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Abstract
We present Laguerre Voronoi based subdivision algorithms for the quadrilateral and hexahedral
meshing of particle systems within a bounded region in two and three dimensions, respectively.
Particles are smooth functions over circular or spherical domains. The algorithm first breaks the
bounded region containing the particles into Voronoi cells that are then subsequently decomposed
into an initial quadrilateral or an initial hexahedral scaffold conforming to individual particles. The
scaffolds are subsequently refined via applications of recursive subdivision (splitting and averaging
rules). Our choice of averaging rules yield a particle conforming quadrilateral/hexahedral mesh, of
good quality, along with being smooth and differentiable in the limit. Extensions of the basic scheme
to dynamic re-meshing in the case of addition, deletion, and moving particles are also discussed.
Motivating applications of the use of these static and dynamic meshes for particle systems include
the mechanics of epoxy/glass composite materials, bio-molecular force field calculations, and gas
hydrodynamics simulations in cosmology

Keywords
circle and sphere Voronoi diagrams; subdivision; dynamic re-meshing; astrophysics; biophysics;
composite materials

1. INTRODUCTION
Particles are smooth functions with compact support. Particle systems are used for modeling
a number of physical world scenarios ranging from cosmological systems and plasma physics
to molecular systems. The applications are wide and varied and include chemistry, material
science, and bio-engineering. A typical astrophysics computation attempts to follow the
evolution of a system of cosmological boundaries, modeled as a particle system. An important
computation performed on the particle system is that of force calculations, i.e. given n particles
compute the effect of the gravitational or hydrodynamic force on a given particle by the other
particles. These are often termed as n-body problems. Other characteristics of the problem
require tracking the dynamic structure of the particle system as particle systems move, appear
and disappear.

Smooth particle hydrodynamics or SPH [1] is a Lagrangian numerical hydrodynamics method
that uses a discrete description of gas or fluid particles in place of a continuum model. The
value of a field at a point in space is given by the sum of any contributing particles, and their
radially symmetric kernels, present at that point. These particles essentially act as moving
centers for interpolation and carry mass, energy and the velocity of the local flow. For the
meshing of particle systems, it suffices to consider particles as idealized balls, or radially
symmetric domains of support of their kernels. So henceforth, we consider our particle systems
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to be a collection of circles in two dimensions, and spheres in three dimensions, with possibly
different radii.

Main Contributions
We present Laguerre Voronoi based subdivision algorithms for the quadrilateral and
hexahedral meshing of particle systems within a bounded region, for two and three dimensions,
respectively. Extensions of the basic scheme to dynamic re-meshing in the case of addition,
deletion, and moving particles are also discussed.

Applications
A motivating application for finite element mesh constructions of a static particle system is for
the accurate calculation of stress distributions for composite materials consisting of silica
substrates with embedded particles, subjected to various loads [2]. The re-meshing problem
for time dependent particle systems arise in gas hydrodynamics simulations essential in the
computational investigation of the formation of large scale structures, such as galaxies and
galaxy clusters, in the universe [3]. A third motivating application domain is the use of finite
element meshes of particle systems for biophysics simulations of molecular interactions in
ionic solvent [4].

Prior Related Work
Laguerre Voronoi diagrams [5,6,7] or its variants like STC [8], embedded Voronoi Graphs
[9], [10], or medial surfaces [11] have been extensively used to generate hexahedral meshes.
A variant of the Voronoi diagram called the Space Twist Continuum (STC) [8] has also been
successfully used at the Sandia Labs in their meshing software CUBIT. STC is a way of
representing the dual of the hexahedral mesh as a simple non-degenerate arrangement of
surfaces. The STC is built in an incremental fashion using an Advancing Front Techniques
(AFT) like the Whisker Weaving algorithm [8].

As reviewed in [12] [13], there are indirect and direct methods for unstructured quad/hex mesh
generation. The indirect method is to generate triangular/tetrahedral meshes first, then convert
them into quads/hexes. The direct method is to generate quads/hexes directly without first
going through triangular/tetrahedral meshing [14]. Alternatively, Pascal et al give an overview
of the grid based approaches for Hexahedral meshing [15]. Either higher order elements can
be used to represent the exact boundary of the surface by intersecting it with the grid, or body-
fitting techniques can be used to represent these boundary elements [16], [17]. Dual contouring
has also been used by Zhang et al [18], [19], for extracting hexahedral meshes from volumetric
data.

Subdivision defines a smooth curve or surface as the limit of a sequence of successive
refinements of some linear input [20]. As a structured method, quad/hex mapped meshing
[21] generates the most desirable meshes if opposite edges/faces of the domain to be meshed
have equal numbers of divisions or the same surface mesh. However, it is always difficult to
decompose an arbitrary geometric configuration into mapped meshable regions. In the CUBIT
project [22] at Sandia National Labs, several techniques have been attempted to automatically
recognize features and decompose geometry into mapped meshable areas or volumes.

The simplest method for post mesh quality improvement is based on Laplacian smoothing
which relocates the vertex position at the average of the nodes connecting to it [23].
Optimization-based smoothing tends to yield better results but it is more expensive than
Laplacian smoothing [24], [25], [26]
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2. QUADRILATERAL MESHING
Two dimensional particles are circles of possibly different radii. A typical input particle system
along with its output conforming quadrilateral mesh, inside a rectangular bounding box, is
shown in Figure 1.

Step 1
Construct the 2D Laguerre Voronoi diagram of the center points of the circles within its
rectangular bounding region (see figure 1). The weight of a circle center is chosen to be
proportional to the radius of each circle. Each Voronoi cell is a convex polygon.

Step 2
Contract the short edges into either of its endpoint vertices, or to the center point of the edge,
unless boundary constraints as mentioned below are violated (see figure 2). An edge is regarded
as short if its length is less than a user specified threshold value.

Note that this edge contraction may eliminate triangles (see figure 3). The aim of this small
edge contraction step is to avoid producing tiny quadrilateral elements. Also note that if an
edge contraction causes an intersection between the boundaries of a polygonal cell and the
circle perimeter, then we do not carry out this edge contraction.

Step 3
For each Voronoi cell, connect the circle center with the vertices, and the midpoint of each
Voronoi cell edge. Partially delete the inner portion (i.e. within each circle) of the line segment
that connects the circle center to the midpoint of each Voronoi edge, thereby creating
quadrilaterals both inside and outside each circle, i.e. a quad tesselation. (see figures 5 and 6).

Step 4
Next, further refinement of the quad tesselation is accomplished by first a quad mesh splitting
along the radial and angular directions from each circle center, followed by an averaging/
smoothing recalculation [27] to place all quad mesh vertices (see figure 7). Note the selective
splitting of the inner most radial edges from each circle center, to preserve quad mesh topology
(see figures 8. The aim of the splitting step is to achieve quad mesh adaptivity.

The averaging/smoothing based repositioning of the mesh vertices can be carried out, in a
variety of ways. We choose to adopt a centroid smoothing scheme, where each vertex is
repositioned in the centroid of the centroids of the maximal dimensional cells incident to it
(taking care of boundary vertices as well) [27]. While we do not have a guarantee for mesh
quality, the current averaging scheme tends to produce quads with very good aspect ratio. See
figures 9,10,11,12 for examples of our implementation of this algorithm.

3. HEXAHEDRAL MESHING
In this section we present the solution in three dimensions.

Step 1
Construct the 3D weighted Voronoi diagram of the center points the spheres (see figure 13).
The weight of a sphere center is chosen to be proportional to the radius of the sphere.
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Step 2
Contract each of the short edges into single vertices. An edge is regarded as short if its length
is less than a user specified threshold value. Note that this contraction may eliminate triangles
(see Fig 3). Also note that this merging may lead to the intersection between the boundaries of
polyhedral cells and the surface of the sphere, and so a check is made, and such edge
contractions are not carried out. The aim of this step is to avoid producing very tiny hexahedral
elements.

Step 3
Decompose each face of the 3D Voronoi cells into quads (see Fig 14). For each Laguerre
Voronoi cell, connect the particle center with the Voronoi vertices and thereby form a
pyramidal partition of the cell. Each pyramid is further split into a hexahedron and another
pyramid by a quad face generated by intersection with the surface of the sphere.

Step 4
Adaptive subdivision of each cell is easily performed in the radial direction (see figure 15).

At this stage one has almost obtained a complete adaptive hexahedral mesh of the bounding
region, conforming to the boundary of the particle spheres. The mesh elements incident to the
particle centers are quad pyramids, while the rest of the mesh elements are hexahedra. By
repeated applications of the radial subdivision, the pyramidal elements can be restricted to very
small spheres surrounding each particle center. In many applications, where calculations are
desired close to the surface of the particle spheres, or only on its exterior, this near hexahedral
mesh suffices. See also figure 16 of an example mesh generated for a small portion of a
heterogenous elastic material with spherical inclusions with different bulk properties to the rest
of the substrate.

Step 5
Further improve the hexahedral mesh quality, by applying the averaging/smoothing based
repositioning of the mesh vertices using the centroid smoothing scheme of [27], which tends
to produce hexahedra with good aspect ratio. This averaging/smoothing can also be conducted
with varied crease rules, to produce user desired mesh anisotropy.

N.B. A current disadvantage of the centroid smoothing scheme [27] that we use for mesh quality
improvement, is the lack of a guarantee of producing “good” (e.g. bounded aspect ratio, positive
Poisson ratio) meshes. Furthermore, in three dimensions there is the occasional failure to
maintain convexity of the subsequently partitioned hexahedra after several iterations of
averaging/smoothing. While in our current implementation, we do not perform the step that
causes “bad” hexahedra, we are currently working on an improved weighted averaging/
smoothing scheme for hexahedral mesh quality improvement.

Alternate Step
In the case where a complete hexahedral element mesh is required both inside and outside the
spheres, one can use the following alternate hexahedral scaffolding scheme. First, split each
face of the Voronoi cell into triangles. Next connect each vertex of the triangulated Voronoi
faces to the center of their respective particle centers, decomposing the entire bounding region
into tetrahedra. The tetrahedra are further decomposed by the (piecewise linear) surfaces of
the particle spheres into triangular prisms, and tetrahedra incident to the center of the particles.
Each triangular prism can be split into 3 hexahedra and the tetrahedra at the particle centers,
are split into four hexahedra by adding three vertices on the edges and one vertex on the face
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(see figures 17 and 18). After this step, the entire bounding region, with the particle system, is
partitioned into hexahedra.

Features of the Constructed Mesh
The hexahedral mesh constructed is adaptive in the sense that it becomes denser in the regions
that are close to the surfaces of the sphere. When averaging/smoothing (recursive subdivision)
rules are used, the mesh is uniform in the sense that at the regions which are the same distance
to a sphere, the elements are similar to each other. See figures 19, 20.

4. EXTENSIONS TO DYNAMIC PARTICLE SYSTEMS
Our extensions to the re-meshing of dynamic particle systems is based on dynamic Laguerre
Voronoi diagrams. The partitioning and recursive subdivision follows directly from the
instantaneous position of the particle system and its Voronoi diagram. Dynamic Voronoi
diagrams have been well studied [28,29,30,31,32,33,34,35]. Dynamic Laguerre Voronoi
diagrams have also been considered [36,37].

5. CONCLUDING REMARKS
We have incorporated our quadrilateral and hexahedral meshing schemes to two and three
dimensional stress/strain finite element simulations involving epoxy/glass composite materials
under static and dynamic loading scenarios in computational mechanics [2]. We are currently
also using this mesher to develop a fast non-uniform fast-Fourier transform based n-body
gravitational force calculation, coupled to smooth particle gas hydrodynamics simulations in
computational cosmology [3]. Further, we hope to apply extensions of this scheme to Poisson-
Boltzmann and Smoluchowski equations [4] as well as additional biophysics simulations.
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Figure 1.
Tesselating the initial bounding region by Laguerre Voronoi cells.
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Figure 2.
Simplification of the Laguerre Voronoi diagram by contracting small edges
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Figure 3.
Contracting an edge sometime leads to the contraction of a triangle
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Figure 4.
A Simplified Voronoi Diagram for a Particle System in a rectangular bounded region
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Figure 5.
Partitioning of the Laguerre Voronoi Diagram into Quadrilaterals
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Figure 6.
Further partitioning of the Laguerre Voronoi Diagram yields a quad tesselation of the bounding
region for the particle system
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Figure 7.
The quadrilateral mesh after a radial/angular quad subdivision step outside to the particles
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Figure 8.
The quadrilateral mesh after a quad subdivision step inside/outside the particles.
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Figure 9.
The quadrilateral mesh after recursive quad subdivision refinement
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Figure 10.
The quadrilateral mesh after several steps of subdvision refinement
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Figure 11.
Zoomed in view of the mesh shown in figure 10.
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Figure 12.
Zoomed in view of the mesh shown in figures 10 and 11.
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Figure 13.
Tesselating the initial bounding region by Laguerre Voronoi cells. Each cell is a convex
polyhedron in 3D.
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Figure 14.
Subdivision of the face polygon of Voronoi cells into quadrilaterals. The empty dot is the
centroid of the polygon. The darkened dots are the mid-points of the edges.
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Figure 15.
Adaptive subdivision in the radial direction.
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Figure 16.
Hexahedral meshing of a portion of a heterogeneous composite material with glass sphere
inside an epoxy substrate
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Figure 17.
Splitting of a triangular prism into 3 hexahedra
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Figure 18.
Splitting a tetrahedron into four hexahedra. The right image only displays three of the
hexahedra, with the fourth hexahedron (top) omitted for visual clarity
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Figure 19.
The hexahedral mesh after a couple of steps of our adaptive hexahedral recursive subdivision
refinement
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Figure 20.
The hexahedral mesh after a further steps of our adaptive hexahedral recursive subdivision
refinement
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