based expectation by calculating the stimulus likelihood function

derived from the linear superposition of stimulus-evoked activity and

elevated spontaneous activity (Rspont and Rstim)(Fig. 2c).

L f jRstimzRspontð Þ~P RstimzRspontjfð Þ

!L f jRstimð ÞL f jRspontð Þe
{
PN
i~1

Ti Fð Þ
ð5Þ

Table 1. Distribution parameters of neuronal response
properties.

Properties Groups Mean SD

Log-bandwidth Control 20.7528 0.4727

7-kHz, BFs of 7 kHz60.3
octave

20.8723 0.2837

7-kHz, other BFs 20.6359 0.4583

Log-response magnitude Control 20.1815 0.5562

7-kHz 20.1774 0.5711

Baseline Spontaneous firing
magnitude

Control 0.0388 N/A

7-kHz 0.0374 N/A

doi:10.1371/journal.pone.0010497.t001
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When the frequency representation is homogeneous, equation 5 may

be simplified as,

L f DRstimzRspontð Þ!L f DRstimð ÞL f DRspontð Þ: ð6Þ

which is in the form of Bayes rule. With inhomogeneous frequency

representations, there is a small deviation from Bayes rule caused by

an additional term, e
{
PN
i~1

Ti Fð Þ
(see equation 5).

Results

Convergence of maximum-likelihood estimate at the
input stimulus

We first examined model auditory perception with normal levels

of baseline activity for both the naı̈ve and 7kHz-over-represented

model AIs. The maximum likelihood estimate or ‘percept’

converged at the input frequency for both naı̈ve and 7kHz-over-

represented model AIs (Fig. 2a, Fig. 3a–b), even for the under-

represented frequencies that no neurons were tuned to. This is not

surprising because primary auditory cortical neurons are broadly

tuned, and responsive to those frequencies. Thus, the maximum-

likelihood estimate of sensory input from population responses is

insensitive to inhomogeneity of sensory representations, and

always converges on the input stimulus.

Readout of prior information by nonselectively elevated
population activity

We reasoned that the readout of long-term, context-independent

priors should not depend on specific patterns of population activity

driven by higher-level inferences. Rather, if information about prior

stimulus distributions is encoded in the size of primary cortical

representations, it should be retrieved by a non-selective increase in

the activity in all neurons. Although such activity may be triggered or

enhanced by task-related top-down influences or neuromodulatory

activity (for example in situations where sensory information is

ambiguous) [6,17], it need not contain specific prior information

itself. To test this idea, we increased the baseline activity of all neurons

to their maximum response magnitude, and examined the stimulus

likelihood distribution in the absence of stimulus-evoked activity

(Fig. 2b). The likelihood function of the naı̈ve model AI was flat with

no peaks (data not shown), whereas that of the 7kHz-over-represented

model AI showed a peak near the over-represented frequency

(Fig. 2b). This peaked likelihood function may be regarded as an

Figure 1. Modeling tonal frequency representations in the
primary auditory cortex. (a, b) Representative tuning curves of the
naı̈ve (a) and the 7-kHz-over-represented (b) model AI. The histograms
in the lower part of the graphs show distributions of CFs.
doi:10.1371/journal.pone.0010497.g001

Figure 2. Neuronal population activity and derived log-
likelihood functions. Left panels show population activity of the
model 7-kHz-over-represented AI, and the right panels show stimulus
log-likelihood functions. (a) Response of the model to a 4-kHz tone pip
(b) Elevated baseline activity in the absence of a stimulus (c) Summed
spontaneous and 4-kHz-evoked activity). Each bar in the left panels
represents the firing rate of a model neuron. The neurons are arranged
by characteristic frequency, with low frequency-tuned neurons on the
left and high frequency-tuned neurons on the right. Blue dotted lines in
the right panels show the input frequency, red dotted lines show the
over-represented frequency, and the black dotted lines mark the peaks
of the log-likelihood functions.
doi:10.1371/journal.pone.0010497.g002
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internal representation of the prior probability distribution of the

stimulus. In calculating the likelihood function here, we assumed that

the maximum-likelihood decoder was unaware that the elevated

activity was not sensory driven. This is not different from the

treatment of top-down prior-related or cross-modal activity in other

models of Bayesian inference [5] (see Discussion).

Bayesian Integration of prior and sensory information
It has recently been shown that Bayesian integration of

probability distributions represented in neuronal population codes

such as the one used in our model may be achieved by simple

summation of population activities [5]. Stimulus-evoked and

spontaneous activity in primary sensory cortices summates linearly

[18]. When we decoded the summed population response

(consisting of the linear superposition of elevated baseline activity

and 4-kHz-evoked activity [5]), the peak of the likelihood function

was shifted towards 7kHz for the 7kHz-over-represented model

(Fig. 2c, right). Such a shift was observed for frequencies near

7kHz in the 7-kHz-overrepresented (Fig. 3d), but not the naı̈ve

(Fig. 3c), model AI. This perceptual bias is consistent with

Bayesian integration of prior information and noisy auditory input

[3], and may explain the impaired discrimination ability for

frequencies near over-represented frequencies which has been

recently reported [7].

Decoding variability
The relative decoding variability at the over-represented frequency

range behaves differently with and without the elevated baseline

activity. With an increased baseline, although overall variability is

increased, it is relatively lower for the over-represented frequencies

than for the neighboring frequencies (Fig. 3d). This is consistent with

human psychophysical studies showing that extensively experienced

native speech sounds are perceived with less variability than novel

foreign speech sounds [19].

Influences of neuronal population size and activity levels
on perceptual bias

Some parameters of the model AI, such as the total number of

neurons and the magnitude of the elevated spontaneous firing rate,

were arbitrarily chosen. We therefore systematically varied these

parameters to explore their influence on the observed character-

istic perceptual shift (Fig. 4). The slope of the input-output

function in the over-represented frequency range was used as a

measure of perceptual shift magnitude—smaller slopes indicate

greater prior bias (Fig. 3d). When the magnitudes of the stimulus-

evoked responses were fixed, increasing the level of baseline

activity led to smaller input-output slopes, indicative of stronger

prior biases (Fig. 4a). Similarly, when the ratio of baseline to

evoked responses was set at 1, increasing overall activity also

Figure 3. Decoded frequency as a function of input frequency. Both the naı̈ve model AI (a and c) and 7-kHz-over-represented AI (b and d)
were examined with (c and d) and without (a and b) elevated baseline activity. In addition, standard deviation of the decoded frequencies (red) was
used to measure the output variability. When baseline activity was elevated in the 7-kHz-over-represented AI, the decoded frequencies show shifts
characteristic of Bayesian prior bias (d). The pink line shows the slope of the input-output curve at the over-represented frequency. The slope is a
measure of the prior bias.
doi:10.1371/journal.pone.0010497.g003
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resulted in stronger prior biases (Fig. 4c). Increasing baseline

activity led to higher decoding variability (Fig. 4b), whereas

increasing both baseline and sensory-evoked activity reduced

decoding variability (Fig. 4d). Increasing neuronal population size

reduced this variability. Thus, higher baseline-to-evoked activity

ratio in a larger population of neurons would produce more

reliable and robust prior biases. Optimal integration of prior and

sensory information may be achieved by adjusting the levels of

baseline activity in a task-dependent manner (e.g., higher baseline

activity when the stimulus is more ambiguous).

Discussion

Earlier studies have suggested that dynamic prior information

may be encoded by the activity of a subset of primary cortical

neurons in a homogeneous representational system. The specific

pattern of activity is driven by inputs outside of primary sensory

cortex that carry prior information derived from high-level

inference. Thus the encoding of the prior is separate from its

integration with sensory information and must be mediated by

different neural circuits. The specific brain substrates and

mechanisms for prior encoding and retrieval are unknown. The

present study considered the possibility of storing long-term prior

information in the size of sensory representations. A novel finding

is that in the context of auditory perception, long-term priors

about sound frequency distributions can be retrieved by non-selective

increase in the activity of all neurons in primary auditory cortex. In

the model, the same cortical circuit performs both the encoding

and integration of the prior. The increase in overall activity could

be driven by a general top-down signal without specific prior

information.

In order for optimal Bayesian integration of prior and sensory

information to occur, our model requires that the relative

contributions of prior-related and sensory-evoked activity be

modulated by task conditions on a trial-by-trial basis. In other

words, although the prior is long-term, optimal Bayesian inference

requires that the extent to which it used in generating a sensory

percept depend on task demand and stimulus uncertainty. Our

simulation shows that this could be accomplished by changing

overall levels of activity. Higher levels of overall activity increase

the contribution of prior information to sensory perception and

increase prior bias. Thus our results suggest that in situations

where auditory input is ambiguous, the overall level of activity in

all primary auditory cortex neurons should increase. Although

dynamic prior encoding also calls for a higher level of prior-related

activity when the sensory input is ambiguous, such activity occurs

only in a subset of neurons.

Elevated neuronal activity is not the only way that a prior stored

in the size of sensory representations could be read out. Another

possibility, recently proposed in unpublished work [20], is that the

Figure 4. Influence of neuronal population size, baseline activity level, and overall activity level on sensory decoding. (a and c)
Slopes of the input-output function (see the pink line in Figure 3D), showing the degree of prior bias. (b and d) Standard deviation of the decoded
frequencies, which measures the decoding variability. In a and b, sensory-evoked activity level was fixed and the neuronal population size (color-
coded) and baseline activity level were systematically varied. Baseline activity level refers to the multiplicative factor. For example, baseline activity
level of 2 indicates doubling of activity. In c and d, the ratio of baseline activity to maximum evoked response magnitude was set at 1, and activity
was systematically varied together. Error bars represent SEM, and are mostly masked by the data symbols.
doi:10.1371/journal.pone.0010497.g004
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decoder is unaware of the change in sensory representations: such a

scheme leads to the same degree of prior bias as our simulation. The

major difference between these two schemes is that in our

simulation the degree of bias is adjustable and dependent on task

conditions rather than being a fixed and inbuilt property of the

decoder. Recent experimental work has suggested that the degree of

bias for long-term priors may be dependent on task conditions [21].

Different levels of intrinsic, ‘‘baseline’’ activity in primary

sensory cortices have been shown to profoundly influence

neuronal responses to sensory stimuli [18,22], sensory perception

[23] and motor behaviors [24]. In our model, the level of

internally driven activity depends on the uncertainty of auditory

input. It remains to be determined how this sensory uncertainty is

encoded and used to optimize performance. Task-related

uncertainty has been shown to modulate baseline activity [6],

possibly by activation of neuromodulatory systems, thereby

influencing the extent to which behavioral responses depend on

internal prior information versus external sensory information

sources [17]. Another possibility is that the background noise that

characterizes ambiguous sensory situations nonspecifically acti-

vates auditory cortex to achieve the same end as elevated

spontaneous activity. However, unlike elevated spontaneous

activity, noise activates neurons in different regions of auditory

cortex differentially [25] and its effects can therefore not be

directly inferred from this study.

Maximum-likelihood estimation is an unbiased feature decoding

method. With a sufficient number of neurons, as well as the

knowledge of which part of the neuronal activity is due to the input

stimulus, its decoding result always converges on the input stimulus

(Fig. 3). In earlier studies of Bayesian integration, top-down prior-

related activity and cross-modal sensory activity were linearly

combined with, and not distinguished from, stimulus driven

activity [5]. Perceptual biases arise out of this treatment of prior-

encoding or cross–modal activity. We treated spontaneous activity

similarly in our simulation – the decoder does not distinguish it

from stimulus driven activity.

Elevating spontaneous activity results in greater decoding

variability in our simulations (Fig. 3). Thus, stimulus-decoding

performance is decreased. However, the increase in spontaneous

activity in our model is caused by task demand when the sensory

input is ambiguous, and cannot be resolved by simple (optimal)

stimulus decoding. It enables integration of prior information to

optimally resolve stimulus ambiguity. Furthermore, decoding

variability decreases rapidly when more neurons are included in

the model (Fig. 4), and therefore may not pose a problem for the

real brain.

Although our model is based on tonal frequency representations

in primary auditory cortex, it should generalize to any stimulus

dimension represented by populations of plastic sensory neurons.

Over-representation of frequently experienced stimuli is a

common feature of primary sensory cortex independent of

modality, and occurs for sound intensity [26], sweep direction

[27], spectral bandwidth [25] and temporal rate [28] in primary

auditory cortex, line orientation [29] in primary visual cortex, and

whisker representation in primary somatosensory cortex [30], to

name a few examples. Maximum likelihood estimation has also

been used to model sensory perception in multiple modalities

[13,14]. Although there are not many explicitly documented

examples of perceptual bias towards long-term priors outside of

the auditory system, recent work in the visual system has shown

that subjects perform a line orientation discrimination task in a

way that suggests bias towards line orientations that occur more

frequently in the environment [31]. Our model may therefore

generalize to sensory perception in general, rather than the specific

case of auditory perception.

In summary, we have shown that long-term prior information in

auditory perception may be stored in the sizes of primary auditory

cortex frequency representations and be read out by non-selective

increases in baseline activity. Such increase in baseline activity

may be controlled by task demand through top-down influences,

and when combined with stimulus-driven activity, allow Bayesian

integration of prior and sensory information. Our model makes

two unique testable predictions independent of sensory modality

that distinguish it from other models of dynamic Bayesian

integration: 1) percepts of ambiguous stimuli are biased toward

stimuli with larger sensory representations; 2) ambiguous sensory

input leads to a non-selective increase in baseline activity of all coding

neurons.
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