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Abstract

Reversal of cardiac arrest requires reestablishment of aerobic metabolism by reperfusion with
oxygenated blood of tissues that have been ischemic for variables periods of time. However, re-
perfusion concomitantly activates a myriad of pathogenic mechanisms causing what is known as
“reperfusion injury.” At the center of reperfusion injury are mitochondria, playing a critical role as
effectors and targets of injury. Studies in animal models of ventricular fibrillation have shown that
limiting myocardial cytosolic Na* overload attenuates mitochondrial CaZ* overload and maintains
oxidative phosphorylation, which is the main bioenergetic function of mitochondria. This effect is
associated with functional myocardial benefits such as preservation of myocardial compliance during
chest compression and attenuation of myocardial dysfunction after return of spontaneous circulation.
Additional studies in similar animal models of ventricular fibrillation have shown that mitochondrial
injury leads to activation of the mitochondrial apoptotic pathway; characterized by the release of
cytochrome c to the cytosol, reduction of caspase-9 levels, and activation of caspase-3 coincident
with marked reduction in left ventricular function. Cytochrome c also “leaks” into the bloodstream
attaining levels which are inversely proportional to survival. These data indicate that mitochondria
play a key role during cardiac resuscitation by modulating energy metabolism and signaling apoptotic
cascades and that targeting mitochondria could represent a promising strategy for cardiac
resuscitation.

Introduction

Every year approximately 330 000 individuals in the United States (1) and 700 000 in Europe
(2) suffer an episode of sudden cardiac arrest outside the hospital. Efforts to reestablish life are
formidably challenging, requiring not only that cardiac activity be reestablished but that injury
to vital organs be prevented, minimized, or reversed. Current resuscitation methods yield an
average survival rate to hospital discharge with intact neurological function that approaches
only 5%. Efficient Emergency Medical Services systems can initially reestablish cardiac
activity in approximately 30% of victims (3-5) with over 30% dying before hospital admission
(6). Of those admitted to a hospital, nearly 75% die before hospital discharge suffering variable
degrees of myocardial dysfunction, neurological dysfunction, systemic inflammation,
intercurrent illnesses, or a combination thereof (6-8). Thus, initial reestablishment of cardiac
activity using current resuscitation techniques does not ensure ultimate survival. Novel
resuscitation approaches are needed to increase the rate of initial resuscitation and subsequent
survival with intact organ function.

Although resuscitation requires reperfusion of ischemic tissue with oxygenated blood to restore
aerobic metabolism and organ function, reperfusion concomitantly activates multiple
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pathogenic mechanisms, collectively known as “reperfusion injury.” At the center of
reperfusion injury are mitochondria, playing a critical role as effectors and targets of injury.
Recent studies in our laboratory have centered on the effects that cardiac arrest and resuscitation
have on mitochondria using various animal models of ventricular fibrillation (VF). The studies
have been primarily focused on the myocardium, which represents a prime target of injury
during cardiac arrest and resuscitation. The present article has been organized to i) provide a
brief overview of mitochondrial anatomy and function, ii) discuss work along a line of research
related to limiting cytosolic Na* overload, which led to observations implicating mitochondria
as the main functional target, and iii) examine recent evidence demonstrating activation of the
mitochondrial apoptotic pathway during cardiac resuscitation.

Mitochondrial Anatomy and Function

Mitochondria have an outer and an inner membrane which delimit three submitochondrial
compartments; namely, an intermembrane space, a matrix, and an intracristae space. The
intermembrane space is located between the outer and the inner mitochondrial membrane. The
matrix is enclosed by the inner mitochondrial membrane, which folds inwardly forming
convoluted loops known as cristae. These cristae enclose a space known as the intracristae
space which communicates with the intermembrane space through bottle-neck like junctions
(9,10).

The primary function of mitochondria is the generation of ATP through oxidative
phosphorylation. This process results from the oxidation of NADH and FADH> and transfer
of electrons through the electron transport chain (complex I, 11, 11, and IV) — located in the
inner mitochondrial membrane — down their redox potentials. The energy released from the
transfer of electrons is used to pump H* into the intermembrane space creating a proton motive
force which is then used by FoF1 ATP synthase to synthesize ATP from ADP and inorganic
phosphate. ATP is then shuttled to the cytosol in exchange for ADP by the adenine nucleotide
translocator (ANT) (Figure 1).

In addition to the key role in energy metabolism, mitochondria can also signal cell death
through the release of various pro-apoptotic proteins, including cytochrome c, apoptosis-
inducing factor (11), Smac/DIABLO, endonuclease G, and a serine protease Omi/HtrA2 (12,
13). Of these proteins, cytochrome c has been the most widely investigated.

Cytochrome c is a 14 kDa hemoprotein normally present in the intracristae space and
intermembrane space attached to the inner mitochondrial membrane loosely bound to
cardiolipin. Cytochrome c plays a key physiological role enabling electron transfer from
complex 111 to complex 1V (Figure 1). However, release of cytochrome c to the cytosol can
activate the intrinsic apoptotic pathway through formation of an oligomeric complex known
as the apoptosome which includes cytochrome ¢, dATP, the apoptotic protease activating
factor-1 (Apaf-1), and procaspase-9 (14). The apoptosome activates caspase-9 which, in turn,
activates downstream executioner caspases 3, 6, and 7 (15). Activation of these executioner
caspases can lead to apoptotic cell death (16).

Cytochrome c release to the cytosol can occur under various pathological conditions including
calcium overload (17), hypoxia (18), generation of reactive oxygen species (19), ultraviolet
irradiation (20), serum deprivation (21), and growth factor withdrawal (21-3). Cytochrome ¢
can also “leak” into the bloodstream; increased circulating levels have been reported in
conditions associated with mitochondrial injury such as chemotherapy (24,25), acute
myocardial infarction (26), the systemic inflammatory response syndrome (27), and influenza-
associated encephalopathy (28,29).
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Cytosolic Na* Overload and Mitochondrial Injury

The combination of VF and lack of coronary blood flow prompts a shift to anaerobic
metabolism leading to rapid development of intense and sustained intracellular acidosis.
Intracellular acidosis activates the sarcolemmal sodium-hydrogen exchanger isoform-1
(NHE-1) initiating an electro-neutral Na*—H* exchange that brings Na* into the cell (30).
Reperfusion with normal blood pH during cardiac resuscitation washes out H* accumulated
extracellularly during the preceding interval of no-flow leading to further intensification of the
sarcolemmal Na*-H* exchange and Na* entry (30-32). Na* may also enter through Na*
channels and the Na*-HCO3™ co-transporter. Increased cytosolic Na* influx is compounded
by decreases in Na*-K* ATPase activity (33), such that progressive and prominent increases
in cytosolic Na* occurs. The cytosolic Na* excess, in turn, drives sarcolemmal Ca2* influx
through reverse mode operation of the sarcolemmal Na*-Ca?* exchanger (NCX) with
consequent cytosolic Ca%* overload (34) (Figure 2).

Cytosolic Ca%* overload during ischemia and reperfusion has been identified as a primary
effector of mitochondrial injury. Mitochondria can sequester large amounts of cytosolic
Ca?*; a process which is regulated by the Ca2* uniporter for influx and by the Na*—Ca?*
exchanger for efflux (35). However, as matrix CaZ* levels progressively increase the
mitochondrial Na*—Ca?* exchanger becomes saturated and mitochondrial Ca%* overload
ensues (35). Mitochondrial Ca2* overload can worsen cell injury in part by compromising its
capability to sustain oxidative phosphorylation (36) and by promoting the release of pro-
apoptotic factors (37).

The relevance of this mechanism of injury is highlighted by a large preclinical data
demonstrating consistent attenuation of myocardial injury caused by ischemia and reperfusion
when Na* entry to the cell is limited as when NHE-1 activity is inhibited (30) or when Na*
channels are blocked (38,39).

Research over the last 7 years in our laboratory using various translational rat and pig models
of cardiac arrest has shown consistent myocardial benefit associated with inhibition of NHE-1
activity during resuscitation from VF (32,40-49). These myocardial benefits include: 1)
preservation of myocardial compliance and left ventricular wall thickness during VVF enabling
hemodynamically more effective chest compression, 2) reduction of reperfusion arrhythmias
eliminating episodes of recurrent VVF after return of spontaneous circulation, and 3) attenuation
of myocardial injury leading to better post-resuscitation systolic and diastolic function with
improved survival. Mechanistically, these benefits are associated with less cytosolic Na*
overload, less mitochondrial Ca2* overload, and preservation of oxidative phosphorylation.

Two of these studies examined effects on mitochondria and are worth discussing in greater
detail. In one study (49), an open-chest pig model of electrically-induced VVF and extracorporeal
circulation was developed to control coronary perfusion pressure while having direct access
to the heart for functional and metabolic measurements (Figure 3). For this study, VF was
induced by epicardial delivery of an alternating current and left untreated for 8 minutes. After
this interval, extracorporeal circulation was started and the systemic blood flow adjusted to
maintain a coronary perfusion pressure at 10 mmHg for 10 minutes before attempting
defibrillation and restoration of spontaneous circulation. The target coronary perfusion
pressure was chosen to mimic the low coronary perfusion pressure generated by closed-chest
resuscitation. Two groups of 8 pigs each were randomized to receive the NHE-1 inhibitor
zoniporide (3 mg/kg) or vehicle control as a right atrial bolus immediately before starting
extracorporeal circulation. Like in a previous study using the NHE-1 inhibitor cariporide
(42), zoniporide also prevented reductions in left ventricular compliance during the interval of
VF and extracorporeal circulation, which in control pigs was characterized by progressive
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reductions in cavity size and progressive thickening of the left ventricular wall. These effects
occurred without changes in coronary blood flow or coronary vascular resistance. Analysis of
myocardial energy metabolites demonstrated that zoniporide prevented progressive loss of
oxidative phosphorylation. This effect was evidenced by 1) a higher creatine phosphate to
creatine ratio which is an indicator of oxidative phosphorylation and a sensitive marker of
ischemia (50), 2) a numerically higher ATP/ADP ratio consistent with preservation of
capability for ATP synthesis, and 3) attenuation of increases in myocardial adenosine
suggesting that rephosphorylation of ADP was favored over breakdown into downstream
products (Figure 4). These changes were accompanied by prominent amelioration of
myocardial lactate increases, inversely related to increases in the creatine phosphate to creatine
ratio suggesting coupling between these two energy related process (Figure 5). It is important
to acknowledge, however, that additional mechanisms could have operated to mitigate the
myocardial lactate increases including inhibition of phosphofructokinase (51) by the
intracellular acidosis and lactate extrusion by the lactate/H™ co-transporter (52); two processes
that could have been intensified by blocking H* extrusion through the NHE-1 (Figure 2).

In another study (48), a rat model of VVF and closed-chest resuscitation was used to examine
the effects of various Na*-limiting interventions on intracellular Na*, mitochondrial Ca2*,
cardiac function, and cardiospecific troponin | (cTnl) levels. For these studies, hearts were
removed at specific time events; namely at baseline, during VVF, during VF and chest
compression, and after return of spontaneous circulation, with the rats from the last two time
events randomized to receive a Na*-limiting intervention immediately before starting chest
compression or vehicle control. The Na*-limiting interventions included a newly developed
NHE-1 inhibitor AVE4454 (1 mg/kg), lidocaine (5 mg/kg), and the combination of AVE4454
and lidocaine. These rats were subjected to a 10 minute interval of untreated VF before
attempting resuscitation. Limiting sarcolemmal Na* entry attenuated increases in cytosolic
Na* and mitochondrial Ca?* overload during chest compression and the post-resuscitation
phase measured at 60 minutes after return of spontaneous circulation (Figures 6 and 7).
Attenuation of cytosolic Na™ and mitochondrial Ca2* increases was accompanied by lesser
increases in cTnl and lesser post-resuscitation myocardial dysfunction (Figure 8).

of the Mitochondrial Apoptotic Pathway

The preceding studies demonstrating a critical involvement of mitochondria during cardiac
arrest and resuscitation prompted work designed to examine whether such injury could be
accompanied by activation of the mitochondrial apoptotic pathway. These studies were
conducted in a rat model of VF and closed-chest resuscitation in which the heart was removed
at predefined intervals.

VF was electrically induced and left untreated for 4 or 8 minutes after which resuscitation was
attempted by providing 8 additional minutes of chest compression followed by biphasic
waveform defibrillation (53). A sham group served as control. Hearts were harvested at 4 hours
after resuscitation, time at which the left ventricular stroke work index was only 23% of sham
hearts. Analysis of left ventricular tissue demonstrated cytochrome c release to the cytosol,
decreased procaspase-9 and cleaved caspase-9 levels, increased 17-kDa caspase-3 fragments,
and increased caspase-3 activity consistent with activation of the mitochondrial apoptotic
pathway (Figure 9). In more recent studies — published in abstract form (54) — we observed
that activation of the mitochondrial apoptotic pathway was not accompanied by
internucleosomal DNA fragmentation which is the hallmark of apoptotic cell death. This
observation was made using a ligation-mediated polymerase chain reaction, which is a highly
sensitive and specific reaction for identifying DNA fragments with blunt, 5’ phosphorylated,
ends characteristic of endonucleolytic cleavage (55). We further demonstrated that caspase-3
inhibition initiated before induction of VF failed to prevent post-resuscitation myocardial
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dysfunction even though caspase-3 activity was reduced to baseline levels. These were
intriguing observation questioning the significance cas-pase-3 activation during cardiac
resuscitation, at least within the time frame of the measurements; namely, the initial 4 hours
post-resuscitation. Thus, the release of cytochrome c in left ventricular mitochondria with
subsequent activation of the mitochondrial apoptotic pathway is at the time of this writing an
interesting observation in need of further work to determine its pathophysiological
significance.

However, despite these observations it would be safe to postulate that release of cytochrome
c represents —at the very least —a marker of mitochondrial injury. Furthermore, because cardiac
arrest and resuscitation affects the whole body, it is highly likely that similar mitochondrial
injury occurs ubiquitously throughout the body. Given these considerations and previous
studies showing increased levels of plasma cytochrome c in conditions associated with
mitochondrial injury, we examined whether cardiac arrest and resuscitation causes release of
cytochrome c to the bloodstream.

Thus, plasma cytochrome ¢ was serially measured in rats successfully resuscitated from an 8-
minute interval of untreated VVF after 8 minutes of closed-chest resuscitation. Cytochrome ¢
levels were measured until the levels had normalized or the rat had died. In survivors, plasma
cytochrome ¢ gradually increased to levels that did not exceed 2 pg/ml, returning to baseline
within 48 to 96 hours. In non-survivor rats, however, cytochrome c rapidly increased to levels
that substantially exceeded those observed in survivor rats, without reversal before demise
from cardiovascular dysfunction (53) (Figure 10). These observations further strengthened the
idea that mitochondria are injured during resuscitation from cardiac arrest.

The observation that plasma cytochrome c attained levels inversely proportional to survival
invited discussion on the potential mechanisms of cytochrome c release hypothesizing that
understanding of such mechanisms could point to specific targets for therapeutic intervention.

Two main mechanisms have been proposed to explain cytochrome c release from
mitochondria; namely, opening of the mitochondrial permeability transition pore (mPTP) and
selective permeabilization of the outer mitochondrial membrane (OMM).

mPTP opening

This mechanism of cytochrome c release involves opening of the mPTP allowing molecules
of up to 1500 Da to enter the mitochondrial matrix along with water and solutes leading to
mitochondrial swelling, unfolding of inner mitochondrial membrane cristae, and disruption of
the OMM ultimately causing cytochrome c release to the cytosol (56,57). Pathophysiological
conditions that can open the mPTP include Ca2* overload, production of reactive oxygen
species (ROS), depletion of ATP and ADP, and increases in inorganic phosphate (56); all of
which are characteristically present during ischemia and reperfusion. Although the exact
composition of the mPTP has not been completely resolved, it seems to involve the apposition
of transmembrane proteins from the inner and the outer mitochondrial membrane, including
ANT, the voltage dependent anion channel, the peripheral benzodiazepine receptor, a
hexokinase, the mitochondrial creatine kinase, and cyclophilin-D (56). mPTP opening causes
collapse of the electrochemical gradient across the inner mitochondrial membrane leading to
uncoupling of oxidative phosphorylation.

OMM permeabilization

Cytochrome c can also be released without mPTP opening through selective permeabilization
of the OMM. This effect is modulated by proteins of the B-cell lymphoma-2 (Bcl-2) family
through oligomerization and formation of channel-like structures in the OMM (67). Among
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the various family members, Bcl-2—associated X protein (Bax), Bcl-2 homologous antagonist/
killer (Bak), and truncated BH3 interacting domain death agonist (Bid) are considered pro-
apoptotic and favor formation of the channel-like structures in the OMM (68). Bcl-2, Bcl-xL,
and Bcl-w are considered anti-apoptotic and oppose this effect. Bcl-2 has been shown to inhibit
OMM permeabilization by antagonizing Bax and/or Bak conformational changes, membrane
insertion, and oligomerization (69).

Release of cytochrome c is further facilitated during ischemia and reperfusion by peroxidation
of cardiolipin consequent to mitochondrial Ca2* overload and ROS production (70,71).
Cardiolipin is the principal lipid constituent of the inner mitochondrial membrane and to which
a fraction of cytochrome c is bound. Peroxidation of cardiolipin decreases its binding affinity
for cytochrome c facilitating its release from mitochondria (71).

Conclusions

The quest for interventions that could prevent or mitigate reperfusion injury has prompted an
intense scientific pursuit for decades. This pursuit has broadened our understanding of the
underlying pathogenic processes; yet, the development of clinical interventions targeting
reperfusion injury has remained an elusive goal. Identification of functional intracellular
effectors may lead to the recognition of more robust targets for therapeutic intervention. The
growing evidence identifying mitochondria as effectors and targets of reperfusion injury is
bringing renewed hope that novel and more effective interventions could be developed for
resuscitation from cardiac arrest.
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Figure 1.

Schematic rendition of key mitochondrial components involved in ATP synthesis via oxidative
phosphorylation. OMM, outer mitochondrial membrane; IMM, inner mitochondrial
membrane; I, I1, 111, and 1V, respiratory chain complexes; Q, coenzyme Q; C, cytochrome c;
ANT, adenine nucleotide translocator; VDAC, voltage-dependent anion channel.
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Figure 2.

Schematic rendition of a cardiomyocyte during ischemia and reperfusion depicting Na*-
induced cytosolic and mitochondrial Ca2* overload. NHE, sodium-hydrogen exchanger iso-
form-1; NBC, Na*-HCOj3 cotransporter; NCX, Na*-Ca2* exchanger; Ch, channel.

Crit Care Med. Author manuscript; available in PMC 2010 May 6.



1duasnuely Joyiny Vd-HIN 1duosnuey JoyIny vd-HIN

1duasnuely Joyiny vd-HIN

Ayoub et al.

ECC System

Oo,~ Flowmeter

PPV &=
100% O,

RA/CO

Figure 3.

Page 13
LAD High-fidelity
Microtip pressure
~ Flowmeter transducer

LV Vent Echo-

Doppler

Liquid Lactate (Enzyme)
nitrogen HEM (HPLC)
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MAP

Diagram depicting an open chest pig model of ventricular fibrillation and extracorporeal
circulation. ECC, system for extracorporeal circulation; PPV, positive pressure ventilation;
RA, right atrial pressure; CO, cardiac output; MAP, mean aortic pressure; ECG,
electrocardiogram; LAD, left anterior descending coronary artery; LV, left ventricle; HEM
(HPLC), high energy metabolites analyzed by high performance liquid chromatography.
(Adapted from Ayoub | et al. Crit Care Med 2007;35:2329-36) (49).
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Figure 4.

Creatine phosphate/creatine (PCr/Cr) ratios, adenosine triphosphate/adenosine diphosphate
(ATP/ADP) ratios, and adenosine levels measured in left ventricular tissue in pigs randomized
to receive either 3 mg/kg of zoniporide (black bars) or 0.9% NaCl (gray bars) into the right
atrium after 8 minutes of untreated ventricular fibrillation, immediately before starting
extracorporeal circulation (ECC). d-w, dry-weight. Measurements were obtained at baseline
(BL), at minute 4 of ECC (ECC 4), at minute 8 of ECC (ECC 8), and at 60 minutes post-
resuscitation (PR). Each group included 8 pigs each at baseline and during ECC and 6 pigs in
the zoniporide group and 5 in the NaCl group at post-resuscitation. Values are mean + SEM.
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Differences were tested by Student’s t-test. (Adapted from Ayoub | et al. Crit Care Med
2007;35:2329-36) (49).
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Figure 5.

Myocardial lactate levels in left ventricular tissue in pigs randomized to receive either
zoniporide (black symbols, n = 8) or NaCl (gray symbols, n = 8) before extracorporeal
circulation. Numbers in brackets indicate when sample size decreased from the initial eight or
from the preceding sample size. Insert demonstrates the relationship between myocardial
lactate and the creatine phosphate to creatine ratio (pCr/Cr) at ECC 8 minutes. The regression
line represents an exponential decay function (R? = 0.63, p < 0.001). BL, baseline; VF,
ventricular fibrillation; ECC, extracorporeal circulation; PR, postresuscitation; d-w, dry
weight. Values are mean + SEM; *p < 0.05, tp < 0.001 vs. NaCl by Student’s t-test. (Adapted
from Ayoub I et al. Crit Care Med 2007;35:2329-36) (49).
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Figure 6.

Intracellular Na* ([Na*];) in left ventricular tissue of rats at baseline (BL), at 15 minutes of
untreated ventricular fibrillation (VF), at 15 minutes of VF accompanied by 5 minutes of chest
compression (CC), and at 60 minutes post-resuscitation (PR). Hatched bars represent
measurements without pharmacological treatment. Black bars represent rats treated with Na*
limiting interventions. Gray bars represent rats treated with vehicle control. The individual
Na*-limiting interventions are shown on the right panels; A, selective sodium-hydrogen
exchanger isoform-1 inhibitor AVE4454; L, lidocaine; and A/L, combination of AVE4454 and
lidocaine. Numbers within bars denote number of hearts processed for the measurement.
Values are mean + SEM. *p < 0.05 vs BL by Kruskal-Wallis one-way ANOVA on ranks using
Dunn’s Method for multiple comparisons; tp <0.05 vs control by Student’s t-test in PR groups;
ttwo-way ANOVA using time factor (VF/CC vs PR) and treatment factor (control vs Na*-
limiting interventions) was significant for treatment factor (p = 0.013). (Adapted from Wang
S et al. J Appl Physiol 2007;103:55-65) (48).
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Figure 7.

Mitochondrial Ca2* ([Ca2*]m) in left ventricular tissue of rats. For interpretation of bars and
abbreviations refer to legend for Figure 6. ¥Two-way ANOVA using time factor (VF/CC vs
PR) and treatment factor (control vs Na*-limiting interventions) was significant for both, time
factor (p = 0.045) and treatment factor (p = 0.021). (Adapted from Wang S et al. J Appl
Physiol 2007;103:55-65) (48).
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Figure 8.

Cardiospecific troponin I (cTnl) in plasma at baseline (BL) and at 60 minutes post-resuscitation
(PR) in rats subjected to ventricular fibrillation and resuscitation. Black symbols represent rats
treated with a Na*-limiting intervention (AVE4454 circles, lidocaine inverted triangle, and
AVE4454 and lidocaine combined upright triangles). Gray symbols represent control rats.
Values are mean = SEM. *P< 0.05 vs. control by Student’s t-test. The scatterplot depicts the
correlation between cTnl and cardiac work index (CWI1) at 60 min post-resuscitation. (Adapted
from Wang S et al. J Appl Physiol 2007;103:55-65) (48).
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Figure 9.

Densitometry of left ventricular immunoblots demonstrating numerical increases in
mitochondrial cytochrome c relative to prohibitin and cytosolic cytochrome c relative to -
actin and statistically significant increases in 17 kDa cleaved caspase-3 fragments in the
cytosolic fraction relative to pro-caspase-3 and B-actin at 240 minutes post-resuscitation. Rats
were randomized to untreated VVF lasting 4 minutes (gray bars, n = 4), 8 minutes (black bars,
n = 4), or to sham intervention (open bars, n = 4). Values are mean £ SEM. *p < 0.05 vs sham
by one-way ANOVA and Dunn’s test for multiple comparisons. (Adapted from Radhakrishnan
Jetal. Am J Physiol Heart Circ Physiol 2007; 292:767-75) (53).
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Figure 10.

Serial measurements of plasma cytochrome c by reverse-phase high performance liquid
chromatography in rats successfully resuscitated after 8 minutes of untreated ventricular
fibrillation. Measurements were made until cytochrome c levels had returned to baseline or the
rat had died. Gray symbols represent survivors (n = 3); black symbols represent non-survivors
(n=9). (Adapted from Radhakrishnan J et al. Am J Physiol Heart Circ Physiol 2007; 292:767-
75) (53).

Crit Care Med. Author manuscript; available in PMC 2010 May 6.



