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Abstract: Certain species of the fungal genus Trichoderma are potent mycoparasites and are used for biological control of fungal diseases 
on agricultural crops. In Trichoderma, whole-genome sequencing reveal between 20 and 36 different genes encoding chitinases, hydrolytic 
enzymes that are involved in the mycoparasitic attack. Sequences of Trichoderma chitinase genes chi18-5, chi18-13, chi18-15 and chi18-17, 
which all exhibit specific expression during mycoparasitism-related conditions, were determined from up to 13 different taxa and studied 
with regard to their evolutionary patterns. Two of them, chi18-13 and chi18-17, are members of the B1/B2 chitinase subgroup that have 
expanded significantly in paralog number in mycoparasitic Hypocrea atroviridis and H. virens. Chi18-13 contains two codons that evolve 
under positive selection and seven groups of co-evolving sites. Chi18-15 displays a unique codon-usage and contains five codons that 
evolve under positive selection and three groups of co-evolving sites. Regions of high amino acid variability are preferentially localized to 
substrate- or product side of the catalytic clefts. Differences in amino acid diversity/conservation patterns between different Trichoderma 
clades are observed. These observations show that Trichoderma chitinases chi18-13 and chi18-15 evolve in a manner consistent with rapid  
co-evolutionary interactions and identifies putative target regions involved in determining substrate-specificity.
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Introduction
Fungi are predominant pathogens on plants and 
infections have traditionally been controlled by 
chemical fungicides. Concerns about environmen-
tal impact of fungicides have made biological con-
trol an attractive option for managing plant diseases. 
Several mycoparasitic species of the anamorphic 
fungal genus Trichoderma are currently being used 
as biocontrol agents, e.g. Trichoderma harzianum 
(teleomorph Hypocrea lixii), T. virens (teleomorph 
H. virens), T. atroviride (teleomorph H. atroviridis) 
and T. asperellum.1 For simplicity, we refer to Tricho-
derma and Hypocrea as Trichoderma in this study. 
Trichoderma spp. are frequently isolated from tem-
perate and tropical soils, where they colonize woody 
and herbaceous material. Several mechanisms are 
proposed to be involved in the biocontrol ability of 
Trichoderma species, including direct mycopara-
sitic attack on plant pathogenic species, competition 
for plant exudates, nutrients or space, induced local 
and systemic response, and enhancement of plant 
growth.2 The mycoparasitic attack often includes 
sensing and directed growth towards the antagonist,3 
followed by attachment and formation of appressoria. 
Trichoderma then secrete several cell wall degrad-
ing enzymes and mycotoxic peptaibol metabolites.4,5 
Chitin is an important constituent of fungal cell walls 
and chitinases have been shown to contribute to 
mycoparasitic attack.6

Fungal chitinases (EC3.2.1.14) exclusively belong 
to family 18 glycoside hydrolases and they are all 
predicted to possess a retaining mode of action.7 Chi-
tinases are involved in different biological functions 
such as cell wall remodelling during growth and 
development, degradation of chitin for nutritional 
needs and aggressive interactions with other fungi, 
insects and nematodes.8,9 Whole genome sequenc-
ing of three different Trichoderma species, H. jeco-
rina, H. atroviridis and H. virens, has revealed that a 
large number of chitinase genes are present in these 
species (20, 29 and 36 genes respectively).10,11 Ortho-
logs to the following chitinase genes have been previ-
ously cloned and studied from various Trichoderma 
species: chi18-2, chi18-3, chi18-4, chi18-5, chi18-6, 
chi18-7, chi18-10, chi18-12, chi18-13, chi18-15 and 
chi18-17.10 Based on previous work on phylogenetic 
relationships between chitinase catalytic domains, 
chitinases are divided into three main groups, A, B  

and C. These groups are further subdivided into 
subgroups A2-A5, B1-B5 and C1-C2.7 In certain 
Trichoderma chitinases, the catalytic domain is con-
nected to substrate-binding domains which are not 
necessary for chitinolytic activity, but may enhance the 
efficiency of the enzymes.12,13 Transcriptional patterns 
of Trichoderma chitinases show that some are expressed 
in response to mycoparasitic conditions, orthologs 
to chi18-5, chi18-7, chi18-10, chi18-12, chi18-13, 
chi18-15 and chi18-17,10,14–18 while others are constitu-
tively expressed, chi18-2, chi18-3 and chi18-4.10

Chitinase groups B and C are reported to display 
gene copy number expansions in some soil-borne 
ascomycetes, in addition to low levels of inter- and 
intraspecific amino acid conservation, which can 
be interpreted as a result of diversifying selection.7 
Chi18-15 has been previously shown to be of acti-
nobacterial origin and horizontally transferred to 
Trichoderma.12 In addition, some plant defence chi-
tinases from the genus Arabis and the family Poaceae 
have evolved rapidly in response to a co-evolution-
ary arms race between plant host and fungal patho-
gen, resulting in a continuous selection for adaptive 
modifications.19,20

We hypothesize that Trichoderma chitinases, 
which have a function during the mycoparasitic inter-
action, have evolved adaptations to specific ecologi-
cal contexts, such as cell wall composition of hosts, 
antagonistic microbial chitinase inhibitors and other 
environmental factors, of different Trichoderma spe-
cies. We assume that specificity-determining residues 
have undergone mutations to compensate for the spec-
ificity needed; hence in paralogous or closely related 
orthologous sequences, specificity-determining resi-
dues may tend to display greater diversity than other 
positions. This concept was tested on four different 
Trichoderma chitinases that have been implicated in 
having a function during the mycoparasitic attack, 
chi18-5, chi18-13, chi18-15 and chi18-17, by analyz-
ing distribution of amino acid diversity, evolutionary 
rates and presence of co-evolving codons. In addition, 
we analyzed chitinase gene copy number expansions 
as the mycoparasitic lifestyle may have promoted the 
conservation of new paralogs.

We detected distinct differences in evolutionary 
trajectories that identify chi18-13 and chi18-15 as 
likely targets for adaptive evolution during myco-
parasitic interactions. The results suggest that 
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fungal-fungal interactions can drive adaptive changes 
in enzymatic properties as a response to specific eco-
logical contexts of different Trichoderma species.

Materials and Methods
Fungal material and media
Fifteen different strains of Trichoderma were used in 
the study (Table 1). Species assignment was based 
on analyses of species specific oligonucleotide bar-
codes located within the internal transcribed spacers 
1 and 2 (ITS1 and ITS2) regions of the rRNA repeat, 
amplified by primers ITS1F and ITS4,21,22 by using 
TrichOKey version 2.23 Strains were maintained on 
malt extract agar at 25 °C.

DNA extraction
For DNA extraction, conidia were transferred to liquid 
media (2% wv-1 glucose, 2% wv-1 yeast extract, 1% wv-1 
peptone) and incubated on a shaker for 16 to 54 hours. 
Mycelia were harvested, freeze-dried overnight, and 
crushed with a toothpick. An equal volume of DNA 
extraction buffer (0.2 M Tris (pH 8.5), 0.25 M NaCl, 
0.5% SDS, 25 mM EDTA) was added and the mixes 
were incubated for 30 min at 70 °C followed by micro-
centrifugation at maximum speed for 5 minutes. 
Supernatants were RNase treated, extracted by phenol 
and chloroform followed by isopropanol precipitation. 

DNA pellets were dissolved and adjusted to 100 ng µl-1 
in 10 mM Tris (pH 8).

Primer design and PCR
The coding regions of four chitinases, chi18-5, 
chi18-13, chi18-15 and chi18-17 were amplified 
from at least one strain per species, using primers 
listed in Supplemental Table S1. Sequences from 
the H. jecorina, H. atroviridis and H. virens genome 
projects (http://www.jgi.doe.gov/) were used for 
initial primer design; by aligning protein ID 80833 
from H. jecorina and 111866 H. virens (chi18-5), 
119859 H. jecorina, 45585 H. atroviridis and 25421 
H. virens (chi18-13), 59791 H. jecorina and 89999 
H. virens (chi18-15) and 110317 H. jecorina and 
42107 H. virens (chi18-17) in the program BioEdit.24 
Primers were designed in conserved regions and 
evaluated with the program Primer3.25 PCR was 
performed using 2720 and Veriti thermal cyclers 
(Applied Biosystems). The amplification was run 
with approximately 0.5 ng µl-1 template DNA in a 
solution of 0.2 mM dNTP-mix, 0.03 U µl-1 Ther-
moRed Taq DNA polymerase with buffer Y and 
enhancer P according to the manufacturer’s instruc-
tion (Saveen and Werner) and 0.2–0.6 µM of each 
primer (the more degenerate the primer the higher 
the primer concentration) and 2.75 mM MgCl2. An 
initial denaturation step at 94 °C for 5 min was fol-
lowed by 35 amplification cycles of denaturation 
at 94 °C for 30 s, annealing at 45–60 °C for 30 s 
and extension at 72 °C for 30–90 s. The thermal 
cycling was ended by a final extension step at 72 °C 
for 7 min. The PCR products were separated by gel 
electrophoresis on 1% agarose gels, purified with 
AMPure (Agencourt) and sequenced with a CEQ 
8000 with the GenomeLab DTCS Quick Start Kit 
(Beckman Coulter). Sequence analyses and align-
ments were performed with the DNASTAR program 
package (DNAstar). Sequences were deposited 
in GenBank with accession numbers GU180607, 
GU186414-GU186439.

Likelihood analysis of gene gain and loss
Using a species phylogeny and chitinase gene copy 
number in extant species as input data (Supplemental 
Fig. S1), the program CAFE (Computational Analy-
sis of gene Family Evolution) was used to test for 
accelerated rates of chitinase family expansions or 

Table 1. Fungal strains used in the current study.

Species CBS 
number

Geographical 
origin

H. citrinaa 593.76 Netherlands
H. lixiia 102174 Spain
H. lixiia 275.78 Colombia
H. minutisporaa 341.93 Canada
H. parapiluliferaa 112264 Australia
H. piluliferaa 224.84 Germany
H. rufaa 349.92 USA
H. schweinitziia 258.85 USA
H. virensa 249.59 USA
T. brevicompactuma 109720 USA
T. croceumb 337.93 Canada
T. ghanensea 259.85 Canada
T. longibrachiatuma 182.69 Netherlands
T. tomentosuma 349.93 Canada
Unidentified 
Trichoderma

816.68 USA

aBased on ITS sequencing and TrichoOKey.
bBased on morphological characters by Centraalbureau voor 
Schimmelcultures.
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contractions and identification of branches responsible 
for the non-random evolution.26,27 Total number of chi-
tinase genes for H. atroviridis was 29 (7 group A, 13 
group B and 9 group C) and for H. virens 36 (8 group A, 
13 group B and 15 group C).11 In the species phylog-
eny (Fig. S1), H. atroviridis and H. virens were set 
as sister taxa, with a divergence time of 180 million 
years. They were in turn separated from H. jecorina 
by 10 million years. All additional species and diver-
gence dates were as described previously.7 The birth 
and death parameter (λ) was estimated from the data 
and was 0.001 for all datasets. P-values were com-
puted using 1000 re-samplings. Identification of the 
branch that was the most likely cause of deviations 
from a random model was determined by Viterbi and 
Likelihood ratio test procedures.26 We considered  
P-values  0.05 or likelihood ratios above 50 to be 
significant for branch identification.

Phylogenetic analysis
Translated gene products from the H. atroviridis and 
H. virens genome sequences were screened for the pres-
ence of chitinases using an iterative BLAST approach.7,28 
Amino acid sequences of chitinase catalytic domains 
were determined using InterProScan.29 Sequences were 
aligned with Clustal W implemented in MEGA 4.0.2 
using default settings and trimmed manually.30,31 Phy-
logenetic analyses were performed using Neighbour-
joining implemented in MEGA 4.0.2,31 using either 
complete or pair wise deletion of gaps and missing data, 
and either a Poisson correction or the JTT substitution 
model.32 Statistical support for phylogenetic grouping 
was assessed by 1000 bootstrap resamplings.

Reverse conservation analysis (RCA)
From amino acid alignments of chitinases we iden-
tified regions of low conservation between closely 
related orthologs by applying RCA. Introns were 
removed from DNA sequences before translation. 
Amino acid sequences were aligned by Clustal X,33 
and RCA analyses were performed as described by Lee 
(2008).34 In short, Rate4Site (Version 2.01) was used 
to calculate the degree of conservation (S score, high 
scores correspond to low degree of conservation) for 
each amino acid position using the empirical Bayes-
ian method.35,36 However, the S score varied consid-
erably from residue to residue and was difficult to 

analyze visually. Therefore, a sliding-window average  
(n = 7) of normalized S scores (mean was 0 and stan-
dard deviation was 1) was plotted in Excel (Microsoft)  
(W mean score) and significant peaks were defined 
by intensity (I) values of 0.5 (i.e. 0.5 standard devia-
tion), as recommended by Lee (2008).34

Analysis of codon-usage
Differences in codon-usage between fungal and 
bacterial chitinases was analysed by performing 
multivariate (correspondence) analysis using the pro-
gram CodonW,37 accessed through the Mobyle web 
interphase (http://mobyle.pasteur.fr/cgi-bin/portal.
py?form=codonw). In-frame, protein-encoding DNA 
sequences were used as input data. The universal 
genetic code was used, correspondence analysis was 
performed on codon usage frequencies, and all other 
options were set to default. Differences in codon-
usage between genes were visualized by plotting the 
position of each gene on the resulting coa-axis 1 and 2 
in Excel (Microsoft).

Homology modelling of chitinases
Similar sequences were located in the protein entries 
of GenBank,38 and aligned using Clustal W and hid-
den Markov models.30,39 Family 18 chitinase catalytic 
domain structures were obtained from the Protein 
Data Bank (PDB),40 then superimposed and com-
pared with the programs LSQMAN and O.41,42 Mul-
tiple sequence alignments were used to generate the 
best pair wise alignments, which were the basis for 
generating homology models of the catalytic mod-
ules of H. jecorina chitinases in the program SOD.41 
Aspergillus fumigatus chitinase (PDB entry 1W9P 
identity 60%),43 was used as a template for model-
ling chi18-5, Chimerolectin from Parkia platyceph-
ala seeds (PDB entry 2GSJ.pdb identity 43%),44 was 
used for chi18-13, Streptomyces coelicolor chitinase 
(PDB entry 3EBV.pdb (unpublished) identity 38%) 
was used for chi18-15 and Saccharomyces cerevisiae 
chitinase 1 (PDB entry 2UY2.pdb identity 47%),45 
was used for chi18-17. The models were adjusted in 
O, using rotamers that would improve packing in the 
interior of the protein and accounting for insertions 
and deletions in loop regions. The models are avail-
able upon request from the authors. The figure was 
prepared using MOLSCRIPT and Molray.46,47
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Codon-based analyses
Percent nucleotide identity between pair wise 
comparisons of chitinase genes were performed in 
MegAlign, implemented in the DNASTAR program 
package (DNASTAR).

The rate of non-synonymous (dN) and synony-
mous (dS) substitutions at each codon, and identi-
fication of sites evolving under positive or negative 
selection, was determined using the random effects 
maximum likelihood models (REL),48 implemented 
in the HyPhy software package,49 accessed through 
the Datamonkey webserver.50 As recommended 
when using REL, the optimal nucleotide substitution 
model was estimated for each gene separately,48,51 and 
included the following modifications to the general 
reversible nucleotide model;52–54 chi18-13: C↔T: RCT 
and chi18-15: A↔C: RAC, A↔T: RAC, C↔G: RCG, 
C↔T: RCT, G↔T: RCG. A Bayes factor value 50 
(default) was used as an indication of strong positive 
selection at a site, while values between 10 and 49 
were considered to indicate weak support of positive 
selection.48

Identification of co-evolving sites was done using 
the Spidermonkey/BGM program implemented in 
the HyPhy software package,49,55 accessed through 
the Datamonkey webserver.50 The same nucleotide 
substitution models as were used for REL analysis 
were used. Global dN/dS values were estimated by 
the program, ambiguous characters were averaged, 
a two-parent, directed network was used and sites 
were selected based on non-synonymous branch 
counts (threshold 3). A posterior probability value 
0.5 (default) was used as a definition of association 
between sites.

Results
Likelihood analysis of gene gain and loss
The size of the fungal chitinase gene family, including 
H. jecorina, H. atroviridis and H. virens, was tested 
for compatibility with a stochastic birth and death 
model using the program CAFE.26,27 Previous results 
show that cluster A chitinases are closely related with 
cluster C and in order to assign expansions to chitin-
ase subgroups, the data was analysed in three ways; 
cluster A + C chitinases separately, cluster B chitin-
ase separately and all chitinases merged. The analy-
ses showed that the fungal chitinase gene family, 

analysing groups A + C and group B separately, as 
well as all chitinases merged, have evolved non-
randomly (P  0.015) (Fig. S1). When analysing all 
chitinases merged, the branches for both H. atroviri-
dis and H. virens were identified as contributing to the 
non-random pattern (P  0.006), compared with only 
the H. virens branch when groups A + C was anal-
ysed separately (P  0.001). The analysis of group B 
chitinases separately identified a non-random pattern 
for branches leading to H. atroviridis, H. virens and 
the ancestor to the Trichoderma clade as well as the 
ancestor to H. atroviridis/H. virens (P  0.035).

Analysis of gene phylogenies of chitinase subgroups 
identified subgroups C1 and C2 as the likely targets for 
the observed non-random gene copy number expansion 
in H. virens (Supplemental Fig. S2), as compared with 
other Sordariomycetes. H. atroviridis also contained a 
high number of C group chitinase genes, although the 
expansion was not statistically significant in the current 
analysis. Another observation was that while H. virens 
contained high numbers of both C1 and C2 chitin-
ases, H. atroviridis contained mainly C1 chitinases 
and H. jecorina contained exclusively C2 members 
(Fig. S2). A more detailed analysis of group B chitin-
ases revealed that the non-random expansion in the 
Trichoderma clade took place in the B1/B2 subgroup 
cluster (Fig. S2).

Reverse conservation analysis  
of chi18-5 amino acid variability
Amplification products and full-length sequences for 
chi18-5 orthologs were successfully obtained from 
H. schweinitzii, T. ghanense and T. longibrachiatum. 
Additional sequences from H. jecorina, H. atroviridis 
and H. virens were retrieved from genome sequences 
and used for RCA analysis. A unique insert of 18 bp 
in H. virens chi18-5 was excluded from the analy-
sis. A phylogenetic analysis confirmed the ortholo-
gous status of the sequenced genes (Supplemental 
Figure S3). Amino acid diversity was distributed 
amongst eight regions with W mean scores above 
the 0.5 standard deviation threshold from the RCA 
analysis (Fig. 1). One of these regions was associ-
ated with the signal peptide cleavage site, while the 
other seven regions (Ia, IIa, IIIa, IVa, Va, VIa and 
VIIa) were visualized (Fig. 2A) using a homology 
model of H. jecorina chi18-5. Several of the twenty 
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predicted residues (Supplemental Table S2) impor-
tant for catalysis and substrate binding (cd06548 in 
Conserved Domain Database (CDD)56) were located 
in conserved regions with low W scores (Fig. 1). 
Three residues were located in regions with high W 
mean scores, one each in IIa, IIIa and IVa (Fig. 2A). 
These three regions, IIa, IIIa and IVa, were all sur-
face-exposed and located on the product side of the 
enzyme. Region Ia was located in a loop that forms 
the entrance to the catalytic cleft, while region VIIa is 
on the surface of the enzyme but far from the catalytic 
site (Fig. 2A).

Reverse conservation analysis  
of chi18-13 amino acid variability
Amplification products and full-length sequences for 
the H. schweinitzii and H. virens chi18-13 orthologs 
were obtained, as were partial sequences presumably 
lacking the eight C-terminal residues from an additional 
nine species (Fig. S3). The H. virens chi18-13 gene was 
sequenced in the current work because the ortholog 
from the genome sequence (protein ID 25421) lacked 
70 C-terminal residues compared to translated chi18-
13 orthologs from other Trichoderma species. Addi-
tional sequences from H. jecorina and H. atroviridis 
were retrieved from the genome sequences, together 
with two paralogous sequences, protein ID 79492 
from H. atroviridis (originally cloned as Ech30)10,14 
and 58102 from H. virens. Two short proline-rich 
repeat regions in the C-terminal part (reference pos. 
320–337 and 373–380 in H. atroviridis 45585) were 
removed from all species before the analysis, due to 
the highly variable number of repeats between spe-
cies. The two paralogous sequences, 79492 and 58102, 

were 70 C-terminal residues shorter than the orthologs. 
Phylogenetic analysis confirmed the orthologous and 
paralogous status of the selected sequences (Fig. S3). 
Amino acid diversity was distributed amongst eight 
regions with W mean scores above the 0.5 standard 
deviation threshold from the RCA analysis (Fig. 3A). 
Four regions (Ib, IIb, IIIb and IVb) were visualized 
by the homology model of H. jecorina chi18-13 (Fig. 
2B). One of the non-mapped high W score regions 
was associated with the signal peptide cleavage site 
(Fig. 3A). The eight predicted residues important for 
catalysis and substrate-binding by homology model-
ling (Table S2) were located in conserved regions with 
low W scores (Fig. 3A). Predicted substrate-binding 
residues (cd02877 in CDD) were associated with 
regions Ib and IIb of low amino acid conservation 
levels (Fig. 3A). More specifically, substrate-bind-
ing residues S74, S76 and T77 (reference H. atroviridis) 
were located in region Ib, which forms the entrance 
to the catalytic cleft (Fig. 2B). Substrate-binding resi-
dues G119, A120 and V121 (reference H. atroviridis) were 
located in region IIb, which forms a loop that pro-
trudes into the catalytic centre of chi18-13 (Fig. 2B). 
Regions IIIb and IVb were located on the surface but 
were not a part of the catalytic cleft (Fig. 2B).

Phylogenetic analysis of chi18-13 (Fig. S3) revealed 
two separate groups of orthologs; one consisting of 
species from the taxonomic clades of Rufa and Pashy-
basioides,57 the other consisting of species from several 
other Trichoderma clades. Although these groups were 
not always recovered in alternative phylogenetic analy-
ses using other parameters such as the JTT substitution 
model in combination with complete deletion of miss-
ing data (data not shown), RCA analyses performed on 

la

lla llla
lVa Va

Vla
Vlla

**** ******Signal
peptide

Figure 1. Reverse conservation analysis of chi18-5 orthologs. Amino acid diversity was estimated using Rate4Site, based on a Clustal X alignment 
of chi18-5 Trichoderma orthologs, and plotted as W mean scores. The y-axis represents arbitrary units (not shown) while a horizontal line indicates a 
0.5 standard deviation cutoff. The x-axis represents residue position, asterisks (*) indicate positions of catalytic residues, diamonds (◊) indicate substrate-
interacting residues. The positions of the signal peptide and regions with high amino acid diversity successfully visualised by homology modelling are 
indicated (Ia–VIIa).
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Figure 2. Homology models of H. jecorina chitinases. Homology models of the catalytic modules of H. jecorina chitinases (A) chi18-5, (B) chi18-13,  
(C) chi18-15 and (D) chi18-17 were generated using SOD and adjusted in O, based on hidden Markov models and Clustal W amino acid sequence 
alignments. Conserved catalytically important residues are indicated in red, amino acids under strong positive selection (Bayes factor 50) are indi-
cated in green, variable regions from reverse conservation analysis (I scores 0.5) are indicated in orange and marked in Roman numerals from N- to  
C-termini. Residue numbering refers to catalytic module sequences used for modelling; 15–424 (chi18-5), 30–320 (chi18-13), 25–322 (chi18-15), 28–311 
(chi18-17).
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these two groups separately revealed five regions with 
amino acid conservation patterns indicative of differ-
ential adaptations between the two groups (Fig. 3B). A 
detailed analysis of the S scores for the individual amino 
acid positions revealed high S scores for substrate-
interacting residues in region Ib in the Rufa and Pashy-
basioides clade (Fig. 3B). Low S scores were found 
for a region of unknown function situated between 

two proline-rich-repeats in the C-terminal part of  
chi18-13 in the Rufa and Pashybasioides clade, com-
pared with the other species (Fig. 3B).

Reverse conservation analysis  
of chi18-15 amino acid variability
Amplification products and partial sequences for 
chi18-15 orthologs, presumably lacking 20–29 amino 

A
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llb

lllb lVb

B

Proline-rich
repeat

Proline-rich
repeat

Signal
peptide

Other clades
Clade Rufa/Pachybasioides

B1
S74

S76
T77

B2 T351
S350 D353

D354 S358

PP P P P P P P P P P P P PP P P PP

C

C

C C C

C C

C

C

C

C

C

C

C

C C

C

C

* * ** * ** *

C

C

Figure 3. Reverse conservation analysis of chi18-13 orthologs and paralogs. A) Amino acid diversity was estimated using Rate4Site, based on a Clustal 
X alignment of chi18-13 Trichoderma orthologs and paralogs, and plotted as W mean scores. The y-axis represents arbitrary units (not shown) while 
a horizontal line indicates a 0.5 standard deviation cutoff. The x-axis represents residue position, asterisks (*) indicate positions of catalytic residues, 
diamonds (◊) indicate substrate-interacting residues, boxed P indicate residues under strong (Bayes factor 50) positive selection, P indicate residues 
under weak (Bayes factor 10–49) positive selection, boxed C interconnected by horizontal lines indicate co-evolving residue groups and vertical dashed 
lines indicate identical residues. The position of the signal peptide, two proline-rich repeat units and regions with high amino acid diversity successfully 
visualised by homology modelling are indicated (Ib–IVb). B) Comparison of separate reverse conservation analyses on chi18-13 orthologs from H. minutis-
pora, H. parapilulifera, H. pilulifera and H. atroviridis (dotted line) and T. ghanense, H. jecorina, T. brevicompactum, H. citrina, H. schweinitzii, H. virens, 
T. tomentosum, H. lixii and strain CBS816.68 (solid line). Arrows indicate regions with different W mean score distribution, magnifications illustrate residue 
S score distribution of the selected region.
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acid residues in the C-terminal part, were obtained 
from nine different Trichoderma species (Fig. S3). 
Additional full-length sequences from H. jecorina, 
H. atroviridis and H. virens were retrieved from the 
genome sequences. A phylogenetic analysis con-
firmed the orthologous status of the sequenced genes 
(Fig. S3). Amino acid diversity was distributed 
amongst eight regions with W mean scores above 
the defined threshold (Fig. 4A). Additional analy-
ses of sequences from taxonomic subgroups (see 
below) identified an additional region of high amino 
acid diversity in the C-terminal end of chi18-15 
(Fig. 4B). Two of these regions were associated with 
the secretion signal peptide while the other seven 
regions (Ic, IIc, IIIc, IVc, Vc, VIc and VIIc) were 
located in the catalytic module shown in Figure 2C 
prepared using the homology model of H. jecorina 
chi18-15. Although several of these regions were 
surface-exposed in the homology model, none of the 
parts contribute to the catalytic cleft. The seven resi-
dues predicted as important for catalysis in chi18-
15 (cd02871 in CDD) were all located in conserved 
regions with low W scores, as were all predicted sub-
strate-interacting residues (Fig. 4A).

Phylogenetic analysis of chi18-15 (Fig. S3) 
revealed two separate groups of orthologs; one con-
sisting of species from the taxonomic clades of Rufa 
and Pashybasioides, the other consisting of species 
from clades Longibrachiatum, Lutea and Virens.57 
Again, some combinations of substitution models and 
handling of missing data in the phylogenetic analyses 
resulted in a more collapsed tree topology (data not 
shown), but the initial grouping was useful for more 
detailed analyses of amino acid variability. RCA 
analyses performed on these two groups separately 
revealed six regions with amino acid diversity patterns 
indicative of differential adaptations between the two 
groups (Fig. 4B). A detailed analysis of the S scores 
for the individual amino acid position revealed high 
conservation at position Q229 (ref. H. atroviridis) in 
the Longibrachiatum, Lutea and Virens clades, where 
all species contained an aspartic acid residue while the 
position was occupied by either aspartic acid, gluta-
mine or glutamic acid in the Rufa and Pashybasioides 
clade (Fig. 4B). Three other positions that displayed 
amino acid variability in either group were pos. N294, 
G298 and G307 (ref. H. atroviridis) in the C-terminal 
part of chi18-15 (Fig. 4B).

H. jecorina chi18-15 was previously shown to 
be of actinobacterial origin and horizontally trans-
ferred to Trichoderma,12 most closely related to ChiJ 
from S. coelicolor. Therefore, a separate RCA analy-
sis was performed on an alignment of six orthologs 
of ChiJ from S. coelicolor, S. avermitilis, S. clavu-
ligerus, S. ghanaensis, S. griseus and S. sp. Mg1 
(Supplemental Table S3). The result showed that the 
amino acid diversity in Streptomyces ChiJ was dis-
tributed at different position than among the Tricho-
derma chi18-15 orthologs (Fig. 4C).

Reverse conservation analysis  
of chi18-17 amino acid variability
Amplification products and full-length sequences 
for chi18-17 orthologs were successfully obtained 
from H. schweinitzii, T. ghanense, T. tomentosum 
and H. lixii, and additional sequences from H. jeco-
rina, H. atroviridis and H. virens were retrieved from 
the genome sequences. Two introns were present in  
H. jecorina, H. schweinitzii and T. ghanense, com-
pared with only one intron in H. atroviridis. No 
intron was present in H. virens, T. tomentosum or H. 
lixii, although in one isolate of H. lixii (CBS275.78) 
a unique insert was present that was interpreted as an 
intron and thus excluded from the analysis. A phylo-
genetic analysis confirmed the orthologous status of 
the sequenced genes (Fig. S3). Two short proline-rich 
repeat regions in the C-terminal part (pos. 324–331 
and 350–355 in H. atroviridis) were excluded from 
the analysis, because the number of repeats was highly 
variable between species. Amino acid diversity was 
distributed amongst 13 regions with W mean scores 
above the defined threshold (Fig. 5). One of these 
regions was associated with the secretion signal pep-
tide while two were situated in a C-terminal family 1 
Carbohydrate-Binding Module (CBM1, cellulose and 
chitin binding), more specifically in the β1 and β2 
antiparallel β-sheets (pos. 360–364 and 379–383 in 
H. atroviridis) (Fig. 5). Six regions were visualized 
using the homology model of H. jecorina chi18-17, 
(Id, IId, IIId, IVd, Vd and VId) (Fig. 2D). Region Vd 
formed a part of the catalytic cleft while the other five 
were predicted to be surface-exposed but not directly 
associated with the catalytic cleft (Fig. 2D). The eight 
predicted residues important for catalysis and sub-
strate-binding (cd02877 in CDD) were all located in 
conserved regions with low W scores (Fig. 5).
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Figure 4. Reverse conservation analysis of chi18-15 orthologs. A) Amino acid diversity was estimated using Rate4Site, based on a Clustal X alignment 
of chi18-15 Trichoderma orthologs, and plotted as W mean scores. The y-axis represents arbitrary units (not shown) while a horizontal line indicates a 
0.5 standard deviation cutoff. The x-axis represents residue position, asterisks (*) indicate positions of catalytic residues, diamonds (◊) indicate substrate-
interacting residues, boxed P indicate residues under strong (Bayes factor 50) positive selection, P indicate residues under weak (Bayes factor 10–49) 
positive selection, boxed C interconnected by horizontal lines indicate co-evolving residue groups and vertical dashed lines indicate identical residues. 
The positions of the signal peptide, a C-terminal region not included in the overall analysis and regions with high amino acid diversity successfully visual-
ised by homology modelling are indicated (Ic–VIc). B) Comparison of separate reverse conservation analyses on chi18-15 orthologs from H. minutispora, 
H. parapilulifera, H. pilulifera, H. atroviridis, H. rufa and T. croceum (dotted line) and T. ghanense, H. jecorina, T. brevicompactum, H. schweinitzii, H. virens 
and T. longibrachiatum (solid line). Arrows indicate regions with different W mean score distribution, magnifications illustrate residue S score distribution 
of the selected region. C) Comparison of separate reverse conservation analyses on chi18-15 orthologs from Trichoderma species and ChiJ orthologs 
from Streptomyces species.

Analysis of codon-usage
Adaptation of codon-usage in Trichoderma chitinases 
and Streptomyces ChiJ orthologs was investigated 
by correspondence analysis of codon-usage using 

CodonW.37 Plotting coa-axis 1 and 2 for codon-usage 
for each gene identified three different clusters repre-
senting chi18-15 orthologs, other Trichoderma chitin-
ases and Streptomyces ChiJ orthologs (Fig. 6).
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Codon-based likelihood analyses
The mean pair wise nucleotide identity percentages 
among the four Trichoderma chitinases was; 84.6 ± 
4.4 (standard deviation) for chi18-5, 88.6 ± 4.0 for 
chi18-13, 80.3 ± 6.1 for chi18-15 and 83.1 ± 6.3 for 
chi18-17. Only H. jecorina, H. atroviridis, H. virens, 
T. ghanense and H. schweinitzii were included in this 
comparison, as data for only these species were avail-
able for all four genes.

In order to study the mechanisms behind the 
observed patterns of amino acid variability, we used 
REL analysis48 to test for the presence of codons 
under different evolutionary constraints and to iden-
tify them. As recommended when using REL, ten 
species representatives were considered to be the 
minimum number of sequences for this analysis to 
provide reliable results; only chi18-13 and chi18-15 
fulfilled this requirement. Two short proline-rich 
repeat regions in the C-terminal part of chi18-13 
were removed before REL analysis as the number of 
repeats was highly variable between species. REL fits 
both dN and dS substitution rates into three discrete 
distributions, yielding a total number of nine different 
rate classes of dN/dS. For chi18-13, one rate class was 
estimated to have dN/dS values above 1 (dN (0.49)/dS 
(0.21) = 2.33). A similar result was obtained for chi18-15 
where one rate class was estimated to have dN/dS 
values above 1 (dN (0.80)/dS (0.67) = 1.20). Using 
a cutoff of a Bayes factor 50, two sites in chi18-
13 were identified as displaying signatures of posi-
tive selection (Table 2), 64 displayed signatures of 

purifying selection, and 324 evolved neutrally. One 
of the positively selected sites was located in the sig-
nal peptide (pos. T16, ref. H. atroviridis). The other 
site was closely located to region IIb (pos. V137, ref.  
H. atroviridis), which was modelled to protrude into 
the catalytic centre of chi18-13 (Fig. 2B). Furthermore, 
this second positively selected site coincided with one 
region with very different patterns of amino acid vari-
ability (W means) between chi18-13 orthologs from 
the Rufa/Pashybasioides and other clades (Fig. 3A 
and 3B). Between a Bayes factor of 10 and 49, an 
additional 17 sites displayed weak signatures of posi-
tive selection (Fig. 3A). For chi18-15, using a cutoff 
of a Bayes factor 50, five sites were identified as 
displaying signatures of positive selection (Table 2), 
204 displayed signatures of purifying selection and 
135 evolved neutrally. Between a Bayes factor of 10 
and 49, an additional 13 sites displayed weak signa-
tures of positive selection (Fig. 4A). All five posi-
tively selected sites were located in regions with high 
amino acid diversity, identified by RCA, pos. I68 and 
K70 (ref. H. atroviridis) in region Ic, pos. N171 in IIIc, 
pos. Q229 in IVc and pos. T273 in VIc (Fig. 4A).

For comparative purposes, REL analysis was per-
formed on partial sequences of two Trichoderma 
genes, the functions of which were assumed to be 
independent from mycoparasitic interactions, actin 
(act) and translation elongation factor 1 alpha (tef ). 
These sequences were retrieved from GenBank 
(Table S3), and included 627 bp for act (pos. 2-628 
in H. virens, acc. no. FJ442590) and 228 bp for tef 

Signal
peptide

Proline-rich
repeat

Proline-rich
repeat

CBM1**** ****

Id

IId

IIId IVd Vd
VId

Figure 5. Reverse conservation analysis of chi18-17 orthologs. Amino acid diversity was estimated using Rate4Site, based on a Clustal X alignment 
of chi18-17 Trichoderma orthologs, and plotted as W mean scores. The y-axis represents arbitrary units (not shown) while a horizontal line indicates a 
0.5 standard deviation cutoff. The x-axis represents residue position, asterisks (*) indicate positions of catalytic residues, diamonds (◊) indicate substrate-
interacting residues. The positions of the signal peptide, two proline-rich repeat units, a CBM1 substrate-binding region and regions with high amino acid 
diversity successfully visualised by homology modelling are indicated (Id-VId).

http://www.la-press.com


Ihrmark et al

12	 Evolutionary Bioinformatics 2010:6

0.6

0.4

0.2

0
0

−0.2

−0.6

−0.8

Trichoderma chitinases

−0.8 0.8−0.6 0.6−0.4 0.4−0.2 0.2

Axis 1

Axis 2

ChiJ orthologs
Chi18-15 orthologs

−0.4

Figure 6. Codon-usage of Trichoderma chitinases and Streptomyces ChiJ orthologs. Correspondence analysis of codon-usage was performed on 
Trichoderma chi18-5, chi18-13, chi18-15, chi18-17 orthologs and Streptomyces ChiJ orthologs, using the program CodonW accessed through the Mobyle 
web interphase. The resulting coa-axis 1 and 2 (in arbitrary units) for codon-usage for each gene was plotted in Excel. Dashed circles indicate groups of 
chi18-15 orthologs, other Trichoderma chitinases and ChiJ orthologs.

(pos. 132–158, 258–320, 613–750 in H. virens, acc. 
no. EU280065). No sites displayed signs of positive 
selection (Bayes factor 50) in either gene.

Analysis of co-evolving codons
Amino acid residues can interact structurally with 
each other to form and stabilize protein structures, 
or interact functionally through participation in the 
same protein function, such as substrate binding and 
processing. Therefore, co-evolution between sites in 
chi18-13 and chi18-15 were studied using evolution-
ary-network models implemented in Spidermonkey/
BGM.55 In chi18-13 thirteen interacting pairs of 

codons were identified (Table 3), forming seven 
groups of co-evolutionary sites (Fig. 3A). Three 
interacting groups included sites located in or close 
to region IIb, while three other groups included 
sites that were associated with regions IIIb or IVb. 
In three cases the interacting residues also showed 
weak signatures of positive selection (Fig. 3A). In 
chi18-15, four interacting pairs of codons were iden-
tified (Table 3), forming three groups of co-evolving 
sites (Fig. 4A). In one case, the interacting residue 
also displayed strong signatures of positive selec-
tion, and in two cases the interacting residues showed 
weak signatures of positive selection (Fig. 4A).
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Discussion
The complete genome sequence of three different 
Trichoderma species, H. jecorina, H. atroviridis and 
H. virens revealed the complexity of the chitinase 
enzyme system in these species illustrated by a total 
number of 20, 29 and 36 different chitinase genes 
respectively. The size of the chitinase gene family 
in the two mycoparasitic species H. atroviridis and 
H. virens, indicates that hydrolytic breakdown of the 
antagonists cell walls is important during the myco-
parasitic interaction. However, chitinases are also 

involved in other functions such as morphological 
development, sporulation and autolysis.9 Studying 
phenotypic effects in gene knock-out approaches is 
less likely to reflect the true biological function of 
a chitinase because of compensatory effects from 
paralogs, illustrating the need for complementary 
approaches.

Certain plant defence chitinases from the genus 
Arabis and the family Poaceae evolved rapidly in 
response to a co-evolutionary arms race between plant 
host and fungal pathogen, resulting in a continuous 
selection for adaptive modifications.19,20 Conceptu-
ally, the same situation may apply to microbe-microbe 
interactions; hence the combination of specific expres-
sion patterns during mycoparasitism and adaptive  
evolutionary changes may provide important infor-
mation when assigning biological functions to Tricho-
derma chitinases.

Chitinase gene family expansion
In the mycoparasitic species H. atroviridis and H. 
virens subgroups B1/B2 and C1/C2 have expanded 
significantly in paralog numbers. Stress-related genes 
often exhibit many expansions and contractions dur-
ing fungal evolution; 58 hence the observed expansion 
suggest a role of at least some Trichoderma B1/B2 and 
C1/C2 subgroup members in aggressive fungal-fun-
gal interactions. Gene duplications may relieve selec-
tive constraints on one gene copy which can evolve 
modified substrate specificities or enzyme properties 
more adapted towards specific cell wall composition 
in antagonistic species. Expansions of subgroups B1/
B2 and C1/C2 are also observed in other soil-borne 
ascomycetes such as Gibberella zeae, Uncinocarpus 
reeseii and Emericella nidulans, while gene copy 
number in these subgroups is reduced in the human 
pathogen Coccidioides immitis.7

Evolution of chitinase chi18-13
Chi18-13 is a member of the B1/B2 subgroup and 
displays the highest mean nucleotide conservation 
level among the studied chitinases. However, sev-
eral codons are predicted to evolve under positive 
selection or form co-evolutionary site groups. Amino 
acid diversity is distributed amongst four success-
fully modelled regions, where Ib and IIb form parts 
of the catalytic cleft. This suggests that adaptations 
for substrate-specificity may be an important aspect 

Table 2. Positively selected sites in chi18-13 and chi18-15.

Protein Amino acid 
positiona

Posterior 
probabilityb

Bayes 
factorb

Chi18-13 T16 0.88 52
V137 0.97 213

Chi18-15 I68 0.69 62
K70 0.80 111
N171 0.81 119
Q229 0.65 54
T273 0.71 69

aSite position in reference to H. atroviridis.
bDetermined by Random Effects Likelihood method.

Table 3. Co-evolving sites in chi18-13 and chi18-15.

Protein Amino acid 
position 1a

Amino acid 
position 2a

Posterior 
probabilityb

Chi18-13 S51 T159 0.84
T97 A9 0.79
T97 N281 0.71
V121 Q125 0.63
S129 G130 0.86
S132 I312 0.64
S132 T241 0.72
G230 N369 0.90
Y270 S332 0.89
N281 K347 0.83
S332 L18 0.60
D335 L18 0.56
V121 K104 0.58

Chi18-15 S86 A178 0.59
V90 A254 0.65
Q229 Q225 0.59
S249 A178 0.56

aSite position in reference to H. atroviridis.
bFor site 1 and site 2 to be conditionally dependent, determined by 
Spidermonkey/BGM.
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for chi18-13 evolution. Three co-evolving groups of 
amino acid sites are associated with region IIb, sup-
porting three substrate-interacting residues. It is pos-
sible that the observed site co-evolution is the result 
of modifications in the position of the substrate-inter-
acting residues at optimal distances from the sub-
strate in different Trichoderma species. In addition, 
three other interacting groups are associated with 
regions IIIb and IVb, and these co-evolving groups 
also include sites that are located in other parts of  
chi18-13, especially in the C-terminal part close to two 
proline-rich repeat units of variable lengths between 
species. These repeats can possibly function as link-
ers to provide flexibility in the secondary structure of 
chi18-13. This suggests that chi18-13 processivity, 
in addition to substrate-specificity, has been under 
selection for modification during chi18-13 evolution. 
Processivity may be influenced by distant parts of 
chi18-13 and not merely by the loops that constitutes 
the catalytic cleft.

Expression data for the H. atroviridis chi18-13 
paralog Ech30 (prot. ID 79492) show that the gene 
is induced by fungal cell wall material and during 
plate confrontation assays.10,14 Enzyme activity of  
H. atroviridis Ech30 shows that it is an endochitinase 
with preferential activity towards longer substrates, 
such as chitin fibre.14,59 The low activity against short 
substrates suggests a shallow catalytic cleft for both 
Ech30 and chi18-13 which is in agreement with 
our modelling data. In summary, evolutionary data 
identify chi18-13 as a candidate enzyme for myco-
parasitic attack. Chi18-13 is a member of a paralog 
cluster in mycoparasitic H. atroviridis and H. virens 
and displays signs of accelerated rates of evolution. 
Amino acid variability and co-evolution among sites 
of chi18-13 are associated with regions that are not 
only predicted to influence substrate-specificity and 
processivity, but which also display differences in 
variability patterns between Trichoderma clades.

Evolution of chitinase chi18-15
The optimal codon-usage of chi18-15 is different 
from codon-usage in other Trichoderma chitinases 
and from the Streptomyces ChiJ gene. We previously 
demonstrated through phylogenetic analysis of the 
chitinolytic domain that H. jecorina chi18-15 was 
introduced into the ancestor of Trichoderma through 
horizontal transfer from an actinobacterial origin.12

Two sites that evolved under positive selection are 
located in region Ic, which is located on the substrate 
entrance side of the protein, but not part of the cata-
lytic cleft. In addition, two groups of co-evolutionary 
sites are located in both regions IIc and Vc which 
suggests concurrent structural adaptations of both 
substrate- and product sides of chi18-15. However, 
since neither region of high amino acid diversity 
(Ic to VIIc) is modelled to directly form part of the 
catalytic cleft, one interpretation is that they are the 
result of random mutations accumulating at regions 
with low selective constrains. The alternative expla-
nation is that these regions are indeed important for 
functional properties of chi18-15 and this expla-
nation is supported for regions IVc and VIc. Both 
regions contain sites under accelerated evolutionary 
rates and display discreet differences between dif-
ferent Trichoderma clades or between Streptomyces 
ChiJ orthologs, which is not compatible with a com-
pletely stochastic process. In addition, region IVc 
contains two sites that co-evolved, again suggesting 
functional relevance for this region whether it be 
the maintenance of secondary structures, interaction 
with enhancer- or inhibitor proteins, or additional 
unknown functions.

Another region that displayed differences 
between Trichoderma clades contained site G298 (ref.  
H. atroviridis) which is shown to determine activ-
ity inhibition by the chitinase inhibitor kinetin.45 In  
S. cerevisiae CTS1, changing the alanine in this site to 
a bulkier serine residue eliminates inhibition by kine-
tin, whereas inhibition by allosamidin, acetazolamide 
and 8-chlorotheophylline remain unchanged.45 It is 
possible that the observed differences between Trich-
oderma clades in this region represents an adaptation 
towards differences in antagonist inhibitor counter-
measures. In comparison, the homologous position in 
chi18-5, chi18-13 and chi18-17 all contain a bulky 
methionine residue that may abolish inhibition.45 
This difference may reflect a recent introduction of 
chi18-15 into Trichoderma and ongoing adaptations 
towards fungal preferences.

Chi18-15 gene expression is induced by a variety 
of stimuli, including chitin and its monomers, nitro-
gen starvation, temperature and osmotic stress, and 
by interaction with Rhizoctonia solani.16 Chi18-15 has 
been reported to possess endochitinase activity with 
acidic optima and preferential activity towards high 
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molecular weight substrates.16,60 As with chi18-13, 
evolutionary data identify chi18-15 as a candidate 
enzyme for mycoparasitic attack. The gene has its 
ancestral origin as an actinobacterial chitinase, pre-
sumably an aggressive component in bacterial-fungal 
interactions. After being horizontally transferred into 
Trichoderma, it has been subjected to strong selective 
pressures to modify its functional properties accord-
ing to the specific ecological contexts of different 
Trichoderma species.

Evolution of chitinase chi18-5
In chi18-5, the observed amino acid diversity is pref-
erentially situated in regions on the product side of 
the catalytic cleft that probably interact with substrate 
cleavage products as they leave the catalytic site. 
Therefore, these regions may be involved in determin-
ing the processivity of the enzyme. Regions IIa, IIIa 
and IVa are associated with residues that interact with 
the substrate at subsite +2, which has been confirmed 
by earlier studies from T. harzianum chi18-5.61 The 
model also confirms the deep catalytic cleft of chi18-5 
which provides tight binding of the substrate.61

The Chi18-5 orthologs are induced by chi-
tin degradation products and during mycoparasitic 
interactions,10,15,18,62–65 but gene knock-out experiments 
are inconclusive. Two reports show no reduction in 
the ability of H. atroviridis to overgrow other fungi in 
plate confrontation assays,66,67 while one study showed 
a reduction of H. virens biocontrol ability.68 Thus the 
function of chi18-5 orthologs is suggested to be degra-
dation of exogenous chitin for nutritional needs rather 
than a direct involvement in mycoparasitism.9 This 
function does not contradict our evolutionary data; a 
conserved enzyme with a deep catalytic cleft that can 
bind chitin tightly. Slight modifications between dif-
ferent Trichoderma species may be associated with 
processivity but not with substrate specificity.

Evolution of chitinase chi18-17
In chi18-17, the two regions of high amino acid 
diversity that are located in the CBM1 substrate-
binding module suggest that there are discrete modi-
fications of the binding properties of the chi18-17 
CBM1 domain in different Trichoderma species.  
A similar example is found in a plant defence chitin-
ase where positively selected amino acid positions 
are located in a substrate-binding module.20 Only 

one variable region (Vd) is part of the catalytic cleft, 
which is wider and shallower than in chi18-5, while 
all other regions identified by RCA are predicted to 
be surface-exposed but not directly associated with 
the catalytic cleft. Interpretation of these regions is 
highly speculative; they may interact with other pro-
teins in the environment, or alternatively they may 
represent regions of low selective constrains where 
a limited amount of amino acid variability is toler-
ated. H. virens chi18-17 is reported to be induced 
by fungal cell wall material but in depth studies are 
missing.15 The overall picture from evolutionary data 
depict a conserved protein with a shallow catalytic 
cleft, indicating endo-activity, without any obvious 
changes in known functional regions which suggests 
conserved enzymatic properties between Tricho-
derma orthologs.

Concluding remarks
Certain plant defence chitinases from the genus 
Arabis and the family Poaceae have evolved rapidly 
in response to a co-evolutionary arms race between 
plant host and fungal pathogen, resulting in a contin-
uous selection for adaptive modifications.19,20 Under 
these conditions, only a limited number of sites 
evolved under positive selection as severe structural 
constraints are present in chitinases to preserve cata-
lytic function. This is observed also for fungal chitin-
ases in the current study. In chi18-13 and chi18-15 
only a few sites are identified to evolve under positive 
selection or to co-evolve with other sites. In addition, 
we detected a number of regions that display high 
amino acid diversity without any signs of acceler-
ated evolution. Although one explanation may be low 
selective constraints in these regions, the localiza-
tion to substrate- or product side of the catalytic cleft 
and differences in variability/conservation patterns 
between different Trichoderma clades, suggests that 
amino acid variation between species in at least some 
of these regions represents adaptive modifications.

The observed evolutionary differences between 
chi18-5, chi18-13, chi18-15 and chi18-17, together 
with data on different domain-structures, different 
expression patterns and different enzymatic properties 
support the idea of functional differentiation between 
fungal chitinases. Therefore, correct functional 
assignment of individual genes and proteins are vital 
for a proper mechanistic understanding of biocontrol. 
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Using data on molecular evolution in a fungal-fungal 
interaction framework is one possible approach that 
can aid our understanding of mycoparasitism and 
structure/function relationships in enzymes.
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Supplemental Figure S1. 
Distribution of chitinase gain and loss among fungal lineages. Phylogenetic relations-
hips among the fungal species used in the current study are shown, including diver-
gence dates in millions of years. Circled numbers represent total number of chitinase 
genes in extant species and estimates of total number of chitinase genes for ancestral 
species. Boxed taxon names indicates a significant (P-values ≤ 0.05 or Likelihood 
ratios > 50) expansion (+), or a significant contraction (-) of the chitinase gene family 
size.

Figure S1. Distribution of chitinase gain and loss among fungal lineages. Phylogenetic relationships among the fungal species used in the current study 
are shown, including divergence dates in millions of years. Circled numbers represent total number of chitinase genes in extant species and estimates of 
total number of chitinase genes for ancestral species. Boxed taxon names indicates a significant (P-values  0.05 or Likelihood ratios  50) expansion 
(+), or a significant contraction (-) of the chitinase gene family size. 
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Supplemented Figure S2.
Phylogency of group A Trichoderma chitinases. Analysis was performed using neighbour-joining
implemented in MEGA version 4 with the Poisson correction of substitiution rates and complete
deletion of missing data, based on a Clustal w alignment of chitinase catalytic domain amino acid
sequences. Branch support values (bootsstrap proportions ≥ 60) are associated with nodes. The bar
marker indicates numbers of amino acid substitutions. Protein idtentifiers include protein name (if
available) of protein ID nos. from the respective genome projects. Subgroup names are indicated.

Figure S2 Group A. Phylogeny of group A Trichoderma chitinases. Analysis was performed using neighbour-joining implemented in MEGA version 4 with 
the Poisson correction of substitution rates and complete deletion of missing data, based on a Clustal W alignment of chitinase catalytic domain amino acid 
sequences. Branch support values (bootstrap proportions  60) are associated with nodes. The bar marker indicates numbers of amino acid substitutions. 
Protein identifiers include protein name (if available) or protein ID nos. from the respective genome projects. Subgroup names are indicated. 
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Supplemented Figure S2.
Phylogency of group B Trichoderma chitinases. Analysis was performed using neighbour-joining
implemented in MEGA version 4 with the Poisson correction of substitiution rates and complete
deletion of missing data, based on a Clustal w alignment of chitinase catalytic domain amino acid
sequences. Branch support values (bootsstrap proportions ≥ 60) are associated with nodes. The bar
marker indicates numbers of amino acid substitutions. Protein idtentifiers include protein name (if
available) of protein ID nos. from the respective genome projects. Group names are indicated.

Figure S2 Group B. Phylogeny of group B Trichoderma chitinases. Analysis was performed using neighbour-joining implemented in MEGA version 4 with 
the Poisson correction of substitution rates and complete deletion of missing data, based on a Clustal W alignment of chitinase catalytic domain amino acid 
sequences. Branch support values (bootstrap proportions  60) are associated with nodes. The bar marker indicates numbers of amino acid substitutions. 
Protein identifiers include protein name (if available) or protein ID nos. from the respective genome projects. Group names are indicated.
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Supplemented Figure S2.
Phylogency of group C Trichoderma chitinases. Analysis was performed using neighbour-joining implemented 
in MEGA version 4 with the Poisson correction of substitiution rates and complete deletion of missing data, 
based on a Clustal w alignment of chitinase catalytic domain amino acid sequences. Branch support values 
(bootsstrap proportions ≥ 60) are associated with nodes. The bar marker indicates numbers of amino acid 
substitutions. Protein idtentifiers include protein name (if available) of protein ID nos. from the respective 
genome projects. Group names are indicated.

Figure S2 Group C. Phylogeny of group C Trichoderma chitinases. Analysis was performed using neighbour-joining implemented in MEGA version 4 with 
the Poisson correction of substitution rates and complete deletion of missing data, based on a Clustal W alignment of chitinase catalytic domain amino acid 
sequences. Branch support values (bootstrap proportions  60) are associated with nodes. The bar marker indicates numbers of amino acid substitutions. 
Protein identifiers include protein name (if available) or protein ID nos. from the respective genome projects. Group names are indicated. 

http://www.la-press.com


Ihrmark et al

22	 Evolutionary Bioinformatics 2010:6

Chi18-17 (H. jecorina)
 Chi18-17  (T. ghanense)

 Chi18-17 (H. schweinitzii)
 42107 (H. virens)
 Chi18-17  (H. lixii)
 Chi18-17  (T. tomentosum)
 45317 (H. atroviridis)

 80909 (H. virens)
 54406 (H. atroviridis)

 Chi18-12 (H. jecorina)
 CHT2 (H. virens)
 49469 (H. atroviridis)
 45585 (H. atroviridis)

 Chi18-13 (H. jecorina)
 25421 (H. virens)

98
100

100

96

68

99

100

86

64
100

0.1

 Chi18-15 (H. rufa)
 CHIT36 (H. atroviridis)

 Chi18-15 (H. pilulifera)
 Chi18-15 (H. minutispora)
 Chi18-15 (H. parapilulifera)

 Chi18-15 (T. croceum)
 Chi18-15 (T. brevicompactum)

 89999 (H. virens)
 Chi18-15 (H. schweinitzii)
 Chi18-15 (H. jecorina)
 Chi18-15 (T. ghanense)
 Chi18-15 (T. longibrachiatum)

 CHT2 (H. virens)
 49469 (H. atroviridis)

 Chi18-12 (H. jecorina)
 45317 (H. atroviridis)
 Chi18-17 (H. jecorina)
 42107 (H. virens)

100

92
95

92

70

100

90

100

99
98

0.1

 Chi18-13 (T. ghanense)
 Chi18-13 (H. jecorina)

 Chi18-13 (T. brevicompactum)
 Chi18-13 (H. citrina)
 Chi18-13 (H. schweinitzii)

 Chi18-13 (H. virens)
 Chi18-13 (T. tomentosum)
 Chi18-13 (H. lixii)
 Chi18-13 (strain CBS816.68)
 Chi18-13 (H. minutispora)

 Chi18-13 (H. parapilulifera)
 Chi18-13 (H. pilulifera)

 45585 (H. atroviridis)
 58102 (H. virens)
 Chi18-13/Ech30 (H. atroviridis)

 CHT2 (H. virens)
 49469 (H. atroviridis)

 Chi18-12 (H. jecorina)
 45317 (H. atroviridis)

 Chi18-17 (H. jecorina)
 42107 (H. virens)

100

80

76

73
64

100

100

88

100

97
100

0.1

 Chi18-5 (T. longibrachiatum)

 Chi18-5 (H. jecorina)

 Chi18-5 (T. ghanense)

 Chi18-5 (H. schweinitzii)

 Chi18-5 (H. virens)

 Chi18-5 (H. atroviridis)

 Chi18-7 (H. jecorina)

 Ech2 (H. virens)

 150676 (H. atroviridis)

 Chi18-6 (H. jecorina)

 Ech3 (H. virens)

 31591 (H. atroviridis)

65

90

10065

100

99

100

100

62

0.05

Chi18-5 clade

Chi18-5 clade Chi18-7 clade

Chi18-13 clade

A B

DC

Supplemented Figure S3.
Trichoderma chitinases gene phylogenies. Analyses were performed on chitinases (A) chi18-5,(B)
chi18-13, (C) chi18-15, (D) chi18-17 using neighbour-joining implemented in MEGA version 4 
with the Poisson correction of substitiution rates and complete deletion of missing data,based on a 
Clustal w alignment of chitinase domain amino acid sequences. Branch support values (bootsstrap proportions 
≥ 60) are associated with nodes. The bar marker indicates numbers of amino acid substitutions. 
Protein idtentifiers include protein name (if available) of protein ID nos. from the respective genome 
projects.

Figure S3. Trichoderma chitinase gene phylogenies. Analyses were performed on chitinases (A) chi18-5, (B) chi18-13, (C) chi18-15 and (D) chi18-17 
using neighbour-joining implemented in MEGA version 4 with the Poisson correction of substitution rates and complete deletion of missing data, based 
on a Clustal W alignment of chitinase amino acid sequences. Branch support values (bootstrap proportions  60) are associated with nodes. The bar 
marker indicates numbers of amino acid substitutions. Protein identifiers include protein name (if available) or protein ID nos. from the respective genome 
projects. 
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Table S1. Oligonucleotide primers used in the current study.

Gene Oligonucleotide Sequence (5´→3´)
Chi18-5 Chi18-5.F1 AAGCACTATGCsGATGATT

Chi18-5.F2 GGTTACmTGTyrkTGCCAAG
Chi18-5.F3 CAACGTTGCTAsACTTGG
Chi18-5.F4 TGAAGGAyTGGGGyTTyG
Chi18-5.F5 GTTCCCGCAArCAAGATT
Chi18-5.F8 GGTrTCTGGGAyTACAAGG
Chi18-5.R1 CTGTATATACgTrTkTGCCTATG
Chi18-5.R2 ArCAGAAGrATCATGTTGG
Chi18-5.R3 CAyTsGCTCTCTTCTCAAC
Chi18-5.R4 GwAAGkCTGGCCAATrCCAG
Chi18-5.R6 GCCTATGTACAGTGGTATATGTG

Chi18-13 Chi18-13.F1 AGCGCTTCAAGTCCAACT
Chi18-13.F2 GGAGCCACCTTCCGGATT
Chi18-13.F4 ATGwTCTTCAGCAAAGCwCT
Chi18-13.F6 TGGGTCCAGTTyTACAAyAA
Chi18-13.R1 CGGGAACmCATGATGACAC
Chi18-13.R2 CTGrGCyTCCCArAGCAT
Chi18-13.R3 GTTGTAGAACTGrACCCAGATGT
Chi18-13.R4 GAGCAGACrCCGTTCTTG

Chi18-15 Chi18-15.F2 CwTwmrGAmATCCTACGTTAC
Chi18-15.F3 TGArwGAATACTACCTTCTCrA
Chi18-15.F4 ACAAmACGGCTACAACGTGA
Chi18-15.F5 GGCGTyCTyGCrCAGATG
Chi18-15.F6 ATCGACATTGACATCGAGAC
Chi18-15.F7 GTTCCCTAyAryATGCAA
Chi18-15.F8 TACAGCAyTATGGGAArACG
Chi18-15.R1 GCCGTTGTCGACGTATTTCT
Chi18-15.R3 CryCsGCwyTCTTCyrGTATCA
Chi18-15.R4 ACTTTmACAGTrGCrTCCAT
Chi18-15.R5 CrTCCCAGTTGATwGACCA
Chi18-15.R6 TGTAATGCTACCACCTGTGA
Chi18-15.R7a GTGAyrAmTTTATATACTG
Chi18-15.R7b CAGAGCAmyCATACATGTCG
Chi18-15.R8 CCATAGTCAAGCCAAAGT

Chi18-17 Chi18-17.F1 ATTCATGTAACCATGTCAG
Chi18-17.F2 GCsArTyCAGAGCTGTCT
Chi18-17.F3 AGACvATCATGATGAGTCTG
Chi18-17.F4 TCATGCTGTGGGATATGG
Chi18-17.R1 AAGkGAATATwTACAAACAGAA
Chi18-17.R2 CCGTTGTTGTAGAACTGAAC
Chi18-17.R3 CCAACCATGAAGGArATGT
Chi18-17.R4 AATCTTGGCCAGGTATCC
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Table S2. Residues of Trichoderma models corresponding to the catalytic and substrate binding residues of 1FFR (Serratia 
marcescens Chitinase A) structure. Residue numbering refers to catalytic module sequences used for modelling; 15–424 
(chi18-5), 30–320 (chi18-13), 25–322 (chi18-15), 28–311 (chi18-17).

Site 1FFR Chi18-5 Chi18-13 Chi18-15 Chi18-17
Active site D313 D148 D150 D146 D134

E315 E150 E152 E148 E136
F/Y390 Y218 Y209 Y207 Y216
D311 D146 D148 D144 D132

-5 Y170 Y29 — — —
-4 R172 R31 — — —
-3 W167 W26 — — W23

T276 T111 V103 — T101
E473 E295 — — —

-2 W275 W110 A102 S98 A100
T276 T111 V103 S98 T101
E473 E295 — — —
W539 W357 W279 W281 W298
E540 E358 E280 D282 S299

-1 Y163 Y22 Y16 Y13 Y19
W275 W110 A102 S98 A100
D313 D148 D150 D146 D134
E315 E150 E152 E148 E136
A362 A190 A183 A179 A175
M388 M216 Q207 Q205 Q214
F/Y390 Y218 Y209 Y207 Y216
D391 D219 N210
Y444
R446 R274 ? — —
W539 W357 W279 W281 W298

+1 W275 W110 A102 S98 A100
E315 E150 E152 E148 E136
F316 Y151
M388 M216 Q207 Q205 Q214
D391 D219 N210
R446 R274 ? — —

+2 W275 W110 A102 S98 A100
K369 N197 — — —
D391 D219 N210
F396 W224 — — —
Y418 F246 N213 G210 —
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Table S3. Species and acc. nos. for gene sequences retrieved from GenBank, and used in the current work.

act GenBank  
acc.nos.

tef GenBank  
acc.nos.

ChiJ GenBank acc. 
nos.Species Species Species

Hypocrea flaviconidia DQ111960 H. andinensis EU280042 Streptomyces avermitilis NP_826813
H. lutea FJ442602 H. crassa EU280053 S. clavuligerus ZP_05007692
H. melanomagna FJ442601 H. koningii EU280017 S. ghanaensis ZP_04683727
H. minutispora DQ111977 H. lixii EU279994 S. griseus YP_001828239
H. pachybasioides DQ111976 H. novaezelandiae EU280039 S. sp. Mg1 ZP_04999219
H. rufa DQ333563 H. orientalis EU280038 S. coelicolor NP_626743
H. stilbohypoxyli DQ111967 H. tawa EU279972
H. virens FJ442590 H. virens EU280065
H. viridescens FJ442594 H. lutea EU280058
Trichoderma asperellum EU856272 T. asperellum EU279961
T. austrokoningii DQ379011 T. atroviride EU280024
T. caribbaeum DQ328610 T. brevicompactum EU280061
T. dingleyeae DQ367718 T. citrinoviride EU280036
T. dorotheae DQ379009 T. cuenisporum EU280052
T. erinaceum DQ323450 T. gamsii EU280005
T. evansii EU856269 T. ghanense EU280043
T. hamatum EU856267 T. helicum EU280055
T. koningiopsis DQ379014 T. koningiopsis EU280012
T. lieckfeldtiae EU856276 T. longipile EU280051
T. ovalisporum DQ328611 T. ovalisporum EU280004
T. ovalisporum DQ328608 T. pleuroticola EU279973
T. pauculosporum DQ111957 T. pleurotum EU279975
T. petersenii DQ379013 T. rossicum EU280066
T. pubescens EU856249 T. saturnisporum EU280044
T. rogersonii DQ367716 T. sinensis EU280041
T. spirale FJ442819 T. spirale EU280050
T. strigosum DQ111964 T. tomentosum EU279971
T. taiwanense DQ323455
T. theobromicola EU856270
T. viride DQ111970
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