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Acoustic analysis of infant vocalizations has typically employed traditional acoustic measures
drawn from adult speech acoustics, such as f0, duration, formant frequencies, amplitude, and pitch
perturbation. Here an alternative and complementary method is proposed in which data-derived
spectrographic features are central. 1-s-long spectrograms of vocalizations produced by six infants
recorded longitudinally between ages 3 and 11 months are analyzed using a neural network
consisting of a self-organizing map and a single-layer perceptron. The self-organizing map acquires
a set of holistic, data-derived spectrographic receptive fields. The single-layer perceptron receives
self-organizing map activations as input and is trained to classify utterances into prelinguistic
phonatory categories �squeal, vocant, or growl�, identify the ages at which they were produced, and
identify the individuals who produced them. Classification performance was significantly better than
chance for all three classification tasks. Performance is compared to another popular architecture,
the fully supervised multilayer perceptron. In addition, the network’s weights and patterns of
activation are explored from several angles, for example, through traditional acoustic measurements
of the network’s receptive fields. Results support the use of this and related tools for deriving
holistic acoustic features directly from infant vocalization data and for the automatic classification
of infant vocalizations. © 2010 Acoustical Society of America. �DOI: 10.1121/1.3327460�

PACS number�s�: 43.70.Ep, 43.70.Jt, 43.72.Bs �AL� Pages: 2563–2577
I. INTRODUCTION

Over the course of their first year of life, human infants’
vocalizations become progressively more speech-like in their
phonation, articulation, timing, and in other respects �Stark,
1980; Oller, 1980, 2000; van der Stelt, 1993�. The explora-
tion of the sound-making capability by infants, the formation
of new contrastive categories of sound, and the systematic
use of these categories in vocal play and in flexible expres-
sion of emotional states appear to form a critical foundation
for speech �Koopmans-van Beinum and van der Stelt, 1986;
Vihman et al., 1985�. In fact, failure to reach milestones of
vocal development is associated with hearing impairment
and other medical conditions as well as with slower vocabu-
lary development �Roe, 1975; Stoel-Gammon, 1989; Eilers
and Oller, 1994; Oller et al., 1999�. However, in the first
months of life, infant sounds bear little resemblance to
speech and thus their description presents unique method-
ological challenges.

Acoustic analysis is central to the study of prelinguistic
vocalization development. Since recordings of infant vocal-
izations constitute high-dimensional time series data, their
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acoustic analysis presents a challenge of data reduction. It is
necessary to represent the signal in terms of the most signifi-
cant features, the ones around which development is funda-
mentally organized. Some of the acoustic measures that have
been applied to infant vocalizations include duration, f0

means, peaks, standard deviations, contours, formant fre-
quencies, spectral concentration/standard deviation, and de-
gree of tremor �as measured by within-syllable f0 and ampli-
tude modulation� �Kent and Murray, 1982; Robb and
Saxman, 1988; Papaeliou et al., 2002�. Such measures are
inspired by a priori assumptions rooted in acoustic phonetic
theory. They are usually treated as independent, with rela-
tively limited attention paid to possible interactions. This is
likely an oversimplification, since vocal categories are based
on interactive, multivariate acoustic features in mature
speech �Repp, 1982�, and it seems likely that early infant
sounds are also composed of acoustic features in interactive
ways. Further, the traditional approach assumes that the se-
lected a priori acoustic measures represent the fundamental
dimensions of vocal development, exploration, and manipu-
lation. There is a need for methods that address the multi-
variate and high-dimensional acoustic properties of infant
vocalizations directly.

In addition, the need for automated analysis of infant

vocal development is rapidly growing. Samples involving
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millions of utterances from thousands of hours of all-day
audio recordings are being collected and analyzed �Zimmer-
man et al., 2009�. It is important to develop a set of auto-
mated acoustic analysis tools appropriate for such infant vo-
calization data, which would be impractical to analyze
manually.

Here a method is presented for reducing high-
dimensional samples of infant vocalizations to a smaller set
of holistic acoustic features derived directly and automati-
cally based on the patterns exhibited by a set of infant vo-
calizations. The approach makes relatively few a priori as-
sumptions and is intended to complement research using
more traditional acoustic measures derived from speech sci-
ence principles. It utilizes a computational algorithm that
would be suitable as an automated analysis method for ap-
plication to large sets of infant utterances from naturalistic
recordings.

Infant vocalizations are first analyzed using a type of
unsupervised artificial neural network, the self-organizing
map �SOM�. The SOM derives a set of 16 holistic spectro-
graphic features based on clusters detected in an input corpus
consisting of spectrograms of infant utterances. Then a type
of supervised neural network, the single-layer perceptron, is
used to classify utterances on the basis of the SOM’s derived
acoustic features. The classification types are �1� prelinguis-
tic vocal categories �squeals, vocants, and growls�, �2� when
in the first year of life the utterances were produced, and �3�
the identity of the individual who produced a given utter-
ance.

The relationship between the SOM’s features and vocal
categorizations, age, and individual differences is explored
by looking at the patterns of activations across the SOM
features and through some simple acoustic measurements
�spectral mean, spectral standard deviation, and duration�
made on the SOM features and the perceptron’s weightings
of those features. The perceptron’s performance is also
evaluated quantitatively and is compared to performance by
a prominent neural network classifier, the multilayer percep-
tron �MLP�. Note that the SOM and perceptron neural net-
works can be used either �1� purely for statistical analysis
purposes or �2� as models of human perception and classifi-
cation. The present study falls into the first category of us-
age, with the second being a potential future direction.

Section I A below provides background on prelinguistic
vocal categories, developmental changes, and individual dif-
ferences. This is followed in Sec. I B by a brief review of
previous work that has used SOMs or perceptrons to analyze
vocalization data.

A. Three areas of investigation in infant prespeech
vocalization research

1. Prelinguistic phonological categories

The fact that vocalizations produced during the first year
exhibit some of the characteristics of adult speech yet are
still in many respects immature poses a challenge to phono-
logical description. It is clear that phonetic transcription at
the phonological segment level is not appropriate for early

infant vocalizations �Lynip, 1951�. As an alternative, some
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researchers have identified prelinguistic vocal categories,
termed “protophones” �Oller, 2000�, that seem to appear
relatively universally during development across the first
months of life �Stark, 1980; Nathani and Oller, 2001�.

Some protophone categories relate to the purposeful
variation of phonatory characteristics, especially pitch and
voice quality. One such category is squeal, which includes
utterances that are high in pitch and often accompanied by
pitch variation, loft �falsetto� quality, and/or harshness
�Nathani et al., 2006�. Another category is growl, which in-
cludes utterances with low pitch, harshness, creaky voice,
and/or pulse register �Buder et al., 2008�. Perhaps the most
frequently occurring protophone is the vocant, which refers
to vowel-like utterances �Martin, 1981; Kent and Bauer,
1985�. Vocants have intermediate pitch and relatively normal
phonation. Purposeful variation of pitch and vocal quality
usually appears by at least 4 months of age and continues to
be explored throughout the first year and beyond �Stark,
1980�. Although other protophone categories address matu-
ration in the timing of syllable production �marginal and
canonical syllables; Oller, 1980� and the capacity to produce
multisyllabic utterances of various sorts �reduplicated and
variegated babbles; Smith et al., 1989�, the present study
focuses only on the early emerging phonatory protophones—
squeal, growl, and vocant—as an illustration of how our
method can be applied to the acoustic analysis of protophone
categories.

Protophone categories have an inherent element of sub-
jectivity, since they are seen as protophonological constructs
that form the basis for interpretation of emotional states and
intentions by caregivers �Papaeliou et al., 2002; Scheiner et
al., 2002�. Their validity is supported by the fact that squeals,
growls, and vocants are often spontaneously reported by par-
ents when asked to identify sounds their babies produce �vo-
cants being called “vowels;” Oller et al., 2001�. Laboratory
research involving these categories primarily uses trained
adult listeners’ perceptual judgments �Nathani and Oller,
2001�.

Little relevant acoustic data on the key categories have
been published for the squeal, vocant, and growl proto-
phones. However, a primary acoustic correlate has been pro-
posed to be fundamental frequency �f0� �Nathani et al., 2006;
Oller, 1980; Stark, 1980�. A goal of the present study is to
explore the acoustic correlates of human listeners’ proto-
phone judgments via inspection and visualization of neural
network weights and activations. The present study also lays
a foundation for the development of automatic protophone
classification. This is important because protophone classifi-
cation is otherwise a costly and time-consuming procedure,
involving prior training of analysts and repeated careful lis-
tening to individual utterances.

2. Developmental changes across the first year

Because during most or all of the first year of life infants
do not produce recognizable words, their prelinguistic vocal-
izations are the main means of assessing the development of
speech- and language-related production capabilities. While
ethologically oriented auditory studies of changes in vocal-

izations across the first year have been informative in deter-
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mining stages of vocal development and the protophones that
emerge with each stage �Holmgren et al., 1986; Koopmans-
van Beinum and van der Stelt, 1986�, developmental patterns
have also been studied using acoustic phonetic methods. For
example, Kent and Murray �1982� tracked a number of
acoustic measurements, including duration, mean f0, f0 into-
nation contours, first and second formant frequencies, and a
variety of glottal and supraglottal quality characteristics such
as fry, tremor, and the spectral concentration of noise, in a
cross-sectional study of 3-, 6-, and 9-month-old infants’ vo-
calizations. Across age, they found changes in formant fre-
quency values �see also Lieberman, 1980 and Kuhl and
Meltzoff, 1996� as well as in amount of tremor.

Despite the important contributions of such research, it
does not address the possibility that the changes in such
acoustic measures across development are not independent
of each other. For example, increases in duration and de-
creases in phonatory variability may emerge in coordination
with each other, driven by common physiological and cog-
nitive maturation that lead to increased control over the lar-
ynx. Unsupervised statistical analysis may help to address
this concern, either �1� by reducing the large number of
acoustic measures to a smaller number of component dimen-
sions that are weighted on each of those acoustic parameters
or �2� by deriving a limited number of new, holistic acoustic
measures directly from relatively unprocessed recordings of
infant vocalizations. The present study takes the second ap-
proach.

An aim of this work is to develop potential methods for
automatic measurement of the acoustic maturity of infant
utterances. This goal is motivated by fact that “language age”
or “age-equivalence” is commonly used as an index of lan-
guage development status in both research and clinical as-
sessment of children older than 1 year �e.g., Stevenson and
Richman, 1976; Thal et al., 2007�. Automatic classification
of vocalization maturity is already being pursued with some
success using statistical algorithms incorporating automatic
calculation of more traditional acoustic measures, such as
duration, and automatic detection of phonetic features, such
as bursts, glottal articulations, sonorant quality, and syllabic-
ity �Fell et al., 2002�. The method presented here lays
groundwork for the automatic measurement of the maturity
of an utterance on the basis of holistic, data-driven features,
which could prove a worthwhile addition to current methods
for automatic detection of utterance maturity.

3. Individual differences

The ordering of phonological stages of vocal develop-
ment appears to be robust across infants, even those from
different language environments, with differing socioeco-
nomic status, and in large measure with differences in hear-
ing function �Oller and Eilers, 1988�. However, reports of
notable individual differences are also common in literature
on infant vocal development �Stark, 1980; Vihman et al.,
1986; Nathani Iyer and Oller, 2008�. These individual differ-
ences appear to be associated with differences in later lan-
guage styles and abilities. For example, Vihman and Green-
lee �1987� found that the degree of use of true consonants

�consonants other than glottals and glides� in babble and
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words at 1 year of age predicted phonological skill at 3
years. It is important to be able to quantify individual differ-
ences in preverbal vocalizations within normally developing
infants as this might be used to predict later differences in
speech and language ability and usage. The study of indi-
vidual differences in typical infants also sets the stage for the
study of infant vocalizations across groups, e.g., across vari-
ous language or dialect environments, genders, and popula-
tions with hearing, language learning, or cognitive impair-
ments.

As with the study of age differences, the study of indi-
vidual differences is likely to benefit from the introduction of
data-driven acoustic measures that convert high-dimensional
acoustic input to a smaller number of essential holistic fea-
tures. In this study, the problem of characterizing and quan-
tifying individual differences among infants is addressed
through exploration of differences across infants in the pres-
ence of such holistic features. Automatic detection of infant
identity provides groundwork for future detection of differ-
ences in the vocalization patterns across different infant
populations of clinical significance.

B. Previous applications of neural networks to
related problems

Neural networks are often used as tools for statistical
pattern analysis and are particularly appropriate for high-
dimensional data that are suspected of having nonlinear clus-
ter or class boundaries �Bishop, 1995�. The networks are
typically trained through exposure to data exemplars. They
can be used both in cases where the classes in a data set are
known and used to provide explicit feedback to the network
�supervised networks�, or when they are unknown and dis-
covered without explicit supervision �unsupervised net-
works�.

The perceptron is perhaps the most commonly used su-
pervised neural network. It consists of an input layer, an
output layer, and zero or more hidden layers. Each layer
except the output has a set of weights that describes the
strength of the connections between its nodes and the nodes
of the following layer. Activation from the input is propa-
gated to the hidden layers �if there are any� and then to the
output. The network’s output activations are then compared
to the known classifications for that input, and the network’s
error is determined. Based on that error, the network’s
weights are adjusted, typically using the delta rule, or with
backpropagation if there are any hidden layers �Bishop,
1995�.

A common unsupervised network is the SOM �also
known as Kohonen network�. SOMs are typically used for
unsupervised cluster analysis and visualization of multi-
dimensional data �Kohonen, 2001; Ritter, 2003; Xu and
Wunsch, 2005�. A SOM consists of an input layer and an
output layer and a set of connection weights between them.
The nodes of the output layer are arranged spatially, typically
on a two-dimensional �2D� grid. When an input is presented,
each of the output nodes is activated to varying extents de-
pending on the input and its connection weights from the
input layer. The output node with the highest activation is the

winner. It and, to a lesser extent, its neighboring nodes have
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their connection weights strengthened so that their receptive
fields �i.e., their preferred inputs� more closely resemble the
current input stimulus. The result after training is that the
output nodes’ receptive fields reflect the patterns found in the
input and that the receptive fields are topographically orga-
nized; i.e., nearby nodes have similar patterns of weights
from the input layer.

There appear to be few, if any, previous applications of
neural networks to recordings of infant prespeech non-cry
vocalizations. However, neural networks have been used to
analyze recordings of vocalizations produced by songbirds,
disordered and normal adult human voice, and infant crying.
Many of these applications were developed in response to a
need to represent high-dimensional, complex acoustic signals
in a data-driven way. For example, Janata �2001� used a
SOM to cluster spectrographic representations of segments
of juvenile zebra finch song into 200 topographically ar-
ranged holistic spectrogram prototypes. The visualizations of
the loadings of features across 30 consecutive days repre-
sented a map of the developmental pathways by which adult
songs emerged. In addition to permitting data-driven detec-
tion of song features, Janata �2001� pointed out that the SOM
provides automated acoustic analysis and classification of a
very large set of vocalization data, permitting the study of a
data set that would have been unrealistic to attempt to score
manually.

In another application of neural networks to avian vocal-
izations, Nickerson et al. �2007� used a single-layer percep-
tron, a type of supervised neural network, to discover the
acoustic features most relevant to the distinction between
three different note types in black-capped chickadee �Poecile
atricapillus� “chick-a-dee” calls �notes being the primary
units of these calls�. The network received seven frequency-
and duration-related acoustic features as input and learned to
predict the note type for these inputs. Testing the network
with systematically modified inputs enabled them to deter-
mine which acoustic features were most important in dis-
criminating note types.

SOMs or SOM-inspired networks have also been used in
a number of studies to model the perception and classifica-
tion of speech sounds of one’s native language. For example,
Guenther and Gjaja �1996� trained an unsupervised network
on formant frequency inputs. They then showed that the dis-
tribution of learned receptive fields exhibited the perceptual
magnet effect humans exhibit in the perception of the vowels
of their native language. Another example is a study by
Gauthier et al. �2007� that used a SOM to successfully clas-
sify Mandarin tones based on the first derivative of f0 con-
tours. This classification was robust in the face of the surface
variability present in the multiple speakers’ connected speech
from which the inputs were taken.

SOMs have also been applied to the study of disordered
adult human voices. In one study, Leinonen et al. �1992�
trained a SOM on short-time spectra from 200 Finnish
words. They then provided the network input from both nor-
mal and dysphonic speakers and tracked the trajectory of
winning SOM nodes for the vowel �a:�. Normal and dyspho-
nic voices differed in the amount of area on the SOM that

was visited by these vowel trajectories. The work illustrates
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that a SOM tool can discriminate between normal and dys-
phonic voices, and that acoustic differences for these two
populations can be portrayed topographically. Callan et al.
�1999� also used a SOM to study normal and dysphonic
voices. However, instead of raw spectra, their inputs were
scores on six acoustic measures that had previously been
used in studies of dysphonia �e.g., amplitude perturbation
quotient, first cepstral harmonic amplitude, and standard de-
viation of f0�. After training, they marked each SOM node
according to which clinical group activated it the most. The
SOM was able to reliably classify voices according to group.
Output node activations and weights from the input �the six
acoustic measures� were also visualized.

Finally, in an application of a neural network to the
study of infant vocalizations, Schönweiler et al. �1996� used
a SOM to cluster recordings of cries by normal and deaf
infants. The input consisted of 20-step Bark spectra. It was
noted that different individuals’ cries mapped onto different
areas of the SOM, which is in agreement with the idea that
different infants produce identifiably different cries.

The results of the studies reviewed in this section sug-
gest that neural networks, including the unsupervised SOM
and the supervised perceptron networks, are appropriate and
useful tools for visualization, feature-extraction, and classifi-
cation purposes in the study of acoustic vocalization data.
Thus, it seems fitting to explore the application of neural
networks to study infant vocal development.

II. METHOD

A. Participants

Data from six typically developing human infant partici-
pants, four female and two male, are used in this study. Par-
ticipants were recruited for a study of both interactive and
spontaneously produced vocalizations and were recorded
longitudinally from early in the first year until age 30 months
�see Buder et al., 2008 for additional details on participants
and recording setup and procedures�. The present study fo-
cuses on a subset of those recordings spanning three age
intervals across the first year of life: 3;0–5;4, 6;0–8;4, and
9;0–11;4.

B. Recording

Infants were recorded for two to three 20-min sessions
on each day of recording. For each infant, two of the 20-min
sessions were selected from each age interval for use in the
present study. The selections were made from among avail-
able recordings based on there being a relatively high vocal
activity level of the infant and a relative lack of crying.

Recordings took place in a minimally sound-treated
room furnished with soft mats and toys while the parent was
present. Siblings were sometimes present during recordings
as well. Infants and their mothers interacted relatively natu-
ralistically although some periods of time were dedicated to
an oral interview between laboratory staff and the parent
while the infant played nearby. Both mother and infant
wore wireless microphones �Samson Airline ultra high fre-
quency �UHF� transmitter, equipped with a Countryman As-

sociates low-profile low-friction flat frequency response
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MEMWF0WNC capsule, sending to Samson UHF AM1 re-
ceivers�. The infant’s was sewn into a custom-built vest
adapted from models designed by Buder and Stoel-Gammon
�2002�. The microphone capsule was housed within a velcro
patch to locate the grill at a distance of approximately 5–10
cm from the infant’s mouth. Using TF32 �Milenkovic, 2001�
operating a DT322 acquisition card �Data Translation, Inc.,
Marlboro, MA�, signals were digitized at 44.1–48.1 kHz af-
ter low-pass filtering at 20 kHz via an AAF-3 anti-aliasing
board. Microphone signals were concurrently sent to digital
video recorders via separate UHF receivers to eliminate con-
tamination to the signals that would otherwise have been
transmitted from the video monitors via direct cables. The
recordings for infant 1 are an exception to this procedure.
This infant’s recordings were made according to an earlier
laboratory protocol in which audio from the infant’s and
mother’s microphones were compressed in mp3 format as
part of an mpeg recording file that combined audio with
video. These recordings were subsequently extracted from
mp3 format to wav format. Based on detailed inspection of
these wav files, the only noticeable compression-based dif-
ference between the mp3-based wav file and those for infants
2–6 was that mp3 compression eliminated frequency compo-
nents above about 12 kHz. To ensure signal comparability
across all the recordings, only frequencies 12 kHz or lower
are included in the signals processed by the neural networks
in this study.

C. Utterance location and coding by human analysts

Prior to analysis by the neural networks, recordings un-
derwent two types of processing by trained adult human ana-
lysts: �1� location of infant utterances within recording ses-
sion files and �2� labeling these utterances according to
protophone categories. Infants’ utterances were located
within each recording using the spectrographic display fea-
ture of action analysis coding and training �AACT� software
�Delgado, 2008�, marking the beginning and end of each
utterance. In addition to listening to the recordings, analysts
were permitted to consult spectrograms, waveform views,
rms contours, and videos for both the infant and the car-
egiver as they performed this localization task. An utterance
was defined as a vocalization or series of vocalizations per-
ceived as belonging to the same breath group �Oller and
Lynch, 1992�. Crying and other distress vocalizations as well

TABLE I. Number of vocalizations of each vocal ty

Infant

Age 3;0–5;4 Age

Vocant Squeal Growl Vocant S

1 73 2 23 53
2 72 21 5 67
3 79 14 5 72
4 68 20 10 78
5 71 0 27 66
6 71 2 25 91

Total 434 59 95 427
as vegetative sounds were excluded. The first 49 utterances
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from each 20-min session are used in this study. Since 49
was the minimum total number of utterances produced in a
session, this ensures equal representation of recording ses-
sions, infants, and ages �see Table I�.

After locating infants’ utterances, analysts then coded
each utterance as one of the following protophones: vocant,
squeal, or growl. Analysts were encouraged during training
to use intuitive auditory judgments rather than strict criteria.
They were told that generally squeals are perceived as high
pitched �beyond the range of habitual pitch for the indi-
vidual� and can be dysphonated as well. Growls were por-
trayed as often having low pitch �again out of the range of
habitual pitch� and as often being harsh or dysphonated, but
it was noted that they are sometimes within the habitual pitch
range with harsh or rough voice quality. Vocants were por-
trayed as the kinds of sounds that fit within the normal pitch
of the infant, with relatively little deviation from normal
phonation. Analysts were encouraged to attend to the most
salient aspects of utterances in making squeal and growl
judgments. For example, an utterance was not required to be
high pitched throughout to be categorized as squeal; a brief
but salient high pitched event could form the basis for the
categorization. These instructions were designed to encour-
age coders to mimic the discriminatory behavior presumed to
underlie the categorizations reflected in reports of caregivers
regarding these kinds of sounds in their infants �Stark, 1980;
Oller et al., 2001�. The coding procedures are similar to
those used by Nathani et al.’s �2006� V �vocant� and SQ
�squeal� categories. The difference was that in this study
there is an additional growl category �see Buder et al., 2008�
and classifications regarding vocal type category were made
independently of any syllabicity judgment. Table I provides a
summary of the number of utterances in each protophone
category for each infant at each age.

D. Preprocessing of utterances

Processing of utterances from this point on was done in
MATLAB using the signal processing and neural networks
toolboxes �MathWorks, 2008�. Each utterance was extracted
from the digital recording for the session during which it was
recorded. As all inputs to a standard SOM �see following
description� must be the same length, only the first second of
each utterance was used �utterances were therefore aligned at
the beginning�. Longer utterances were truncated and shorter

r each infant at each age.

8;4 Age 9;0–11;4

Totall Growl Vocant Squeal Growl

40 77 6 15 294
16 70 22 6 294
7 74 23 1 294

13 80 3 15 294
32 84 1 13 294
6 75 11 12 294

114 460 66 62 1764
pe fo

6;0–

quea

5
15
19
7
0
1

47
utterances were zero-padded. A spectrogram was obtained
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for each utterance using the fast Fourier transform �FFT�-
based spectrogram function. Fifteen time bins were used,
each with 50% overlap and a maximum frequency of 22
kHz. The frequency scale of this spectrogram was converted
to a 15-bin sine-wave approximation of the Bark scale
�Zwicker, 1961�, and the maximum frequency was capped at
12 kHz using Ellis’s �2007� inverse hyperbolic sine approxi-
mation algorithm from the RASTAMAT toolbox. For each ut-
terance, the power spectral density values represented by this
spectrogram were normalized to the maximum power spec-
tral density magnitude within that utterance. Each utterance
was thus represented as 225 spectrogram pixels correspond-
ing to the normalized power spectral density at each fre-
quency bin for each time bin. Figure 1 illustrates some ex-
amples of the spectrographic representations of infant
utterances in our data set.

E. Neural network architecture

In this section, the architecture of the neural networks
and the functions of each component are described. Section
II F will describe neural network training. This will be fol-
lowed by a description of how the infant utterance data were
divided into a set for training and a set for testing each net-
work in Sec. II G.

The main type of neural network used in this study is a
hybrid architecture with two components �Fig. 2�. The first
component is a SOM consisting of 16 nodes arranged on a
4�4 grid. The choice of number of nodes and their arrange-
ment was made on the basis of pilot analyses using various
configurations, considering ease of visualization and balance
between specificity and over-fitting of data. The SOM re-
ceives utterance spectrograms as input, transformed into a
vector with the time-slice columns of the spectrogram laid

FIG. 1. Four examples of inputs provided to the SOM. Inputs are 225-pixel
Bark-scaled spectrograms of utterances produced by infants recorded natu-
ralistically. All inputs are 1 s long, with longer utterances truncated and
shorter utterances zero-padded. White indicates high intensity and black
indicates zero intensity. All spectrograms are normalized to the value of the
highest intensity pixel. Clockwise, from top-left: a vocant produced by in-
fant 1 at 3;2, a squeal produced by infant 2 at 4;1, a growl produced by
infant 4 at 6;2, and a vocant produced by infant 3 at 10;2.
end-to-end. Note that this is a common procedure for format-
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ting neural network input data �e.g., see Janata, 2001�, and
that the transformation has no effect on the function of the
SOM since the SOM algorithm does not take the location of
input nodes into account. The SOM categorizes these utter-
ances according to learned holistic features extracted based
on a set of training utterances, as described in Sec. II F.
Learning in the SOM is unsupervised and involves changing
the weights from the input layer to each of the SOM nodes
over the course of training. Eventually, these weights come
to represent the nodes’ ideal inputs �or receptive fields�, and
neighboring nodes end up having similar ideal inputs �topo-
graphic organization�. This SOM component of the hybrid
architecture thus serves as a data-driven holistic feature de-
tector, reducing the 225-pixel spectrographic input to 16
learned features. It also serves as a means for visualizing
utterance features topographically �Kohonen, 2001; Ritter,
2003; Xu and Wunsch, 2005�. The SOM component was
implemented using functions custom written for this study in
MATLAB.

The second component is a set of three single-layer per-
ceptrons, which are used to read the output from the SOM in
order to obtain a quantitative measure of the learned SOM
features’ relevance to various classification tasks, to actually
perform those classifications, and to determine which SOM
nodes best distinguish different classes of utterances from
each other. The perceptron is a type of supervised classifier
and in single-layer form it essentially performs a logistic
linear regression �Bishop, 1995�. Each perceptron receives
activations of the SOM layer nodes �produced in response to
a single utterance input to the SOM� as input �see Kuang and
Kuh, 1992, for another example of a perceptron trained on
SOM activations�. Based on the product of these SOM acti-
vations and the perceptron’s weights �which can be either
positive or negative� from the SOM layer to its output nodes,
the perceptron classifies a given utterance according to its
perceived protophone type as judged by trained human ana-
lysts, the age at which an utterance was produced, and the

Input
layer

(pixels of the
input utterance's
spectrogram) Perceptron

output layer
(classification)

3-5 months
6-8 months

9-11 months
SOM
layer

(topographical
feature-detector)

Infant 1

Infant 6

vocant
squeal

growl

Training phase 1:
unsupervised,
competitive
learning

Training phase 2:
supervised
learning

FIG. 2. Schematic of the neural network used in the present study. The
network is a hybrid of a SOM and a single-layer perceptron. Pixels of an
utterance are presented first to the SOM. Activations of the SOM nodes are
then sent to the perceptron output nodes for classification according to pro-
tophone, age, and infant identity. The weights from the input layer to the
SOM layer are trained first. After this first phase of training, weights to the
SOM are frozen and the perceptron’s weights are trained.
identity of the infant who produced it. Thus, the supervised
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perceptrons relate the features learned by the unsupervised
SOM to known protophone, age, and identity classifications.
The output layer of each of these perceptrons was con-
structed to have one node for each class of utterances. The
vocal type protophone perceptron thus has three output
nodes: one for squeals, a second for vocants, and a third for
growls. The age-predicting perceptron has three output
nodes: one for utterances produced at age 3;0–5;4, a second
for utterances produced at age 6;0–8;4, and a third for utter-
ances produced at age 9;0–11;4. Finally, the identity-
predicting perceptron has six output nodes, one for each in-
fant in our data set. The perceptron component was
implemented using the feed-forward network functions in
MATLAB’s neural network toolbox �Demuth et al., 2006�. Lo-
gistic activation functions were used for the output nodes of
the perceptron classifiers, and default values were used for
all other parameters in initializing the network �further de-
tails can be found in Demuth et al., 2006�.

To compare the hybrid SOM-perceptron classifier to the
MLP, which is probably the most popular neural network
used in supervised classification �Bishop, 1995�, we also
trained a set of MLPs to perform the age and vocal type
classifications using the leave-one-infant-out training data.
These MLPs were run using the same procedures and param-
eter settings as for the single-layer perceptrons described
above. The number of hidden layer nodes was set to 16,
which is the same as the number of nodes in the SOM layer
of our SOM-perceptron hybrid. Thus, the numbers of
weights �i.e., free parameters that the networks adjust during
training� are roughly similar. We then compared the MLP’s
classification performance to that of our SOM-perceptron hy-
brid. In addition, we trained a single-layer perceptron to pre-
dict age on the basis of protophone-trained MLP’s hidden
layer activations. Likewise, we trained a single-layer percep-
tron to predict protophones on the basis of age-trained
MLP’s hidden layer activations. Comparing classifications of
these perceptrons to classifications from the SOM-perceptron
hybrid assesses whether using the SOM layer is truly critical
to obtaining a task-general hidden layer.

F. Neural network training

For the SOM-perceptron hybrid, training was conducted
in two phases. During the first phase, only the SOM compo-
nent was involved. Prior to training, its weights were set to
random values with a different randomization for each of the
15 SOM runs. The SOM training algorithm was adapted
from Berglund and Sitte’s �2006� parameterless SOM algo-
rithm. This algorithm takes three parameters ��, �, and ��,
which determine the behavior of the SOM during training.
The following parameter values were used: �=1, method 2
for calculating �, and � multiplied by a factor of 0.5. The
exact roles of �, �, and � are described in Berglund and Sitte
�2006�. In essence, training involved presenting an utterance
as input �randomly chosen from the set of training utter-
ances, discussed in Sec. II G� to the SOM, finding the SOM’s
node whose weights to the input layer are the most similar to
that input �as measured by the Euclidean distance between

the input vector and the vector representing weights from the
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input to a given output node�, and then updating that node’s
weights and �to a lesser extent� its neighbors’ weights to
make them even more similar to the input. This procedure
was repeated 1407 times. This was the number of utterances
per session times the number of sessions times the reciprocal
of the scaling factor for � in the SOM training algorithm.
This amount of training was more than sufficient for the
network’s performance to stabilize as judged by the mean
squared distances between testing set inputs and their win-
ning node’s weights and by visual inspection of changes in
network weights across training.

After completion of this first phase of training, the
weights from the input layer to the SOM nodes remained
fixed during the next training phase. This second phase of
training the SOM-perceptron hybrid involved only the per-
ceptron component. Perceptrons were trained using the delta
rule with regularization using MATLAB’s trainbr function.
This is a variation on the traditional delta rule algorithm that
balances reduction in classification error against parsimony
of network weight. This method �sometimes also referred to
as “learning with forgetting”� has been shown to produce
good generalization of performance to previously unseen
data and increases the interpretability of network weights
�Foresee and Hagan, 1997; Kasabov et al., 1998; Demuth et
al., 2006�. In essence, this training algorithm involves pre-
senting training set examples, which are the SOM node ac-
tivations produced in response to an infant utterance, one at a
time. After presentation of each example, the network’s clas-
sification predictions are calculated, and then, based on the
difference between these classification predictions and the
correct classifications, the weights from the SOM layer to
each of the perceptrons’ output nodes are updated so as to
reduce this error �as measured by the squared error� in clas-
sifying subsequent inputs while also maintaining parsimony
of network weights. All parameters other than the training
method �trainbr� and the activation transfer function �log-
sigmoid� were set to default values. Further details can be
found in the MATLAB documentation and in Demuth et al.
�2006�.

The MLPs were trained in mostly the same way as the
perceptron described above but with the following excep-
tions: The MLP was trained directly on the spectrographic
input and was done in a single phase. Training was per-
formed using the same MATLAB training method �trainbr�, but
since there were two layers instead of just one, backpropa-
gation was involved in addition to the delta rule �Bishop,
1995�.

G. Partitioning of data into training and testing sets

In order to train the SOM, perceptron, and MLP while
also allowing for testing the networks’ generalization abili-
ties, the infant utterance data were divided into two subsets:
one for training the network and the other for evaluating the
network’s classification performance. From each recording
session �of which there were two for each child at each age�,
37 of the 49 utterances �approximately 75%� were randomly
chosen to be used in training; the remaining 12 utterances

�approximately 25%� were reserved for testing the network
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�discussed in Sec. II I�. This random partitioning was done
15 times and the SOM-perceptron hybrid was run 15 times,
each corresponding to a different random partitioning. The
means and standard deviations presented in Sec. III were
computed over these 15 runs.

In a variation on this training procedure, an alternative
leave-one-infant-out method of partitioning the data into
training and testing sets was applied to a second set of 36
networks, wherein all the utterances produced by five infants
were used in training and the utterances from the sixth re-
maining infant were reserved for use in testing only. Across
these 36 networks, each infant was used as the test infant six
times. As with the perceptron, means and standard deviations
were computed over these 36 runs. The MLP simulations
were trained and tested using the leave-one-infant-out
method, although only 6 simulations �rather than 36� were
run due to the long time it took for MLP runs to complete.
Each infant was used exactly once in testing.

In addition, a SOM-perceptron hybrid was trained on all
utterances from all recordings for the purpose of visualizing
the trained network weights and activations. This network
was used for generating Figs. 3–5 but was not included in
any of the quantifications of network performance.

H. Adjusting for unequal representation of protophone
categories

When training and testing the perceptrons and MLPs
responsible for predicting protophone judgments, it is a con-
cern that vocants occur much more frequently than squeals
and growls �see Table I�. This inequality inflates the percent
correct that would be expected by chance, since with unequal
numbers, the baseline strategy would be to give all utter-
ances the classification corresponding to the most frequent
category. With such a strategy, if 70% of the utterances were

FIG. 3. Weights from the input layer to each SOM node for a network
trained on the full set of utterances. Each spectrogram represents the input
preference for that node. Note that input preferences are holistic spectro-
graphic features and represent complex acoustic patterns. Also note the to-
pographic organization of these inputs. White represents high weight �high
intensity preference for that pixel on the input layer�, and black represents
zero weight.
vocants, the baseline percent correct would be 70%. This
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would be very difficult for even a “smart” classifier making
use of acoustic information to outperform. We thus ran the
perceptron component two ways: once without any adjust-
ment for unequal numbers of vocal types and once with an
adjustment. To adjust for the frequency bias, exemplars from
the squeal and growl categories were repeated as many times
as was necessary for their numbers to equal the number of
vocants.

I. Evaluating the network’s performance

After training the hybrid network, the network’s perfor-
mance was assessed �1� through visualization and descriptive
acoustic measurement of network weights and activations
and �2� through quantitative evaluation of classification per-
formance. The visualizations are of the weights from the
spectrographic input layer to the SOM output grid and from
the SOM’s grid to the perceptron classifier nodes. We also
visualized the winning SOM nodes �an illustration of SOM
activations� for utterances with different protophone judg-
ments, from different ages, and from different individuals.

To supplement the visualizations, we made 3 theoreti-
cally derived acoustic measurements for each of the 16 SOM
receptive fields. The first measure was the mean of the time-
averaged spectrum and the second was the standard devia-
tion of this spectrum, both measured in absolute frequency.
These correspond to the first and second spectral moments

FIG. 4. Activations of the SOM layer by utterances with different proto-
phone labels, produced at different ages, and produced by different infants.
Bright indicates that a SOM node was often the winner and black indicates
that a node was never the winner. Each 4�4 map corresponds to nodes of
the SOM shown in Fig. 3. Note that the number of utterances belonging to
each protophone category was not uniform; there were more vocants than
squeals and more squeals than growls.
computed by Forrest et al. �1988�. The third measure was the
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median point in time of the frequency-averaged intensity
contour. This should give a rough measure of the preferred
duration of the receptive field. After calculating these three
values for each SOM node, we calculated each perceptron
output node’s preferred value for each of the three acoustic
measures by finding the average SOM receptive field values
weighted by the perceptron output node’s weights from the
SOM layer.

Quantitative evaluation involved feeding the networks’
utterances from the set that were reserved for testing. The
networks’ classifications regarding the protophone, age
group, and infant identity for each of these test utterances
were then obtained, and an overall mean percentage correct
for each type of classification for each type of network was
computed. Cohen’s � reliability statistics and their corre-
sponding probabilities were computed using Cardillo’s
�2009� MATLAB function, in order to evaluate the magnitude

FIG. 5. Weights from the SOM layer to each perceptron output node. Bright
indicates a large positive weight from the SOM node to that perceptron
output node, black indicates a large negative weight, and gray indicates a
near-zero weight. Each 4�4 map corresponds to the SOM nodes shown in
Fig. 3. Note that for protophones, the weights are based on training the
perceptron on a set of utterances that was adjusted to be balanced across
vocant, squeal, and growl protophones by randomly repeating exemplars
from the less frequent categories.

TABLE II. Acoustic properties of the SOM receptiv

Spectral meansa Spectral stan

0.7 0.7 0.7 0.6 0.7 0.7
0.7 0.8 0.7 0.6 0.8 0.8
1.3 1.1 0.7 0.5 1.3 1.8
1.7 1.3 0.6 0.3 1.6 1.3

aIn kilohertz.
b
In number of time bins �each bin is 66 ms�.
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and significance of the agreement between each network’s
classifications and the correct classifications.

III. RESULTS

A. Visualization and descriptive acoustic
measurement of network weights and activations

Each of the SOM’s output nodes can be thought of as a
holistic spectrographic feature formed by the SOM based on
the training inputs. This is illustrated in Fig. 3, where the
weights from the input layer to each node of the SOM are
visualized as spectrograms representing the preferred spec-
trographic input for that node �white indicates a high value
for a given weight and black indicates a zero value�. Each
node’s spectrogram of weights can be thought of as a recep-
tive field, specifying a particular preferred holistic feature
derived from the input infant utterance data via the SOM’s
training algorithm. Note that these preferred inputs are ar-
ranged topographically; that is, neighboring nodes have simi-
lar preferred inputs. This is one of the characteristic proper-
ties of SOMs. Also note that, because the SOM nodes adjust
their preferred inputs �i.e., their weights from the input layer�
on the basis of exemplars from the training set of utterances,
the nodes of the SOM come to represent global features of a
complex nature such as would occur in an actual infant ut-
terance. Thus, it seems that these features have a complex
relationship with more basic acoustic features, such as dura-
tion and spectral compactness versus diffuseness. For ex-
ample, the receptive fields for the SOM nodes pictured in the
leftmost column �x=1� of Fig. 3 appear to exhibit long du-
ration. In addition, the bottom two nodes of that leftmost
column �x=1, y=1–2� have relatively high spectral means
and spectral standard deviations. These observations are sup-
ported by measurements of the frequency-averaged intensity
contours’ median times, the time-averaged spectral means,
and the time-averaged spectral standard deviations given in
Table II.

Figure 4 illustrates how often each node of the SOM
was the winning node �defined as the node with the highest
activation� for utterances of each perceived protophone type,
age group, and individual. This method of visualization pro-
vides a way of mapping from global features learned by the
SOM to different utterances classes.

For example, it appears in the figure that growls may
span a broader set of global features in the acoustic space
represented by the SOM, as evidenced by the large number
of relatively bright squares �bright indicates high activation�
for this protophone category. To quantify the diffuseness of

spectrograms.

deviationsa Temporal mediansb

0.7 0.6 7 5 4 4
0.7 0.7 9 4 3 3
0.9 0.8 8 4 2 3
1.1 0.9 6 4 3 5
e field

dard
laumont et al.: Neural network analysis of infant vocalizations 2571



activation across the SOM for a given utterance class, we
first calculated for each node the number of inputs for which
that node was the winner, divided by the total number of
inputs belonging to that class. Then the median of these pro-
portion values was computed. These medians were compared
across the three protophone categories. Indeed, the median
was higher for growls �0.24� than for vocants �0.18� or for
squeals �0.15�. This indicates that the winning nodes for this
category are distributed more evenly across the map than for
the other categories.

Another observation that is evident in Fig. 4 is the over-
lap between utterance classes. While there is some distinct-
ness across protophones, as indicated, for example, by there
being different most highly activated nodes for squeals �the
node at x=1, y=2� than for vocants and growls �the node at
x=3, y=2�, there is also a high degree of overlap in the SOM
node activations, as indicated by numerous nodes that show
gray activation for all three protophone types.

Figure 5 illustrates the weights from the SOM to the
perceptron output nodes for each age, infant, and protophone
prediction. Recall that the goal of the perceptron is differen-
tiation of categories �protophone type, age, and infant� via
positive and negative weights. Thus for Fig. 5 the scaling is
different from that of Fig. 4. In Fig. 5, white indicates high
positive weight, black indicates high negative weight, and
mid-gray indicates near-zero weight. The weights indicate
which of the SOM’s holistic features are informative for
classification purposes, highlighting the differences between
utterance classes and ignoring features that are common to
all classes.

The visualizations in Figs. 4 and 5 exhibit both similari-
ties and differences. This is evident in the correlation coeffi-
cients between a given class’s SOM activations �Fig. 4� and
the weights from the SOM to its perceptron node �Fig. 5�.
The mean, across all class types, of these correlation coeffi-
cients is r=.31 where r was always positive, ranging from
0.03 to 0.58. As an example of a specific similarity between
activation and weight patterns, the SOM nodes located at
�x=1, y=4�, �x=4, y=4�, and �x=4, y=3� are very dark for
squeals in both figures. This indicates that these SOM nodes
are both infrequent �Fig. 4� and negatively associated char-
acteristics �Fig. 5� of squeals. An example of a difference
between the two figures is that, while the SOM node located
at �x=4, y=4� is the second highest activated for vocants as
shown in Fig. 4, it does not have a very large positive weight
to the perceptron vocant node, as indicated in Fig. 5. Differ-
ences between Figs. 4 and 5 are due to the fact that Fig. 4
indicates the frequency with which features were observed
whereas Fig. 5 highlights the particular SOM nodes that,
when activated at least partially by an utterance, distinguish
utterances of one class �e.g., vocants� from utterances of
other classes �e.g., squeals and growls�.

Recall the discussion of duration, spectral mean, and
spectral standard deviation from the discussion of the SOM
receptive field spectrograms �Fig. 3�. It was observed that the
leftmost column was associated with long duration and that
the bottom two nodes of that column also had high spectral
means and standard deviations. Interestingly, this leftmost

column appears both in Fig. 4 and in Fig. 5 to be associated
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more �as evidenced by light-colored pixels in this column�
with the older two age groups than with the younger age
group. This suggests that increase in duration is associated
with increase in age. In addition, the bottom two nodes of
that leftmost column are associated with the oldest age
group. This suggests that the oldest age group is associated
also with increase in spectral mean and standard deviation.
Combining information about the acoustic properties of
SOM weights and the values of the weights from the SOM
layer to each of the perceptron output nodes, it is possible to
explore whether these acoustic features are present in the
nodes that distinguish between different ages. Table III
shows the spectral mean, spectral standard deviation, and
temporal duration properties for each age, protophone type,
and infant. Indeed, the spectral duration of perceptron
weights appears to increase across the three age groups, and
the spectral mean and standard deviation are highest for the
oldest age group.

Table III also reveals interesting patterns with respect to
the three protophones’ acoustic properties. Squeals have the
highest spectral mean and spectral standard deviation. This is
in accordance with previous descriptions of this category as
high pitch often accompanied by harshness and/or pitch
variation. However, growls do not differ from vocants in
either mean or spectral standard deviation. Perhaps the high
harshness/pulse/creaky-voice combine with the low pitch of
growls to yield moderate spectral mean values. Thus, al-
though the differentiating acoustic properties of squeals fit
with their previous perceptual descriptions, the differentiat-
ing acoustic properties of growls may be less straightfor-
wardly defined in this neural network.

B. Classification performance

1. Protophone-classification performance

When predicting human-judged protophone categories
after equated-frequency training, the 15 hybrid networks had
a mean percent correct on the previously unseen test utter-

TABLE III. Acoustic properties of the perceptron weights from the SOM
layer, given the acoustic features of the SOM nodes �shown in Table II�.

Spectral meana Spectral SDa Temporal medianb

Age 3;0–5;4 0.80 0.91 4.11
6;0–8;4 0.75 0.89 4.67
9;0–11;4 0.87 0.95 4.84

Protophone Vocant 0.78 0.89 4.49
Squeal 0.85 0.96 4.69
Growl 0.80 0.91 4.68

Infant Infant 1 0.81 0.94 4.55
Infant 2 0.83 0.93 4.62
Infant 3 0.82 0.94 4.69
Infant 4 0.77 0.87 4.47
Infant 5 0.89 0.95 5.12
Infant 6 0.84 0.92 4.41

aIn kilohertz.
bIn number of time bins �each bin is 66 ms�.
ances �selected randomly at the recording session level� of
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54.4% �see the first column of Table IV�. Since there were
three protophone types, each of which was equally repre-
sented in both the training and the testing utterance sets, the
classification performance that would be expected for a clas-
sifier performing at chance is 33.3%. The vocal-type-
predicting networks’ 54.4% correct performance was signifi-
cantly better than chance, �=0.316, p�0.001.

Recall that 36 additional hybrid networks were trained
on utterances from five infants and tested on the sixth re-
maining infant’s utterances. Each infant was used for testing
for exactly 6 of the 36 networks. The purpose of this varia-
tion on the method for partitioning utterances into training
and testing sets was to see if classification of protophones
would generalize across infants. Mean classification perfor-
mance for these networks was 55.0% correct, where chance
level performance would have been 33.3% �see the second
column of Table IV�. This was statistically better than
chance, �=0.325, p�0.001. This shows that for protophone
prediction, performance did not differ from when the
session-level train-test partition method was used to when
the leave-one-infant-out method was used. Thus, it appears
that the network’s protophone-classification capabilities are
based on features of utterances that are generalizable even to
infants the network has never previously encountered.

When no adjustment was made for the inequality in the
number of exemplars in each protophone category, the per-
centage correct was 73.4% where the baseline percent cor-
rect for an algorithm that always guessed vocant would be
74.9%.

For the six MLPs that were trained using a leave-one-
infant-out data partition to predict protophones �where the
numbers of protophones were adjusted to give equal repre-
sentation of all categories�, the mean percent correct was
45.9% �see the first column of Table V�. This was not quite
as high as performance of the SOM-perceptron hybrid, al-

TABLE IV. Classification task performance of the SOM-perceptron hybrid

Type of test set

Protophones

25% per recording 100% of one infanta

Mean % correct 54.4 �chance=33.3� 55.0 �chance=33.3�
Standard deviation 3.2 6.5
Mean Cohen’s � 0.316 0.325
Mean p �0.001 �0.001

aWith adjustment for unequal category sizes. When there is no adjustment
=74.9� with a standard deviation of 5.4.

TABLE V. Classification task performance of the MLP neural network. All

Type of hidden layer

Protophones

Protophone-predictinga Age

Mean % correct 45.9 �chance=33.3� 46.6 �c
Standard deviation 10.3
Mean Cohen’s � 0.191
Mean p �0.001 �

aWith adjustment for unequal category sizes. When there is no adjustment

=74.9� with a standard deviation of 6.9.
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though across runs, this performance was within a standard
deviation of the SOM-perceptron hybrids. When no adjust-
ment was made for the inequality in the number of exem-
plars for each protophone category, the percentage correct
was 65.3% where the baseline percent correct for an algo-
rithm that always guessed vocant would be 74.9%. When six
MLPs were trained using the same leave-one-infant-out
method to predict age and then a single-layer perceptron
layer was trained to take those MLPs’ hidden layer activa-
tions as input and produce protophone classifications as out-
put, performance was 46.6% correct �see the second column
of Table V�. This was lower than the SOM-perceptron hybrid
by more than eight percentage points. These combined re-
sults of the MLP networks suggest that while a MLP trained
to perform protophone prediction may perform similarly to
the SOM-perceptron hybrid, the hidden layer of other MLP
trained on a different classification task �age-prediction� is
not as good as the general-purpose unsupervised SOM layer.
Furthermore, the MLP did not fare any better than the SOM
when there was no adjustment for the overrepresentation of
vocants.

2. Age classification performance

For the 15 hybrid networks trained to predict infant age
with a session-level training-test data partition, the mean per-
cent correct was 42.8% �see the third column of Table IV�.
This was significantly better than the 33.3% that would have
been expected by chance, �=0.142, p�0.001. Mean classi-
fication performance for the 36 additional hybrid networks
that were trained on utterances from five infants and tested
on the sixth was approximately 35.6% correct, where chance
level performance would have again been 33.3% �see the
fourth column of Table IV�. This did not reach statistical
significance, �=0.034, p=0.146.

l network.

Ages Identities

25% per recording 100% of one infant 25% per recording

42.8 �chance=33.3� 35.6 �chance=33.3� 32.4 �chance=16.7�
1.4 4.7 1.9

0.142 0.034 0.189
�0.001 0.146 �0.001

ne infant is reserved for testing, the mean percent correct is 73.4 �chance

are for leave-one-infant-out partitioning of utterances.

Ages

icting Age-predicting Protophone-predicting

=33.3� 35.1 �chance=33.3� 36.1 �chance=33.3�
3.6 3.0

0.026 0.041
1 0.118 0.018

ne infant is reserved for testing, the mean percent correct is 65.3 �chance
neura

and o
data
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hance
5.7

0.200
0.00

and o
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The six MLPs that were trained using a leave-one-
infant-out data partition to predict age had a mean percent
correct of 35.1% �see the third column of Table V�. This was
very similar to the performance of the SOM-perceptron hy-
brid. When six MLPs were trained using the same leave-one-
infant-out method to predict protophones �numbers adjusted
for equal representation of protophone categories� and then a
single-layer perceptron layer was trained to take those
MLPs’ hidden layer activations as input and produce age
classifications as output, performance was 36.1% correct �see
the fourth column of Table V�. This was again very similar to
the performance of the SOM-perceptron hybrid. These com-
bined results of the two MLP variations suggest that both a
MLP and the SOM-perceptron hybrid are approximately
equally suited to the task of predicting age, though neither
does very well when forced to generalize to an infant it has
never previously encountered before.

3. Infant identity classification performance

For the 15 hybrid networks trained to predict the identity
of the infant who produced an utterance �with session-level
training-test data partition�, the mean percent correct was
approximately 32.4% correct �see the fifth column of Table
IV�. Compared to the 16.7% correct that would be expected
had the networks been performing at chance, this perfor-
mance was statistically significant, �=0.189, p�0.001.

IV. DISCUSSION

A. Visualization of network weights and activations

One of the main advantages of the SOM-perceptron hy-
brid is its usefulness for data visualization purposes. By plot-
ting the weights from the input layer to the SOM �Fig. 3�, it
is possible to visualize the range of holistic spectrographic
features exhibited by the vocalizations in the present data set.
These holistic features are extremely complex, which can be
seen as both an advantage, in that they retain the complexity
of prototypical utterances, and as a disadvantage, in that they
are difficult to interpret. By plotting the activations of each
SOM node according to protophone, age, and identity, and
by plotting the weights from each SOM node to each percep-
tron node, it is also possible to explore the relationship be-
tween the holistic spectrographic features learned by the
SOM and different categories of utterances.

One method that was used to quantitatively interpret the
trends observed in the figures was to get the median number
of wins per SOM node for a specific utterance type �e.g., for
each of the protophone types� to see which tended to occupy
more of the SOM’s representational space. Using this
method, it was found that growls had more diffuse activation
of the SOM than squeals or growls, suggesting that growls
have a larger range of acoustic variability.

In another approach to interpreting the trained network
we showed that since the SOM’s receptive fields take the
same form as their inputs, which in this case are coarse-
grained spectrograms, more traditional acoustic descriptions,
such as spectral mean, spectral standard deviation, and tem-
poral median �related to duration� can be gotten. As observed

in Sec. III, the leftmost column of SOM nodes in Fig. 3 had
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long durations and the bottom two nodes of that column had
high spectral mean and standard deviation. These nodes also
had a tendency to be activated more by utterances from the
older two age groups �6;0–11;4� than by utterances from the
youngest age group �3;0–5;4�, as evidenced by their lighter
colorings in Figs. 4 and 5. Thus, a hypothesis for future
investigation might be that utterances produced at older ages
are not only longer in duration but also higher in spectral
mean and variance.

B. Classification performance

The hybrid neural network, consisting of a perceptron
classifier operating on the SOM’s holistic spectrographic fea-
tures, is able to reliably classify 1-s-long utterance samples
according to vocal type protophones, ages at which they
were produced, and the identities of the individuals who pro-
duced them. Reliable performance on these classification
tasks provides support for the validity of the SOM’s learned
utterance features, suggesting that they reflect meaningful
acoustic variation in infants’ vocal productions. One of the
most important possible applications of the work represented
here may be in contributing to the rapidly growing field of
automated analysis of vocalization. MLPs trained on the
same classification tasks also performed well, so when the
goal is purely classification, and comparison of holistic fea-
tures across different classifications is not important, MLPs
may also be a good choice of tool.

It should be emphasized that the most critical issue for
the future of automated vocal analysis is that reliability be
significant, not necessarily that it be high. With very large
data sets, relatively low kappa values do not necessarily
present an important problem. If a signal is consistently
�even though at low levels� detectable, it can become highly
discernible at high Ns. This principle is widely recognized,
for example, in the field of averaged evoked potentials
�Burkard and Secor, 2002�. It should also be noted that, al-
though the methods used in the present study did involve
some processing by human analysts, this was only in order to
perform utterance extraction and protophone labeling. An au-
tomated infant utterance extraction method has already been
developed for very large vocalization data sets taken from
day-long recordings �see Zimmerman et al., 2009�, and such
a method could be substituted for the manual utterance ex-
traction performed here. As for protophone labeling, for
model training and evaluation, the use of human judgments
in establishing gold-standard classifications is unavoidable.
However, for automated analysis of large data sets, training
and evaluation of a network using manually labeled utter-
ances need not be done on the entire large data set, but only
on a sample of data large enough to ensure satisfactory net-
work performance and generalization.

The ability to reliably classify utterances according to
protophone is of considerable interest. At present, proto-
phone categories are widely used in studies of infant speech
development in both typically and atypically developing
children �e.g., Hardin-Jones et al., 2003; Salas-Provance et
al., 2003; Iverson and Wozniak, 2007; Goldstein and

Schwade, 2008� as well as in tools that use infants’ vocaliza-
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tions in their assessment of infants’ communicative function
�e.g., Bryson et al., 2008�. The ability to predict trained ana-
lysts’ perceptual judgments suggests that neural networks
and other data-driven statistical tools have the potential to be
used for automatic classification of protophone categories
�although a workaround for the issue of frequency imbalance
across categories would have to be devised�. This would be
useful in many research and clinical settings where coding
by trained analysts is costly or difficult. In the future, it
would be interesting to apply either the SOM-perceptron-
hybrid or a MLP to the classification of other protophones,
such as marginal syllable and canonical syllable—categories
related to the articulation timing of syllables that have been
shown to be of particular importance as indicators of normal
development �Oller, 2000�.

The ability to identify age, combined with the network’s
ability to identify the individual who produced a given utter-
ance, suggests that neural networks and related approaches
have the potential for future use in classifying utterances
produced by delayed or disordered individuals. Prediction of
infant identity also lays groundwork for future work that
might attempt to classify utterances produced by infants
from different cultural or linguistic backgrounds and by fe-
male versus male infants.

C. Future development

1. Manipulating the network’s input

The SOM-perceptron architecture is highly flexible with
regard to the type of information it can be given as input.
Although 225-pixel spectrograms of 1-s-long utterance
samples were used in this study, such an input representation
was chosen primarily for its computational efficiency and
because it involved relatively little preprocessing of data. It
is possible that other formats of input would yield better
performance or additional insights. Future studies might
compare features learned by SOMs trained on different types
of input, be they relatively raw input �e.g., raw waveforms,
spectrograms of various frequencies and time resolutions�,
more traditional acoustic measures �e.g., f0 means, formant
frequency means, amplitude means, durations�, or measures
that represent intermediate amounts of preprocessing �e.g., f0

contours, formant frequency contours, and amplitude con-
tours�.

In discussing the visualizations afforded by the SOM-
perceptron hybrid, reference was made to how these visual-
izations might be related to acoustic patterns described in
more traditional terms. For example, it was noted that the
SOM features’ duration preferences appear to increase with
increasing age. Although beyond the scope of the present
study, this hypothesis could be tested by comparing the
present SOM-perceptron hybrid �trained on raw spectro-
graphic input� with a SOM-perceptron hybrid network
trained on duration alone. That is, rather than providing the
network with pixels of spectrograms as input, one could pro-
vide the network with a single value representing an utter-
ance’s duration. If such a network trained on utterance dura-
tions also performs significantly well, this would indicate

that changes in utterance duration are indeed associated with
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increasing age. One could then train a SOM-perceptron net-
work on input consisting of a spectrogram plus an additional
feature representing the utterance’s duration. If this network
performed better than the network trained only on spectro-
grams �e.g., as measured by a hierarchical regression�, this
would imply that duration changes systematically with de-
velopment but was not adequately represented by the SOM
trained only on spectrograms. On the other hand, if the two
networks perform equally well, this might suggest that the
SOM had already encoded the relevant duration information
in its features. This type of approach could provide a means
for parsing out the role of various acoustic measures in how
well they predict the age �or identity, protophone category,
etc.� of infant utterances.

Finally, it would be highly desirable to explore input
representations that deal more flexibly with temporal aspects
of vocalizations. Infant utterances vary in length and often
have prosodic and syllabic components that vary in their
timing. The current static spectrograms used as input do not
adequately deal with this fact. A better solution might be one
in which small time segments of spectrograms �or other
acoustic features� of infant utterances are presented in se-
quence. The network would then make classifications at each
time point or at the conclusion of the entire sequence. A
change of this sort in the temporal nature of the input would,
however, require changes in the network architecture. Some
possibilities are proposed as part of Sec. IV C 2.

2. Alternative architectures and algorithms

The choice of a SOM-perceptron hybrid architecture
was motivated by the fact that its components had been pre-
viously applied to related problems involving the visualiza-
tion and classification of acoustic vocalization data, includ-
ing avian song, disordered adult voice, and infant crying. The
choice of a SOM as the first element of this architecture was
also motivated by studies suggesting that SOMs can produce
results that are comparable to other statistical clustering and
visualization methods �Flexer, 2001; de Bodt et al., 2002�.
Choosing a SOM for the first component of the two-
component hybrid network also has the advantage that the
same first component is used regardless of the classification
task performed by the subsequent perceptron component.
Thus, the middle layer activations and weights can be com-
pared across different classification tasks �e.g., the SOM
node activations and weights for younger utterances can be
compared to the SOM node activations and weights for vo-
cants, squeals, and growls�. Finally, the biologically inspired
features of the SOM, notably its topographical self-
organization and incremental learning algorithm, are also
seen as advantages �see Sec. IV C 3 below on future model-
ing directions; Miikkulainen, 1991; Kohonen and Hari, 1999;
Ritter, 2003�.

Nevertheless, exploration of other architectures could
yield better performance or additional information. For ex-
ample, a two-layer perceptron may be worth using for situa-
tions where classification performance and differentiation be-
tween classes is the primary goal. Furthermore, non-neural-
network statistical models, such as mixtures of Gaussians,

k-nearest-neighbors analysis �Xu and Wunsch, 2005�, and
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possibly even linear discriminant analysis and regression
techniques could potentially yield as good or better cluster-
ing and classification performance, respectively. Future work
could compare such methods on their performance on a spe-
cific visualization or classification task.

In addition, recurrent neural networks are often consid-
ered better for temporal sequence processing than networks
that take static input �Elman, 1990�. Thus, given that infant
vocalizations are temporal patterns occurring in temporal se-
quences, it would be worthwhile to explore recurrent ver-
sions of the SOM �e.g., Euliano and Principe, 1996� when
unsupervised analysis is desired, or the simple recurrent net-
work �SRN� �Elman, 1990�, when classification or prediction
is the primary goal. Perhaps even a hybrid of the recurrent
SOM and the SRN could be used, which would be analogous
to the static SOM-perceptron hybrid explored in the present
study. Moving to such temporal architectures would involve
changing the nature of the network’s input representation as
discussed in Sec. IV C 1. A fixed moving window of spectral
input would be appropriate.

Finally, variations on the SOM that allow for uncertainty
in the number of features/categories or that allow for hierar-
chical organization of features/categories �Carpinteiro, 1999;
Rauber et al., 2002� might also prove useful and informative.
The SOM-perceptron hybrid presented in this early study is
thus only one of a number of statistical and neural network
options.

3. Modeling the perception and production of infant
vocalizations

The SOM is a neural network inspired in large part by
biological considerations, namely, the self-organizing topo-
graphic nature of its feature representations and unsupervised
learning in response to stimulus exposure �Miikkulainen,
1991; Kohonen and Hari, 1999; Ritter, 2003�. Although the
present study focuses solely on acoustic analysis and classi-
fication applications, this work provides a potential founda-
tion for future modeling of the perception of infant vocaliza-
tions by humans, including learning through exposure to
such vocalizations.

Caregivers are commonly infants’ primary communica-
tion partners, responding and providing feedback to infants.
Furthermore, much of the current research on infant vocal
development relies critically on naturalistic judgments by
laboratory personnel. It is therefore important to understand
how adults perceive infant vocalizations and to understand
what acoustic features are relevant to adult communication
partners. There are several ways in which the ability of the
SOM to model adult humans’ perceptions of infant utter-
ances might be assessed. One way would be to have human
participants perform tasks directly matched to those the
SOM-perceptron hybrid performed. Another possibility
would be to compare the topography of features on the SOM
to listeners’ similarity judgments.
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