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Abstract
Quiescent cells and tumor cells share the ability to evade irreversible cell fates. It was recently shown
that the transcriptional regulator HES1 protects quiescent fibroblasts from differentiation or
senescence. HES1 is highly expressed in rhabdomyosarcomas, and inhibition of HES1 restores
differentiation in rhabdomyosarcoma cells. Pathways that lead to elevated HES1 levels, notch and
hedgehog, are frequently upregulated in tumors. Compounds that inhibit these pathways induce
differentiation and apoptosis in cancer cells and several are in clinical trials. HES1 might repress
gene expression in part by recruiting histone deacetylases (HDACs). HDACs inhibit differentiation,
whereas histone deacetylase inhibitors (HDACi’s) induce differentiation or apoptosis in tumors and
are also showing promise as therapeutics. Small molecules that directly target HES1 itself were just
identified. Thus, as we shall review in this article, therapies that target these pathways could be
effective alone, in combination or in conjunction with traditional chemotherapeutics.

Introduction
From one perspective, quiescent cells, which include fibroblasts, lymphocytes, hepatocytes,
stem cells and germ cells, are unarguably distinct from cancer cells. While quiescent cells
respond to anti-proliferative signals from the environment by arresting their cell cycle, cancer
cells fail to respond to such cues and continue to proliferate unabated [1]. From another
perspective, however, cancer cells and quiescent cells actually share some similarities.
Quiescent cells retain the capacity to re-enter the cell cycle upon receiving the appropriate
cues, and therefore must ensure that they do not commit to typically irreversible pathways such
as senescence, differentiation or apoptosis. Similarly, a subset of cells within a tumor can also
remain in a non-dividing state of tumor dormancy. These cells, which may represent cancer
stem cells, have been reported to exist in a quiescent state and thus to be mostly resistant to
traditional chemotherapeutic agents, which are largely designed to kill proliferating cells [2,
3]. During dormancy, cancer cells endure low oxygen, acidic pH and nutrient deficiencies
inside a tumor [4,5]. Then, for reasons that remain unclear, these cells can become activated,
proliferate and form a secondary tumor. For many tumor types, the presence of cells that might
represent dormant tumor cells is closely associated with subsequent metastatic relapse [6].
Thus, an ability to survive in a reversible, out-of-cycle state is central to both quiescence and
cancer.

Growing evidence has suggested that quiescence, instead of being a passive default state, is
actively maintained by molecular mechanisms [7,8]. Using DNA microarrays, researchers have
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identified molecular signatures of quiescence in hematopoietic stem cells [9], lymphocytes
[8] and fibroblasts [10]. These studies have revealed that quiescence is associated with both
downregulation and upregulation of a large number of transcripts. Gene expression changes
have also been monitored in human diploid fibroblasts that enter quiescence in response to one
of three independent signals – loss of adhesion, contact inhibition and mitogen withdrawal
[11]. With each of these antiproliferative signals, there is a major reprogramming of gene
expression. Among the gene expression changes that occur are some that are likely to enforce
the nondividing state, for instance, regulation of the molecules involved in cell division itself.
Other gene expression changes might ensure the reversibility of quiescence, for instance, by
protecting the cells from damage induced by free radicals [11]. Yet other changes suggest
pathways that quiescent cells utilize to protect themselves against senescence or differentiation.
It has been hypothesized that these same pathways might be ‘co-opted’ by tumor cells to allow
them to maintain their proliferative potential and avoid terminal cell fates [12].

The HES1 transcriptional repressor is one of the genes that might protect quiescent cells from
a differentiated fate. Some tumor cells also rely on HES1 for protection against differentiation.
We consider below several pathways that activate HES1 – the notch and hedgehog pathways
– and an effector pathway of HES1 – histone deacetylases (HDACs). Small-molecule
regulators of each of these pathways have shown promise as anti-cancer drugs and are being
developed in clinical trials as summarized in Table 1. We will show how these compounds,
individually and in combination, represent promising avenues for the treatment of multiple
tumor types.

HES1 protects quiescent cells and tumors from differentiation
To test whether quiescent cells actively resist a commitment to differentiation, the master
regulator of muscle differentiation, the MyoD transcription factor, was introduced into
fibroblasts and the induction of muscle genes was monitored [11]. Quiescent cells were less
likely to induce muscle differentiation in response to MyoD in comparison with proliferating
cells, indicating that quiescent cells have active mechanisms to resist a commitment to
differentiation.

To further investigate the resistance to differentiation in quiescent cells, the basic helix-loop-
helix transcriptional regulator HES1 was selected for detailed study [12,13] because it was one
of a few genes upregulated rapidly by each of three different quiescence signals. Furthermore,
HES1 is expressed by almost all undifferentiated cells and is important for suppressing
differentiation [14]. HES1-deficient mice show premature differentiation and severe defects
in the brain, eye and pancreas [14,15]. HES1 is expressed in neural precursor cells and
expression disappears when cells initiate differentiation. However, in some situations, HES1
can also promote differentiation. For instance, in lymphocytes, HES1 is essential for expansion
of T cell precursors, but also promotes differentiation in that it facilitates commitment to the
CD8 lineage by repressing expression of the CD4 coreceptor. HES1 can also promote terminal
neuronal and beta cell differentiation by silencing the repressor element silencer transcription
factor REST [16]. For these reasons, HES1 was hypothesized to inhibit differentiation in
quiescent fibroblasts.

Introduction of HES1 into proliferating fibroblasts made them resistant to a muscle
differentiation program, whereas inhibition of HES1 in quiescent cells made them more
responsive to differentiation-inducing transcription factors [12]. Thus, HES1 is important for
preventing quiescent fibroblasts from undergoing differentiation [13]. Future experiments
defining the genes regulated by HES1 in the context of fibroblast quiescence using chromatin
immunoprecipitation followed by microarrays or next generation sequencing (ChIP-chip or
ChIP-Seq) would further delineate HES1’s function in this context.
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Many tumors are characterized by a relatively undifferentiated morphology, and induction of
differentiation in these tumors might reduce their proliferative potential. The question was
posed whether HES1 might be used by tumors to protect against differentiation. The levels of
HES1 in rhabdomyosarcomas, tumors of skeletal muscle, were examined revealing that,
strikingly, every cell line and patient sample exhibited elevated levels of HES1, with most
between 5- and 50-fold higher than control skeletal muscle [12]. The elevated levels of HES1
were likely important for inhibiting differentiation, as expression of a dominant-negative form
of HES1 forced rhabdomyosarcoma cell lines to cease proliferating and to undergo myogenic
differentiation [12]. It was concluded that tumors and quiescent cells might share similar
strategies for preventing differentiation. Furthermore, induction of HES1 in both quiescent
cells and tumors is important for inhibiting their differentiation. High HES1 levels could reflect
the stem-cell-like character of tumor cells, which may be derived from adult stem cells [17].
[17]. Mutations that result in elevated HES1 may provide a selective advantage to the particular
cell, rendering it less responsive to signals for differentiation and hence predisposed to
tumorigenesis.

Mechanisms that lead to HES1 induction and that allow HES1 to protect against differentiation
could represent promising targets for tumor therapy (Figure 2). Targeting these pathways might
coax tumors into a terminally differentiated state. Alternatively, because the tumors cells
receive conflicting signals—on the one hand, to proliferate as a result of their genetic makeup,
and on the other hand, to differentiate in response to the treatment—the tumors cells might
apoptose. This would be similar to instances in which overexpression of an oncogene in the
absence of growth factors results in apoptosis, which is interpreted as a response to conflicting
proliferative signals [18]. We discuss two pathways that activate HES1, notch and hedgehog,
below.

The notch signaling pathway
The notch signaling pathway, the canonical pathway for the induction of HES1, facilitates the
determination of cell fate during development and regulates differentiation in somatic stem
cell populations [19]. Elimination of notch pathway components in Drosophila results in
embryos with excess neuroblasts at the expense of epidermal precursors [20]. Mice with notch
signaling defects exhibit a wide range of developmental abnormalities [21]. Aberrant
upregulation of notch signaling has been observed in a variety of tumor types, including
cervical, lung, colon, head and neck, renal and pancreatic cancer [22]. Thus, the notch pathway
may be utilized by cancer cells to retain replicative potential rather than commit to
differentiation.

In the canonical notch pathway, notch receptors on the cell surface receive signals from
adjacent cells. Upon ligand binding, notch receptors are cleaved by α-secretase at the
extracellular surface, and then by intracellularγ-secretase to release the intracellular portion of
the Notch receptor (NICD). NICD translocates to the nucleus and associates with the RBP-
Jκ transcription factor [23], which allows recruitment of coactivators that activate transcription
of target genes, including members of the HES (Hairy/Enhancer of Split) family [24]. HES
family members then repress transcription in conjunction with binding partners from the
Transducin-like enhancer (TLE) family [25] (see Text Box 1).

Treating quiescent fibroblasts with a γ-secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-L-
alanyl]-S-phenylglycine t-butyl ester (DAPT) resulted in increased expression of the muscle
marker myosin heavy chain, indicating that the notch pathway plays a role in protecting
quiescent fibroblasts from differentiation [12]. DAPT treatment of a rhabdomyosarcoma cell
line suppressed HES1 expression and partially restored differentiation, demonstrating that

Sang et al. Page 3

Trends Mol Med. Author manuscript; available in PMC 2010 May 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



notch signaling contributes to tumor initiation and/or progression in rhabdomyosarcomas and
small molecules that target notch signaling might induce differentiation in cancer cells.

Notch signaling is involved in self-renewal in mammary stem cells [26], intestinal crypt
progenitor cells [27], and hematopoietic stem cells [28]. Elevated levels of HES1 observed in
rhabdomyosarcomas may reflect higher notch activity in the stem cells that give rise to those
tumors. Indeed, HES1 expression has been detected in undifferentiated embryonic stem cells,
fetal tissues, regenerating liver and tumors [29]. Higher HES1 levels might also reflect somatic
mutations in the notch pathway. Activating mutations in notch signaling molecules are present
in 40% of breast tumors [30], more than 50% of human T-cell acute lymphoblastic leukemias
or lymphomas without specific chromosome translocations [31], and approximately 8% of
diffuse large B-cell lymphomas [32]. Notch has also been associated with the stem cell-like
population within tumors. Inhibition of notch signaling specifically reduced the ability of breast
cancer cells to form mammospheres, an indication of pluripotent potential [33]. Finally, the
tumorigenic potential of human adult neural stem cells has been associated with notch
activation [34]. For these reasons, the role of the notch pathway might serve a similar function
of inhibiting differentiation in quiescent cells and cancer stem cells.

Inhibition of the notch signaling pathway is a promising approach to treating tumors. In
vitro, treatment with γ-secretase inhibitors results in apoptosis in breast cancer cells [35], slows
the growth of osteosarcomas [36] and causes cell-cycle exit in T-cell acute lymphoblastic
leukemia cells [37]. There is also evidence that inhibiting notch specifically targets a subset of
cells with cancer stem cell-like properties. In medulloblastomas, suppression of notch signaling
with γ-secretase inhibitors depleted a population of cells required for in vivo tumor formation,
again supporting the notion that cells within a tumor with replicative capacity rely on the notch
signaling pathway for survival [38]. Furthermore, neutralizing antibodies against a notch ligand
resulted in reduced tumor growth and cancer stem cell frequency in human colon tumor
xenografts [39].

A phase I clinical trial for a γ-secretase inhibitor, MK-0752 (Merck), has been launched for
relapsed or refractory CNS malignancies [40], and two phase I/II clinical trials are under way
to determine the safety and efficacy of MK-0752 in locally advanced or metastatic breast cancer
patients [41]. These studies and others as summarized in Table 1 should provide insight into
the benefits and side-effects of notch signaling inhibitors.

The hedgehog signaling pathway
HES1 can also be induced by signals besides the notch pathway (see Text Box 1). We focus
here on regulation of HES1 by the hedgehog pathway [42, 43]. Hedgehog signaling is used to
pattern organs during development, and is employed in adult tissue in the context of wound
repair and tissue maintenance [44]. The hedgehog pathway often results in an inhibition of
differentiation, although, in other conditions, hedgehog signaling can activate cells towards a
particular fate [45]. Mutations that result in loss of hedgehog activity can lead to
holoprosencephaly—a condition in which loss of ventral cell types in the forebrain causes a
failure to separate the cerebral hemispheres into two lobes [46].

Hedgehog signaling is initiated when the morphogen hedgehog binds to the patched receptor,
which relieves catalytic inhibition of the transmembrane protein smoothened [47]. Signaling
through smoothened results in activation of transcription factors, including members of the Gli
family. Gli activation results in gene expression changes that ultimately regulate
differentiation, proliferation and tumorigenesis. Several studies have now shown that HES1 is
transcriptionally activated by the hedgehog pathway [42,43]. Microarray profiling of
multipotent mesodermal cells revealed that overexpression of sonic hedgehog resulted in
regulation of a large number of genes including HES1[42]. Signaling to HES1 did not reflect
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activation of the canonical notch pathway since HES1 was induced by hedgehog even in the
presence of notch pathway inhibitor DAPT or a dominant negative form of RBP-Jκ. Subsequent
analysis concluded that HES1 is a direct transcriptional target of the Gli transcription factor
Gli2 based on chromatin immunoprecipitation [43].

As with notch signaling, hedgehog signaling is high in tissue stem cells, such as hematopoietic
stem cells and neural stem cells [48]. Activation of the hedgehog pathway is also associated
with tumorigenesis [49]. Inherited mutations in patched result in basal cell nevus syndrome.
Mice heterozygous for patched develop medulloblastomas and skin lesions resembling basal
cell carcinoma. In patients, almost all cases of sporadic basal cell carcinomas are due to
hedgehog pathway activation, either through loss of heterozygosity at the patched locus and/
or mutations in smoothened that diminish its ability to be inhibited by patched. Mutations
causing increased hedgehog signaling have also been identified in medulloblastomas and
prostate, pancreatic and colon cancer.

Hedgehog signaling is likely important for cancer stem cells. Elevated levels of hedgehog
pathway components have been detected in putative pancreatic cancer stem cells [53] and
breast cancer stem cells [54]. Hedgehog signaling might mediate resistance to chemotherapy
and radiation therapy, as an increase in hedgehog activity was observed in esophageal cancers
after chemotherapy and was associated with an increased proliferative fraction and tumor
repopulation [55]. In pancreatic adenocarcinomas, a population of stem-cell-like, slowly
cycling tumor cells exhibiting elevated levels of hedgehog pathway components survived
chemotherapeutic treatment and repopulated the tumor rapidly [56]. Hedgehog might facilitate
survival during chemotherapeutic treatment by increasing expression of cell cycle promoting
proteins [55], by promoting DNA repair [55], or by increasing the expression of multi-drug
resistance transporters [57].

In addition to activation of HES1 transcript levels by both notch and hedgehog, there may also
be crosstalk between the pathways. Medulloblastomas from patched+/− mice [50,51],
smoothened overexpression mice [52], and human patients [52] express elevated levels of
notch pathway components including the ligand Jagged1 and the Notch2 receptor. Inhibition
of notch signaling in medulloblastomas from smoothened overexpression mice resulted in a
reduction in viable cell numbers in cell lines, primary tumor cultures and xenografts [52]. Thus,
hedgehog signaling and notch signaling may reinforce each other. Tumors, therefore, could
express elevated levels of HES1 through notch signaling, hedgehog signaling, or a combination
of both pathways.

The first known hedgehog pathway inhibitors, cyclopamine and jervine, were isolated from
corn lilies as teratogens that caused cyclopia in mothers that ingested the plant [58]. They were
subsequently shown to inhibit the hedgehog pathway by binding to smoothened. Treatment of
medulloblastomas, hepatomas and gastrointestinal and lung cancer cell lines with cyclopamine
in vitro results in reduced proliferation [49]. In a xenograft mouse model, cyclopamine
treatment inhibited metastatic spread of pancreatic cancer cells [59]. Cyclopamine also inhibits
the ability of gliomas to form gliomaspheres, indicative of pluripotent potential, and to
regenerate tumors [60].

Because cyclopamine is low affinity and has poor oral bioavailability, alternatives have been
syntheshesized, IPI-926 and GDC-0449. Clinical trials are being performed with these
hedgehog antagonists [61]. GDC-0449 (Genentech) has a favorable toxicity profile and has
shown initial efficacy in patients with basal cell carcinomas [58]. It is now being evaluated in
phase II trials alone or in combination with other therapeutics for colorectal cancer, ovarian
cancer, glioblastoma and medulloblastoma (www.Cancer.gov).
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Histone deacetylases
In addition to the pathways that activate HES1, the mechanisms through which HES1 mediates
its effects might also suggest promising strategies for anticancer therapy. HES1 can repress
the transcription of its target genes through sequestration of other transcription factors or
recruitment of cofactors from the TLE family [62]. Based on analogy with Drosophila, it has
been suggested that TLE family members recruit histone deacetylases (HDACs) to aid in
transcriptional repression [63]. By removing acetyl groups from histone tails, these enzymes
modify chromatin configuration, often resulting in more tightly packed chromatin and
repression of transcription [64]. Conversely, inhibition of HDAC activity results in the
accumulation of acetylated core histones, which would be expected to cause a more open
chromatin conformation and the transcriptional activation of target genes. As evidence that
HDACs are involved in the effects of HES1, in some experiments, treatment with trichostatin
A, a pan HDAC inhibitor, can at least partially reverse the repressive effects of HES1 [65,
66].

HDAC-mediated transcriptional repression has been implicated in quiescence. Mice with
genetic disruption of mSin3b, which serves as a scaffold for HDACs, exhibit defective
differentiation in multiple lineages and late embryonic lethality [67]. Cells derived from
mSin3b-defective mice cycle normally under proliferative conditions but exhibit an impaired
ability to exit the cell cycle in response to limiting growth factors. This may reflect the
importance of downregulation of E2F target genes upon quiescence induction as mSin3b
physically interacts with E2F promoters. Thus, HDAC activity might be associated with
quiescence in the context of HES1 targets and more broadly, and the relevant targets might
include genes associated with proliferation and differentiation.

Recruitment of HDACs to genes that would normally execute a differentiation program,
resulting in repression of these same transcripts, is a clearly established tumorigenic pathway.
As one example, the synthesis of a fusion protein (PML–RAR) between promyelocytic
leukemia (PML) and the retinoic acid receptor alpha (RARα) results in a subtype of acute
myeloid leukemia characterized by a block to differentiation at the promyelocytic stage. PML–
RAR, in the absence of retinoic acid, binds to promoters of retinoic acid target genes, recruits
an HDAC-containing complex and represses transcription [68]. Treatment of PML patients
with high doses of retinoic acid releases HDAC activity from PML–RAR, permits transcription
of target genes and induces terminal differentiation of leukemic blasts [69]. Thus, the
recruitment of HDACs to inhibit gene expression is utilized not only by quiescent cells but
also by tumors.

As would be expected if HDACs were involved in repressing expression of differentiation-
promoting genes, treatment with HDAC inhibitors (HDACi’s) results in differentiation toward
a variety of cell types including oligodendrocytes, myotubes, and adipocytes [70]. However,
the mechanisms by which HDACi’s exert these effects are likely to be complex. Somewhat
surprisingly, microarray studies have revealed that HDACi’s result in both repressive and
activating effects [71–73]. Increased gene expression might reflect a direct effect of histone
hyperacetylation, while decreased gene expression in response to treatment with HDACi’s
could reflect indirect effects, for instance, downregulation of a transcriptional repressor. The
effects of HDACi’s need not be limited to transcriptional effects mediated through HES1.
HDACi’s can affect a large number of HDACs, any one of which can be recruited to chromatin
through interactions with a wide array of cofactors, including, but clearly not limited to, HES1.
In addition, many nonhistone proteins are also acetylated, including transcription factors,
oncoproteins and tumor suppressors [74], and HDACs can remove the acetyl groups from these
proteins as well. Experiments in which HDACi’s are applied while HES1 activity is inhibited
could help to define the specific role of HES1 in HDACi-induced differentiation. In sum,
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HDAC-mediated repression of genes that activate differentiation pathways could represent
another mechanism utilized by quiescent cells, stem cells and tumors to prevent the engagement
of differentiation pathways and preserve pluripotency.

For a wide variety of tumors, treatment with HDACi’s induces differentiation or causes
apoptosis [75]. Furthermore, numerous animal models have demonstrated the effectiveness of
HDACi’s from various structural classes in antitumor activity [76]. For instance, in xenograft
experiments in mice, treatment with the HDACi valproic acid decreased tumor growth and
induced a more differentiated phenotype of neuroblastoma cells [77], the cyclic peptide
prodrug depsipeptide (FK228) decreased the growth of leukemia and lymphoma cell lines
[78], and the benzamide HDAC inhibitor MS-275 inhibited the growth of three different
pediatric tumors [79].

One HDACi, vorinostat (SAHA, developed by Merck), has been approved by the FDA for the
treatment of cutaneous T-cell lymphoma [80] and is also active against solid tumors. Other
HDACi’s are in clinical development, with some promising results (reviewed in [81] and
summarized in Table 1).

Combinations of therapies
Inhibitors of the notch pathway, the hedgehog pathway and histone deacetylases represent
several therapeutic avenues available to reverse the anti-differentiation pathways activated in
tumors, and thereby induce differentiation or apoptosis. Often, combinations of these
compounds can be even more effective. Depending upon the tissue type or cellular context,
multiple different pathways could contribute to an elevation of HES1 levels. For instance, both
notch and hedgehog pathways might activate HES1, and inhibition of both of these pathways
simultaneously might result in a better outcome than inhibition of either individually.
Hedgehog-activated mice created by introduction of a constitutively active smoothened
transgene develop medulloblastomas [52]. These medulloblastomas are characterized not only
by high levels of hedgehog activity, but also high levels of HES1 and notch activity. Treatment
with both anti-hedgehog and anti-notch compounds simultaneously resulted in essentially
complete remission. In neural stem cells, HES1 activation can result from a combination of
the notch pathway and the FGF signaling pathway [82]. FGF signaling results in beta-catenin
stabilization and a complex of beta-catenin and the NICD promotes HES1 expression. In
associated tumors, combination therapies that target both of these pathways might be more
efficient than strategies aimed at one or the other pathway.

In other instances, targeting both HES1 levels and HES1 activity simultaneously might prove
advantageous in treating cancer. As an example, combining a histone deacetylase inhibitor
(SAHA) and an inhibitor of hedgehog signaling (SANT-1) resulted in a superadditive inhibition
of cellular proliferation and colony formation in pancreatic cancer cells in vitro [83]. The
combination of SAHA and SANT-1, but neither compound individually, resulted in
cytodifferentiation as evidenced by expression of cytokeratin 7, a marker of pancreatic ductal
differentiation. Treatment with a combination of the two compounds resulted in decreased
proliferation and colony formation as a result of enhanced apoptosis, cell cycle arrest and
differentiation.

Another strategy is to treat tumors with both a classical anti-chemotherapeutic agent designed
to kill proliferating cells and a compound selected to induce differentiation or apoptosis in the
quiescent stem cell compartment. For instance, inhibition of notch signaling in combination
with conventional chemotherapeutic agents might be more effective than either treatment
alone. Indeed, pretreatment of colon cancer cell lines with γ-secretase inhibitors enhances the
effects of the DNA synthesis inhibitor oxaliplatin [84] and mitotic inhibitor taxanes [85]. An
ongoing clinical trial of γ-secretase inhibitor MK-0752 includes an arm in which it will be
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given in combination with the mitotic inhibitor docetaxel to determine its efficacy in this
combination approach [41].

The addition of HDACi’s to traditional cytotoxic drugs can also result in a stronger, more
potent effect [86]. In breast cancer cell lines, the HDACi LAQ824 intensified the induction of
apoptosis by the microtubule inhibitors docetaxel and epothilone B and the nucleoside analog
gemcitabine [87]. Furthermore, HDACi’s improve the efficacy of radiation therapy too. For
example, pretreatment with depsipeptide greatly increased radiation-induced apoptosis in
squamous cell carcinoma cells [88]. HDACi’s also reduced cutaneous radiation toxicity
following radiotherapy [89]. Thus, multiple strategies to eliminate quiescent, undifferentiated
cells within a tumor, alone or in combination, represent promising avenues for development
as therapeutic agents for a wide array of tumor types.

Concluding remarks
We discuss here one of the strategies used by quiescent cells to evade differentiation and how
similar pathways are activated in tumors. There remain many avenues through which the
insights described here can be translated into clinical treatment. Of particular interest would
be cancer therapies that specifically target HES1 itself. Because HES1 lies at the crossroad of
multiple signaling pathways, and is closely associated with tumor outcome [90], it represents
an excellent target. While some tumors likely upregulate HES1 through the notch pathway,
others through the hedgehog pathway, and others through distinct pathways, targeting HES1
directly could result in a higher response rate than for molecules that target only individual
pathways. In addition, targeting HES1 itself might result in fewer side effects because the many
other genes also regulated by the notch or hedgehog pathways would be unaffected. Targeting
HES1 represents an opportunity for much greater specificity than treatment with HDACi’s,
which have widespread effects on acetyl groups on histones and other non-histone proteins.

Because the possible benefits are substantial, it is especially exciting that the first HES1 dimer
inhibitor isolated from natural products was just reported. Using an assay for HES1
dimerization, a natural products library was screened and two compounds that inhibit HES1-
mediated downregulation of gene expression intracellularly were identified [91]. Of course,
the sensitivity and efficacy of these molecules and related small molecules in vivo remains to
be determined. Further, reducing HES1 activity systemically would be expected to affect the
physiology of normal cells, especially stem cells, which could result in stem cell depletion,
immune dysfunction and even aging phenotypes. Thus, design of a small molecule HES1
inhibitor represents a promising if challenging approach to therapy.

While we have focused here on inhibition of differentiation as a common characteristic between
quiescent cells and tumors, there are likely many other important characteristics of quiescent
cells that could also be engaged by tumor cells. For instance, expression of HES1 is central to
the ability of quiescent cells to avoid senescence [12]. While activation of telomerase is
commonly employed by tumors to evade senescence [92], they might also use mechanisms
similar to those used by the quiescent cells to achieve this goal. In order to survive for long
periods of time, quiescent cells likely also activate pathways that protect them from metabolic
stress. Invocation of these same pathways may allow tumor cells to survive in the hypoxic and
nutrient-deprived environment in the center of a tumor [4,5].

Many cells within our bodies are quiescent, including fibroblasts, hepatocytes, lymphocytes,
stem cells and germ cells. Pathologies of quiescence are likely to underlie a wide range of
disorders, including autoimmune diseases, which are characterized by inappropriate
proliferation of lymphocytes; fibrosis, in which there is excessive fibroblast activation after a
wounding event; and even chronic wounds that might represent a failure of quiescent
fibroblasts to reenter the cell cycle and coordinate a wound-healing response. Elucidating the

Sang et al. Page 8

Trends Mol Med. Author manuscript; available in PMC 2010 May 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



molecular pathways invoked by quiescent cells could provide valuable information not only
for treating cancer but also for tackling a wide range of other pathologies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of different cellular fates
Most cells within our body normally commit to one of five distinct cell fates: they can remain
in the cell cycle and continue proliferation, or exit the cell cycle and become quiescent,
senescent, differentiated or apoptotic. Quiescence is a reversible non-dividing state from which
cells can be stimulated to proliferate in response to physiological signals. Senescence,
differentiation, and apoptosis are all irreversible, terminal states. Senescence is a state of
permanent cell-cycle arrest that can result from dysfunctional telomeres or stress.
Differentiation represents the commitment to a lineage-specific cell type, such as muscle and
neuron. Apoptosis is the process of programmed cell death. In contrast to normal cells, cancer
cells are hyper-proliferative. They can escape senescence or apoptosis, and are poorly
differentiated in many cases. A subpopulation of cells within a tumor, the cancer stem cells or
dormant cancer cells, have been reported to exist in a quiescent state and thus to be responsible
for the continued self-renewal capacity of the tumor.
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Figure 2. Role of HES1 in quiescence and cancer
HES1 usually functions to inhibit differentiation in normal cells and tumors. HES1 is induced
in quiescent cells, possibly through signaling from the notch pathway, the JNK pathway or
other pathways. In cancer cells, HES1 upregulation likely occurs via the notch pathway or the
hedgehog pathway. Small molecule inhibitors of the notch and hedgehog pathways have shown
promise as anti-cancer agents possibly in part due to their effects on HES1. HES1 functions
as a transcriptional repressor by interacting with histone deacetylases including HDAC1.
HDACi’s have many cellular effects, including inhibition of HDAC1 activity and might
thereby repress the effects of HES1. Agents that directly induce differentiation can also be
effective as anti-cancer agents. Further, combinations of these agents can often be even more
effective than the agents individually, possibly due to regulation of different sets of targets or
a stronger regulation of key target genes.
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