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Abstract: Numerous short peptides have been shown to form f-sheet amyloid aggregates in vitro.
Proteins that contain such sequences are likely to be problematic for a cell, due to their potential
to aggregate into toxic structures. We investigated the structures of 30 proteins containing 45
sequences known to form amyloid, to see how the proteins cope with the presence of these
potentially toxic sequences, studying secondary structure, hydrogen-bonding, solvent accessible
surface area and hydrophobicity. We identified two mechanisms by which proteins avoid
aggregation: Firstly, amyloidogenic sequences are often found within helices, despite their inherent
preference to form f structure. Helices may offer a selective advantage, since in order to form
amyloid the sequence will presumably have to first unfold and then refold into a p structure.
Secondly, amyloidogenic sequences that are found in f structure are usually buried within the
protein. Surface exposed amyloidogenic sequences are not tolerated in strands, presumably
because they lead to protein aggregation via assembly of the amyloidogenic regions. The use of
a~-helices, where amyloidogenic sequences are forced into helix, despite their intrinsic preference
for B structure, is thus a widespread mechanism to avoid protein aggregation.
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Introduction
The formation of fibrillar aggregates, amyloid fibrils
or inclusion bodies of amyloid fibrillar material,
appears to be a generic property of polypeptide
chains. It is believed that many, if not all proteins,
can be converted in vitro into amyloid fibrils, given
the appropriate conditions.!® Regardless of the size,
sequence or structure of the amyloid precursor pro-
tein, mature fibrils all appear to share a similar
highly organised multimolecular morphology.®

More than 40 pathological conditions in humans
have so far been attributed to amyloid deposition,
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amongst which are Alzheimer’s, Huntingdon’s, and
Parkinson’s diseases, as well as the transmissible
spongiform encephalopathies. In these disease condi-
tions, a specific peptide or protein, which is normally
soluble, forms fibril-like aggregates, which eventu-
ally become deposited as insoluble fibrils and larger
plaques or inclusion bodies.” Specific mutations have
been shown to be the cause for the production of
amyloidogenic protein in several disease conditions,
but (more) often the protein has the wild-type
sequence.

Several proteins unassociated with disease con-
ditions can be induced to form fibrils in vitro.1*810
In some cases, the aggregates formed from these
nondisease-associated proteins have been shown to
have cytotoxic properties similar to those of patho-
logical aggregates.!* A diverse group of proteins has
been observed to form amyloid-like fibrils having
specific physiological functions in nonpathological
conditions in a wide range of organisms, such as pro-
teins of the eggshell chorion in the silk moth, spi-
droin in the spider, Pmell7, which plays a central
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role melanin-a polmerisation in humans and many
more.'?1” Amyloid fibres are found in bacteria,
fungi, and insects, exploiting their unique mechani-
cal and biological properties.!” This nonpathological
amyloid has been dubbed functional amyloid to dis-
tinguish it from the amyloid associated with disease
conditions, but from a structural point of view both
types of amyloid are the same.*®17

The definitive characteristic of amyloid fibrils
formed in all the aforementioned cases is the so-
called “cross-p” structure as revealed by X-ray dif-
fraction, in which the polypeptide chain is organised
into B-sheets arranged parallel to the longitudinal
fibril axis, with constituent B-strands perpendicular
to the fibril axis.®!® Amyloid is also characterised by
a high affinity for certain chemical stains such as
Congo red and thioflavin (ThT). These staining prop-
erties, together with the fibril appearance and char-
acteristic cross-p diffraction pattern are the accepted
diagnostic prerequisites for amyloid.'® Solid-state
NMR experiments have greatly advanced our knowl-
edge of the structure and stability of amyloid
fibrils. 1921

The molecular architecture of fibrils formed by
different proteins differs with respect to amount of
cross-p structure, strand orientation and disposition
of the core amyloid structure within the protein.??
Despite their similar nature, a distinction should be
made between amyloid fibril formation and protein
aggregation. At high protein concentration under
physiological conditions, misfolded protein molecules
can form amorphous aggregates. The driving force
behind formation of such aggregates, which are often
enriched in cross-f structure, is a combination of
hydrophobicity, secondary structure propensity and
charge.?? B aggregation and amyloidosis often occur
together in pathological conditions, leading to the
idea that P aggregation is an intermediate step on
the pathway to formation of mature amyloid fibrils.23
Furthermore it has been shown amyloid aggregates
are polymorphic and that a single polypeptide can
fold into multiple amyloid conformations.?* It is now
accepted that pre-fibrillar aggregates, rather than
mature amyloid plaques, are the cytotoxic elements
in protein deposition diseases.?>2¢

Experiments using very short peptides and
larger proteins have attempted to elucidate features
of the primary sequence and specific residues, which
are responsible for and can be used to predict aggre-
gation and amyloid formation.?”*2 Hydrophobicity is
an important determinant of the aggregation pro-
pensity of a polypeptide chain.?® Examination of
sequences in disease-related, amyloidogenic proteins
has revealed a higher than expected occurrence of
aromatic groups, consistent with the important role
of Phe residue side chains in pi-pi stacking in the
steric-zipper model of amyloid fibrils.®*® Statistical
studies of natural protein sequences have revealed
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that groups of three or more hydrophobic residues
occur less frequently than would be expected assum-
ing neutral selection, providing evidence that clus-
ters of hydrophobic residues have been selected
against during protein evolution.**

The net charge on the protein molecule is an im-
portant factor influencing aggregation with a high
net charge impeding aggregation.*® Investigations
into the effect of mutations altering the charge state
of a protein without altering its hydrophobicity or
secondary structural propensity showed that aggre-
gation was favoured by those mutations which
brought about a reduction in the net charge.!»46:47
Similarly, in vivo experiments have shown that
mutations decreasing the positive charge on a mole-
cule increase the aggregation propensity and muta-
tions increasing the net charge result in decreased
aggregation.*®

Amyloidogenic proteins which are predomi-
nantly o-helical, must undergo an o-helix to B-sheet
conversion during the formation of amyloid fibrils.2”
The tendency to form o helical secondary structure
thus mitigates against the tendency to form B-sheet
and hence amyloid fibrils.2”*® Conversely, the pro-
pensity to form B-sheet secondary structure enhan-
ces the chances of amyloid formation.?® In this
regard, it is interesting to note that patterns of
alternating hydrophobic and hydrophilic residues,
which favour formation of B-sheet secondary struc-
ture, occur less frequently in natural proteins than
would be expected by chance.’® A comparison of the
3D structural models in the Protein Data Bank with
secondary structures predicted for the same proteins
by various algorithms has shown that about 3% of
known protein structures contain an o-helix of seven
residues or more for which the prediction algorithm
suggests a B-strand.?” While such regions may be
due to errors in secondary structure prediction algo-
rithms, such discordant a-helices have been verified
experimentally in some cases. They are seen to occur
in the prion protein (positions 179-191), the B-amy-
loid peptide (positions 16-23) and the lung surfac-
tant protein (positions 12-27), as well as several pro-
teins which although not known to be amyloidogenic
in vivo, have been found to produce fibrils in vitro.2”
There thus seems to be a correlation between o-he-
lix/B-strand discordant stretches and amyloid fibril
formation. Discordant helices may be starting points
for o-helix to B-sheet conversion; their modulation so
as to tip the balance toward o-helix propensity and
away from pB-strand propensity, reduces the likeli-
hood of fibril formation.2"4°

Amyloidogenic sequences tend to lack Pro and
Gly, presumably as they are destabilizing in B struc-
ture.®! Conservation of glycine and proline residues
at structurally strategic positions in B-sandwich pro-
teins appears to serve the purpose of aggregation
prevention. Experiments with de novo peptides and

Amyloidogenic Sequences in Native Protein



proteins as well as with mutated forms of naturally
occurring proteins, have elucidated features of poly-
peptide sequence which inhibit aggregation and
fibril formation—so-called “negative design” fea-
tures.’?®* The term “structural gatekeeper” was
coined by Otzen et al®® to describe charged side
chains that prevent aggregation by interrupting con-
tiguous stretches of hydrophobic residues in the pri-
mary sequence. A systematic survey of edge strands
in a large sample of all-p proteins revealed several
features which would prevent further B-sheet inter-
actions via main chain hydrogen-bonding, such as -
bulges, proline residues, very short edge strands,
tertiary contacts with loop regions and charged resi-
dues occurring in positions unfavourable for further
strand interaction.’® Edge-to-edge aggregation in
naturally occurring B-sandwich proteins is also pre-
vented by placing an “inwardly-pointing” charged
residue on the hydrophobic side of a B-strand; just
one residue in the edge strand is sufficient to block
aggregation. In B-barrel proteins, unsatisfied hydro-
gen bonds are minimised: there are no edge strands.
Unsatisfied hydrogen bonds render § strands suscep-
tible to aggregation.

Structural studies as well as in vitro studies
with proteolytic fragments of amyloidogenic proteins
and synthetic peptides, have established that the
tendency for a protein to form amyloid is often lim-
ited to a short sequence of the full protein, known as
a “self-recognition element” (SRE). SREs constitute
the core peptide of amyloid fibrils in steric-zipper
structures.®®®” Such amyloidogenic sequences consti-
tute “hot spots” for aggregation of the native protein
into amyloid fibrils.?” In the case of paired helical
filament (PHF) tau, which accumulates in the neuro-
fibrillary tangles characteristic of AD and other neu-
rodegenerative diseases, it has been shown that only
three residues, VYK, are sufficient for fibril forma-
tion.?® Similarly, short sequences forming the core
domain of various amyloid fibrils have been identi-
fied, amongst which are KLVFFAE for f-amyloid,*®
NFGSVQ for medin,’® DFNKF for calcitonin,%"-¢?
FGAIL and NFGAIL for islet amyloid polypeptide,®?
VEALYL and LYQLEN for insulin® and VAQKTV
for o-synuclein.®* It may be possible to delete resi-
dues freely on either side of an SRE while retaining
the ability for form amyloid.

The object of this study is to structurally inves-
tigate the ways in which native proteins containing
“‘dangerous” amyloidogenic stretches have evolved to
avoid aggregation and amyloid formation. Amyloido-
genic stretches can potentially be identified in sev-
eral ways, such as regions associated with mutations
leading to amyloid formation and the results of pro-
grams designed to predict amyloidogenic sequences.
The amyloidogenic stretches that we study are those
of peptides that have been shown to form amyloid in
isolation. This data set is more reliably known to
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form amyloid than one derived from prediction pro-
grams that will inevitably lack some accuracy, or
one using regions where amyloid formation may
result from reasons not directly evident in a protein
structure, such as perturbing protein trafficking.
These sequences have an intrinsic preference to
form amyloid. If they are present in a native protein,
it will have had to evolve structural features to pre-
vent the amyloidogenic sequence forming an SRE
and causing protein aggregation. Discovering how
protein structures deal with such “toxic sequences”
is the goal of this work.

Amyloid has a common structure composed of
extended B-sheets with hydrogen-bonding parallel to
the fibril axis. Amyloidogenic peptides therefore
must have an intrinsic tendency to adopt B struc-
ture. One might thus expect that amyloidogenic
peptides will usually be found in pB-sheets within
proteins. Remarkably, we found that this was not
the case.

Results

Data set

Amyloidogenic proteins were found by surveying the
literature and review articles.'®'%%® For proteins to
be classified as amyloidogenic, they must have been
found in amyloid deposits in vivo or have been
shown to form amyloid fibrils experimentally in
vitro, either in their entirety or as fragments. Amy-
loidogenic proteins included in this study were those
for which the presence of discrete sequences capable
of amyloid fibril formation had been confirmed by
transmission EM in combination with Congo red
staining, ThT fluorescence or a cross-f X-ray diffrac-
tion pattern. In the case of transthyretin, amyloid
fibril formation of the sequence (105)YTIAALL-
SPYS(115) had been shown by magic angle spinning
NMR (Jaroniec et al, 2004). In addition to evidence
of fibril formation, the existence of an accurate 3D
model of the native protein deposited in the PDB
was essential. Structural models for proteins were
initially found by a combination of text searches of
the PDB and PDBsum databases as well as by using
the “Search by sequence” tool of the PDBsum data-
base®®%® entering as query sequence amyloidogenic
fragments gathered from the primary survey. Subse-
quently, Perl programs were applied to carry out
sequence identity searches of all sequence files rep-
resenting the PDB database, (downloaded from the
PISCES website: http://dunbrack.fcce.edu/PIS-
CES.php®") with each of the amyloidogenic frag-
ments gathered from the primary survey, resulting
in the detection of 10 more proteins for inclusion in
the study. These are the Bacillus subtilis “YjcG” pro-
tein (LYQLEN), the Methanococcus jannaschii tRNA
endonuclease (LVEALYL), DNA polymerase III
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subunit alpha, from Escherichia coli (GGVVIA),
chains N and 2 of the 20S proteasome from Bos
taurus (GGVVIA), enterotoxin k from Staphylococ-
cus aureus (DFNKF), the Na*/Ca?"-exchange pro-
tein 1 from Canis familiaris (NFLVH), chains A and
D of cytochrome b from Rhodobacter sphaeroides
(FGAIL), human cystolic thymidine kinase (FGAIL),
glycyl-tRNA synthetase from Thermus thermophilus
(IKVAV) and the leucine-binding protein from E.coli
(IKVAV). These proteins, although not previously
reported as fibril-forming, face an identical problem
in dealing with their amyloidogenic peptides, and it
is therefore appropriate to include them in our anal-
ysis. The amyloidogenic fragment IKVAV was also
found in chain H of the 60S ribosome from Saccha-
romyces cerervisiae, but this protein was not
included in the study owing to its large size: a 30-
mer of molecular mass 1513 kDa. Thirty native pro-
teins were identified for analysis using the search
methods described (Table I).

In the case of acylphosphatase (AcP) and medin,
amyloidogenicity was originally reported for the
human proteins in each case.?846:608876 Qince no
structural model was available for the human pro-
teins, but there were structural models available for
the homologous proteins equine muscle AcP: PDB ID
1APS and bovine medin: PDB ID 3BNG6, the latter
were taken for analysis. Measurements of relative ac-
cessible surface area, secondary structure and hydro-
gen-bond density were carried out on these struc-
tures, whose sequences differ slightly from the
original amyloidogenic proteins. Equine muscle AcP
shares 94% sequence identity with human muscle
AcP. The human AcP amyloidogenic sequence,
(16)RVQGVCFRMYTEDEAR(31), is (16)RVQGVCF
RMYAEDEAR(31) in 1APS; the human AcP amyloi-
dogenic sequence (87)SKLEYSNFSIRY(98) is (87)-
SKLEYSNFSVRY(98) in 1APS. Human medin is a
proteolytic fragment of human lactadherin, which
shares 70% sequence identity with bovine lactad-
herin. 3BN6 is a structural model of the C2 domain
of bovine lactadherin with residues V70-V87 match-
ing the amyloidogenic sequence V299-V316 in hu-
man medin. The human amyloidogenic sequence
(299)VTGIITQGAR(308) is identical in 3BNG6; the
human amyloidogenic sequence, (309)NFGSVQF
V(316), is (80)DFGHIQYV(87) in 3BN6.

Nonoverlapping amyloidogenic fragments
greater than 20 amino acid residues in length were
excluded from the amyloidogenic category, in order
to reduce the probability of including non-amyloido-
genic residues. Thus, the 20-41 peptide of p2-micro-
globulin, the 36-67 peptide of B. subtilis cspB, and
the 1-29 amyloidogenic fragment of myoglobin, were
considered non-amyloidogenic in the calculations.
For pairs of overlapping fibril-forming peptides lon-
ger than 20 amino acid residues, the shorter was
taken, hence the 1-22 peptide of B. subtilis cspB
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was considered representative. For any group of
overlapping fibril-forming fragments less than 20
amino acids in length, one composite sequence
including all amino acid residues observed in indi-
vidual amyloidogenic sequences was taken as repre-
sentative of the group. Where a sequence contained
a shorter amyloidogenic peptide, the latter was
taken as representative. Thus, the 106-147'°? and
the 132-160°' peptides of the human prion protein
(hPrP) are represented by the shorter 138-144 pep-
tide reported in Sawaya et al (2007).>” For kerato-
epithelin, the shorter 515-525 peptide was taken as
representative.®? Similarly, the composite 66-92
amyloidogenic sequence for a-synuclein which forms
part of the o-synuclein 61-95 NAC peptide”® is rep-
resented by the three shorter 66-74, 77-82, and 86—
92 peptides®” "% (Table D).

Secondary structure

Table II shows the secondary structure of each pro-
tein under consideration, subdivided into the amyloi-
dogenic and non-amyloidogenic parts of each struc-
ture. Percentages of residues that are helix, strand,
or coil are given for each region. The mean values
given in Table II are of 30 values, one per protein,
for secondary structure in non-amyloidogenic
sequences, and of 45 values, for secondary structure
in each of 45 discrete amyloidogenic sequences. We
find that 35% of residues in amyloidogenic regions
are helical compared to only 28% in non-amyloido-
genic regions. This preference is at the expense of
coil, rather than strand, as 34% of residues in amy-
loidogenic regions are in strand compared to 28% in
non-amyloidogenic regions, while 31% of amyloido-
genic regions are coil, compared to 44% of non-amy-
loidogenic regions. Mann-Whitney tests show that
while these differences in helix and strand frequen-
cies are not significant, the difference in coil prefer-
ences is (P = 0.0008). These results for proteins and
amyloidogenic sequences considered individually are
consolidated by calculations for pooled residues (577
amyloidogenic, 15,659 non-amyloidogenic) from all
30 proteins, which show that 35% of amyloidogenic
residues are helical compared to 31% in non-amyloi-
dogenic regions, 36% of amyloidogenic residues are
strand compared to 29% in non-amyloidogenic
regions, and 30% of amyloidogenic residues are coil
compared to 40% in non-amyloidogenic regions (Ta-
ble III). There is therefore a clear trend for amyloi-
dogenic sequences to be helical or strand structure,
rather than coil. This is perhaps surprising, since in
isolation the amyloidogenic sequences are all prone
to form aggregated B-sheets. This result tallies with
that of Linding et al.}°® who found that regions pre-
dicted to be prone to B aggregation are more com-
mon in globular proteins, with high secondary struc-
ture content, than in intrinsically disordered
proteins. Examples of amyloidogenic sequences in
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Table III. Summary of Secondary Structure and Solvent Accessibilities®

Amyloidogenic sequences Non-amyloidogenic sequences
Hydrogen-bonds per residue® 1.12 1.03
Accessible surface area per residue (relative) %° 25.6 26.5
Secondary structure distribution? % Helix 34.5 30.7
Strand 36.0 29.4
Coil 29.5 39.9

? Values for each characteristic in individual proteins were summed and expressed as an average of the total of 577 amyloi-
dogenic residues and 15,659 non-amyloidogenic residues (16,236 amino acid residues in toto).

® Number of hydrogen-bonds per residue estimated by VADAR.® In the case of the 20S proteasome, only chains N and 2
containing the amyloidogenic sequence and chains interacting through hydrogen-bonds with these were included in the
analysis.

¢ Accessible surface area, average relative surface area per residue (%) computed by the NACCESS program.®?

4 Secondary structure distribution (%) according to DeepView: Swiss-PdbViewer.%2

proteins are shown in Figure 1 and Supplementary  unfolded state. These data were determined for amy-

Information Figure 1. loidogenic and non-amyloidogenic sequences. Three
different methods were applied in these calculations.
Surface accessibility Calculations using all residues from all proteins

Relative solvent accessibilities show the fraction of a  pooled into one dataset for amyloidogenic (577 resi-
residue’s surface that is buried compared to the dues) and one for non-amyloidogenic (15,659

C D

Figure 1. Selection of amyloidogenic proteins in native conformation with amyloidogenic sequences highlighted
(amyloidogenic residue numbers in parentheses for given protein model refer to residues considered amyloidogenic for
calculations in present study). Biological molecules are illustrated unless otherwise indicated. a) p-lactoglobulin, PDB ID 1BEB
(Asp11-Tyr20, Lys101-Ser110, Ser116-Pro126, His146-Asn152), b) prolactin, PDB ID 1RW5 (Gly7-Ser34, Arg43-Ser57), c)
repA pPS10 Pseudomonas, PDB ID 1HKQ (Leu26-11e34), d) B. subtilis ‘YjcG’ protein, PDB ID 2D4G (Leu151-Asn156). Images
were created using PyMol (www.pymol.org).
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residues) showed a very small difference in relative
accessible surface area (RASA) between amyloido-
genic (25.6% RASA) and non-amyloidogenic (26.5%
RASA) (Table III). Considered on a per protein basis,
amyloidogenic residues showed a significantly lower
relative accessible surface area (24% RASA) com-
pared to non-amyloidogenic residues (35% RASA),
with a P-value of 0.0003. However, when amyloido-
genic residues were treated as a set of 45 discrete
amyloidogenic sequences, there was no significant
difference between amyloidogenic (30% RASA) and
non-amyloidogenic (35% RASA) residues in terms of
surface accessibility (Table IV). The results thus
indicate that when considered as part of their native
protein, amyloidogenic sequences have an average
surface accessibility, which is lower than non-amyloi-
dogenic sequences. Amyloidogenic regions are thus
more likely to be buried in a protein interior.

Hydrogen-bond density

Table IV shows the numbers of hydrogen bonds per
residue for each amyloidogenic sequence, for amyloi-
dogenic regions per protein and for non-amyloido-
genic regions for each protein in our data set. As for
the solvent accessibility calculations, three different
methods were applied. Calculations from pooled resi-
dues of all proteins showed that amyloidogenic resi-
dues have more hydrogen bonds per residue (1.12)
than non-amyloidogenic residues (1.03) (Table III).
Expressed on a per protein basis, there are 1.13
hydrogen bonds per residue in amyloidogenic resi-
dues compared to 0.98 in non-amyloidogenic resi-
dues, a difference of borderline significance (P =
0.057). Expressed as an average per discrete amyloi-
dogenic sequence, amyloidogenic sequences have
more hydrogen bonds per residue (1.09) than non-
amyloidogenic residues (0.98). The slight trend of
higher hydrogen-bond density in amyloidogenic com-
pared to non-amyloidogenic regions can be attrib-
uted to the higher likelihood of amyloidogenic
regions being in helix or strand which are inherently
rich in hydrogen-bonds.

The secondary structure, solvent accessible sur-
face area and hydrogen-bond data in Tables II and
IV is averaged as mean values per sequence. Table
III gives the same properties averaged per residue,
thus giving greater weight to longer sequences and
larger proteins. Similar trends are seen: amyloido-
genic regions have more hydrogen-bonds, marginally
lower solvent accessibility and are more likely to be
in helix or strand, at the expense of coil.

Solvent accessible surface areas in helices

and sheets

Subdivision of the solvent accessible surface area by
secondary structure reveals some clear differences
that are obscured when this data is pooled (Tables
IIT and IV). Table V gives surface area data per resi-

336 PROTEINSCIENCE.ORG

due only for residues in strands and Table VI gives
the same data for helical residues. The surface areas
of residues within amyloidogenic strands are nearly
always (15 out of 16 cases) lower than those within
non-amyloidogenic strands (11% vs. 20%, respec-
tively), with a significant P-value of 0.0045. In con-
trast, amyloidogenic residues in helices have similar
mean solvent accessible surface areas to non-amyloi-
dogenic helical residues (28% vs. 32%, respectively,
with no significant difference (P = 0.49). Table VII
summarises the same data on a per residue basis,
rather than per strand, as in Tables V and VI
Again, it is clear that amyloidogenic residues within
strands have significantly lower surface areas than
non-amyloidogenic strand residues, while there is no
significant difference between helical residues. This
suggests that there is pressure to bury amyloido-
genic sequences when in B-strands, while this is not
the case for helical amyloidogenic sequences.

Hydrophobicity

Mean residue hydrophobicities for amyloidogenic
and non-amyloidogenic residues are given in Table
VIII. Amyloidogenic residues are much more likely
to be hydrophobic than non-amyloidogenic residues.
The average hydrophobicity of amyloidogenic resi-
dues is greater than non-amyloidogenic residues in
all proteins except for human complement factor
and prolactin (data not shown). (Human complement
factor has a Cys to Ser mutation that causes amyloi-
dogenicity, perhaps via loss of a disulphide bond.)
This is the case when comparing residues within
strands or helices, though there is an overall trend
for strand residues to be more hydrophobic than hel-
ical residues. We compared our data set to a repre-
sentative set of 586 non-homologous PDB structures
(200,754 amino acid residues). Our data set has
slightly more hydrophobic helices and less hydropho-
bic coil regions overall, though these differences are
much smaller than those seen when comparing amy-
loidogenic with non-amyloidogenic sequences. There
is thus a clear trend for amyloidogenic sequences to
be hydrophobic, as expected since they are prone to
aggregation by definition. Also apparent is that amy-
loidogenic B-strand residues are the most hydropho-
bic of all types of residue (average hydrophobicity
per residue 0.800).

Comparison of solvent accessible surface areas
with secondary structure contents

The solvent accessible surface area data, subdivided
by secondary structure (Tables V-VII), suggests that
distinct strategies are used by proteins to avoid
aggregation depending on whether amyloidogenic
sequences are found within strands or helices. We
therefore divided our data set into two parts: the H-
set, which contains all amyloidogenic sequences that
have no residues in strand (Supp. Info. Table 1), and

Amyloidogenic Sequences in Native Protein
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Table VII. Pooled Data for Accessible Surface Area of Amyloidogenic and Non-amyloidogenic B-strand and Helical

Residues

Average relative ASA per B-strand

residue® %

Average relative ASA per helical
residue® %

Amyloidogenic Non-amyloidogenic Amyloidogenic Non-amyloidogenic
Number of residues 208 1861 199 1487
Mean + SD 12 = 16 17 = 20 29 £ 28 27 £ 24

Mann-Whitney test, p-value 0.0011

0.95

#Accessible surface area (ASA), average relative surface area per residue (%) computed by the NACCESS program.

the S-set which contains all amyloidogenic sequences
that have one or more residues in strand (Supp.
Info. Table 2).

Figure 2 shows correlations between solvent ac-
cessible surface area and secondary structure strand
content. There is a significant correlation for
strands, with sequences that have more [ content,
more likely to be buried. This is apparent when look-
ing at the amyloidogenic sequences in all our data
set (Fig. 2a), within the S-set (Fig. 2b) and for
strand content in non-amyloidogenic sequences (Fig.
2c¢). This general trend for sequences with a higher
strand content to be more buried can explain why
amyloidogenic sequences can be tolerated in proteins
if they are in  structure.

In contrast to strands, there is no preference for
sequences with more helical content to have a lower
solvent accessible surface area (Fig. 3). Figure 3a
shows a weak trend for sequences with a high heli-
cal content in amyloidogenic sequences to have a
higher surface area, though this correlation arises
from the inclusion of sequences with low accessibil-

ity and zero helical content, since within the H-set
the correlation is not apparent (Fig. 3b). There is
also no correlation between accessibility and helical
content within non-amyloidogenic sequences (Fig.
3c). This therefore suggests that amyloidogenic
sequences in helices do not need to be buried to
avoid aggregation, in contrast to strand sequences.

Discussion

Proteins that contain a sequence capable of forming
amyloid pose a real danger for a cell, since they can
be toxic if they fold into this form. A simple solution
to this problem might therefore be for such sequen-
ces to be never present within proteins. While selec-
tion against sequences that may form amyloid does
seem to occur,’® they are still present in some pro-
teins, perhaps because they are essential for func-
tion or important for folding. By examining experi-
mentally verified amyloidogenic sequences within
protein structures, we have identified two mecha-
nisms by which proteins avoid aggregation: Firstly,
amyloidogenic sequences are often found within

Table VIIL. Hydrophobicity of Amyloidogenic and Non-amyloidogenic Residues in Amyloidogenic Proteins and of

Residues in Globular Proteins in General®®

Amyloidogenic proteins®

Amyloidogenic Non-amyloidogenic Culled set of globular
residues residues All residues proteins®
Secondary structure®
All residues 0.600 0.372 0.380 0.366
Helical 0.638 0.409 0.418 0.356
Strand 0.800 0.625 0.634 0.616
Coil 0.356 0.159 0.165 0.218

2 Thirty amyloidogenic proteins represented by PDB models: 1A79, 1APS, 1ATI, 1B0G, 1BEB, 1CKT, 1GKG, 1HKQ, 1IRU,
1KCQ, 1LFH, 1QLX, 1REX, 1RW5, 1SOH, 1TTA, 1USG, 1W4R, 1WLA, 1X3B, 1XDA, 1XQ8, 2D4G, 2DPK, 2ES2, 2HNH,
2JD4, 2NTT, 2QJP and 3BN6. Hydrophobicity calculated using Perl program ‘stride_hydrophob’. Analysis comprised 589
amyloidogenic and 15654 non-amyloidogenic residues: 214 helical amyloidogenic, 188 strand amyloidogenic and 187 coil
amyloidogenic residues; 5593 helical non-amyloidogenic, 4136 strand non-amyloidogenic and 5925 coil non-amyloidogenic
residues.

b Culled set obtained from PISCES website: http:/dunbrack.fece.edu/PISCES.php (<20% SID, <1.6 A resolution, <0.25 R
factor).%2 Hydrophobicity calculated using Perl program ‘stride_hydrophob’. Analysis comprised 586 PDB structures consist-
ing of 200,754 amino acid residues.

¢ For AcP and medin, structures of homologous proteins were used (PDB IDs: 1APS and 3BNG6, respectively), and the
FASTA sequence from the UniProt entries, P14621 and Q08431, applies for hydrophobicity measurements.

4 Secondary structure according to STRIDE: http://webclu.bio.wzw.tum.de/cgi-bin/stride/stridecgi.py.'*
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Figure 2. (a) Correlation between relative accessible
surface area (ASA) per residue and strand content in
amyloidogenic sequences of 30 native proteins (one
average value per protein). Correlation coefficient =
—0.4568, p = 0.0112; slope of trendline = —0.1896. (b)
Correlation between relative accessible surface area (ASA)
per residue and strand content in S-set of amyloidogenic
sequences. Correlation coefficient = —0.5239, p = 0.0123;
slope of the trendline = —0.2804. (c) Correlation between
relative accessible surface area (ASA) per residue and
strand content in non-amyloidogenic sequences of 30
native proteins. Correlation coefficient = —0.4735, p =
0.0082; slope of the trendline = —0.2906.
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Figure 3. (a) Correlation between relative accessible
surface area (ASA) per residue and helical content in
amyloidogenic sequences of 30 native proteins (one
average value per protein). Correlation coefficient = 0.4244,
p = 0.0194; slope of trendline = 0.1744. (b) Correlation
between relative accessible surface area (ASA) per residue
and helical content in H-set of amyloidogenic sequences.
Correlation coefficient = 0.0610, p = 0.7823; slope of the
trendline = —0.0351. (c) Correlation between relative
accessible surface area (ASA) per residue and helical
content in non-amyloidogenic sequences of 30 native
proteins. Correlation coefficient = 0.2414, p = 0.1987;
slope of the trendline = 0.1384.



helices. This is remarkable, since these sequences
have an inherent preference to form B structures, by
definition, since amyloid has a cross-p structure. De-
spite this preference, the rest of the protein forces
the amyloidogenic region into helix. Helix is argu-
ably as distant as possible from amyloid, since in
order to form amyloid the sequence will presumably
have to first unfold and then refold into a B struc-
ture. If the amyloidogenic sequence is in a helix,
there is no additional pressure for it to be buried.
Discordant helices have previously been discussed as
regions of a protein predicted to form strand, while
actually forming helix.2”*%*° During folding into the
native structure, such regions of secondary structure
ambivalence have similar potential to fold into o-hel-
ices or B-sheets. The results presented here clearly
demonstrate this ambivalence manifested in the dif-
ferent secondary structures adopted by fibril-forming
sequences in native proteins. The sequence LYQLEN
is 100% helical in human insulin, but 67% strand
and 33% random coil in Bacillus subtilis YjcG pro-
tein. The sequence FGAIL, is 100% helical in cyto-
chrome b, but 40% helical, 20% strand and 40% ran-
dom coil in thymidine kinase (Table II). Similarly,
the sequence GGVVIA, the region of the Abeta(1-42)
peptide with the highest aggregation propensity,®
where it is 100% helical,'®* is shown in this study to
adopt a 100% strand conformation in E. coli DNA
polymerase and a conformation which is 83% strand,
17% random coil in chains N and 2 of the 20S pro-
teasome of Bos taurus (Table II).

Hydrophobicity is arguably the single most im-
portant physico-chemical feature influencing the
aggregation potential of a polypeptide chain.!*3%105
Our results clearly show that the hydrophobicity of
amyloidogenic residues in native proteins is similar
to that of B strand residues in globular proteins in
general. Furthermore, it is clear that amyloidogenic
B strand residues are highly hydrophobic (Table
VIII). Nevertheless, observations from this study
support conclusions from previous work that
observed patterns of B aggregation are not solely the
outcome of hydrophobicity and p-sheet propensity.'®3
Globular proteins contain three times as many
aggregation nucleating regions as intrinsically disor-
dered proteins suggesting that tertiary structure for-
mation competes with  aggregation propensity and
that burying of the aggregating regions in the folded
state is expected as a logical consequence.!®® Desta-
bilisation of the native state by natural mutation
leads to amyloid disease.?® Globular proteins are
thus protected from self-association by having aggre-
gation-prone stretches sequestered by structure.?®

The existence of strong selection pressure on the
conformational stability of the native state is well
established.!®® Negative selection pressure will
ensure that amyloidogenic sequences having a detri-
mental effect on the organism will be sequestered

Tzotzos and Doig

into protein structures where their harmful effect is
mitigated.!%® In the case of functional amyloid, the
ability to exploit an environmental niche has
resulted in retention of these sequences.'®1°7-108

These earlier conclusions are borne out by this
study, which shows that in native proteins there is a
greater tendency for amyloidogenic sequences to
form either o helical or B strand secondary structure
rather than random coil. Furthermore, the results
show that potentially fibril-forming residues in f-
strand conformation are more buried than non-fibril-
forming residues. This is not the case for fibril-form-
ing helices which are equally as exposed to the
protein surface as their nonfibril-forming counter-
parts. The helical conformation would therefore
appear to offer equal protection against fibril forma-
tion as buried strand conformation. Surface exposed
amyloidogenic sequences are not tolerated in
strands, presumably because they lead to protein
aggregation via assembly of the amyloidogenic
regions.

Methods

Viewing the protein molecules

Protein structures, downloaded from the Protein
Data Bank, were viewed using the software package
DeepView, version 3.7 (formerly Swiss-
PdbViewer).!%° Biological units were used through-
out. In the case of B-lactoglobulin, PDB ID 1BEB,
the two biological units were used to construct the
dimer, the physiologically functional form of the pro-
tein, using the ‘Create Merged Layer’ function in
DeepView.

Secondary structure

Secondary structure was recorded for each residue
according to the designation given by DeepView, in
which residues are classified as helical, strand, or
random coil.'® This classification often differs
slightly from that given in the PDB file header for a
particular protein.

Surface accessibility

The relative accessible surface area (RASA) (%) for
each residue of the biological unit was calculated
using the NACCESS program, version 2.1.1.11° Aver-
age relative surface accessibilities per residue were
calculated for amyloidogenic and non-amyloidogenic
sequences and for the different secondary structures
thereof, using Excel.

Hydrogen-bond density

Putative hydrogen-bonds were calculated using the
VADAR program, version 15! and results
expressed as hydrogen-bonds per residue for a given
sequence. Structures were uploaded to the VADAR
website for single or multiple chain analysis, as

PROTEIN SCIENCE ‘ VOL 19:327-348 343



appropriate. The 20S proteasome, PDB ID 1IRU,
exceeded the upper limit of VADAR (2000 residues)
and so a construct was used comprising chains N
and 2 which contain the amyloidogneic sequence
GGVVIA, and those chains having potential hydro-
gen-bond interactions with chains N and 2, as meas-
ured in DeepView.

Hydrophobicity

Hydrophobicity calculations were carried out apply-
ing Perl programs. FASTA sequence files down-
loaded from the respective PDB entry for each pro-
tein were used in the calculations, except for AcP
and medin where human sequences matching the
1APS and 3BN6 sequences were taken from the
UniProt entries P14621 and QO08431, respectively.
Each amino acid was assigned its hydrophobicity
value according to the scale of Fauchere and
Pliska''? and a simple average of the individual val-
ues was calculated for any given sequence. For com-
parative purposes, hydrophobicity measurements
were carried out on subsets of sequences culled from
the PDB using PISCES®” with a maximum sequence
identity of 20%, R factor of no greater than 0.25 and
resolution 1.6 A or better. For the hydrophobicity
calculations, secondary structure was assigned
according to STRIDE™* with simplification of the
STRIDE classification into helical, strand, and coil
secondary structure types, whereby helical com-
prises 319 and o-helical types, strand comprises
strand and bridge types and coil comprises coil and
turn types.

Amyloidogenic sequences and datasets

Except in the case of pooled data, values for percent-
age secondary structure distribution, relative acces-
sible surface area (ASA)/residue and hydrogen-bond
density (hydrogen-bonds/residue) were calculated for
each protein and for each amyloidogenic sequence.
In the case of oligomeric proteins with more than
one copy of an amyloidogenic sequence, one average
value for the sequence and protein was calculated to
avoid redundancy. To observe more accurately the
relationship between surface accessibility and sec-
ondary structure in the amyloidogenic sequences,
the proteins were further divided into those with a
B-strand content of >0% in their amyloidogenic
sequences, the so-called S-set, and those whose amy-
loidogenic sequences contained 0% strand content,
the H-set. Some amyloidogenic sequences occur in
more than one protein and so are associated with
the corresponding number of values for each param-
eter. Thus, two values each for relative solvent ac-
cessible surface area, helical, strand, and coil con-
tent and hydrogen-bond density are associated with
the sequence LVEALYL, which occurs in the insulin
B chain and each chain of the M. jannaschii tRNA
endonuclease, a tetramer. Similarly, two values for

344 PROTEINSCIENCE.ORG

each parameter are associated with the S-set
sequences, GGVVIA and IKVAV. The amyloidogenic
sequence LYQLEN, which occurs in the A chain of
insulin and the ‘YjcG’ protein of B. subtilis, is
ambivalent with respect to secondary structure. Sim-
ilarly, FGAIL occurs in chains A and D of cyto-
chrome b from Rhodobacter sphaeroides (H-set) as
well as human cystolic thymidine kinase (S-set) (Ta-
ble I and supp. info.).

Statistical analyses

The Kolmogorov-Smirnov test was used to assess
normal distribution of datasets. The two-sample t-
test and the Mann-Whitney test were used for nor-
mally and non-normally distributed data, respec-
tively. The software package R, version 2.6.2, was
used for Kolmogorov-Smirnov, Mann-Whitney and t-
test calculations.'® Correlation coefficients were cal-
culated using Matlab, version 7.1.0.21 (The Math-
Works, Inc). Significance was assumed at the P <
0.05 level.
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