
Amyloidogenic sequences in native
protein structures

Susan Tzotzos and Andrew J. Doig*

Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, United Kingdom

Received 11 September 2009; Revised 10 November 2009; Accepted 8 December 2009

DOI: 10.1002/pro.314
Published online 21 December 2009 proteinscience.org

Abstract: Numerous short peptides have been shown to form b-sheet amyloid aggregates in vitro.

Proteins that contain such sequences are likely to be problematic for a cell, due to their potential
to aggregate into toxic structures. We investigated the structures of 30 proteins containing 45

sequences known to form amyloid, to see how the proteins cope with the presence of these

potentially toxic sequences, studying secondary structure, hydrogen-bonding, solvent accessible
surface area and hydrophobicity. We identified two mechanisms by which proteins avoid

aggregation: Firstly, amyloidogenic sequences are often found within helices, despite their inherent

preference to form b structure. Helices may offer a selective advantage, since in order to form
amyloid the sequence will presumably have to first unfold and then refold into a b structure.

Secondly, amyloidogenic sequences that are found in b structure are usually buried within the

protein. Surface exposed amyloidogenic sequences are not tolerated in strands, presumably
because they lead to protein aggregation via assembly of the amyloidogenic regions. The use of

a-helices, where amyloidogenic sequences are forced into helix, despite their intrinsic preference

for b structure, is thus a widespread mechanism to avoid protein aggregation.
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Introduction

The formation of fibrillar aggregates, amyloid fibrils

or inclusion bodies of amyloid fibrillar material,

appears to be a generic property of polypeptide

chains. It is believed that many, if not all proteins,

can be converted in vitro into amyloid fibrils, given

the appropriate conditions.1-5 Regardless of the size,

sequence or structure of the amyloid precursor pro-

tein, mature fibrils all appear to share a similar

highly organised multimolecular morphology.6

More than 40 pathological conditions in humans

have so far been attributed to amyloid deposition,

amongst which are Alzheimer’s, Huntingdon’s, and

Parkinson’s diseases, as well as the transmissible

spongiform encephalopathies. In these disease condi-

tions, a specific peptide or protein, which is normally

soluble, forms fibril-like aggregates, which eventu-

ally become deposited as insoluble fibrils and larger

plaques or inclusion bodies.7 Specific mutations have

been shown to be the cause for the production of

amyloidogenic protein in several disease conditions,

but (more) often the protein has the wild-type

sequence.

Several proteins unassociated with disease con-

ditions can be induced to form fibrils in vitro.1,2,8-10

In some cases, the aggregates formed from these

nondisease-associated proteins have been shown to

have cytotoxic properties similar to those of patho-

logical aggregates.11 A diverse group of proteins has

been observed to form amyloid-like fibrils having

specific physiological functions in nonpathological

conditions in a wide range of organisms, such as pro-

teins of the eggshell chorion in the silk moth, spi-

droin in the spider, Pmel17, which plays a central
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role melanin-a polmerisation in humans and many

more.12-17 Amyloid fibres are found in bacteria,

fungi, and insects, exploiting their unique mechani-

cal and biological properties.17 This nonpathological

amyloid has been dubbed functional amyloid to dis-

tinguish it from the amyloid associated with disease

conditions, but from a structural point of view both

types of amyloid are the same.16,17

The definitive characteristic of amyloid fibrils

formed in all the aforementioned cases is the so-

called ‘‘cross-b’’ structure as revealed by X-ray dif-

fraction, in which the polypeptide chain is organised

into b-sheets arranged parallel to the longitudinal

fibril axis, with constituent b-strands perpendicular

to the fibril axis.6,18 Amyloid is also characterised by

a high affinity for certain chemical stains such as

Congo red and thioflavin (ThT). These staining prop-

erties, together with the fibril appearance and char-

acteristic cross-b diffraction pattern are the accepted

diagnostic prerequisites for amyloid.18 Solid-state

NMR experiments have greatly advanced our knowl-

edge of the structure and stability of amyloid

fibrils.19-21

The molecular architecture of fibrils formed by

different proteins differs with respect to amount of

cross-b structure, strand orientation and disposition

of the core amyloid structure within the protein.22

Despite their similar nature, a distinction should be

made between amyloid fibril formation and protein

aggregation. At high protein concentration under

physiological conditions, misfolded protein molecules

can form amorphous aggregates. The driving force

behind formation of such aggregates, which are often

enriched in cross-b structure, is a combination of

hydrophobicity, secondary structure propensity and

charge.23 b aggregation and amyloidosis often occur

together in pathological conditions, leading to the

idea that b aggregation is an intermediate step on

the pathway to formation of mature amyloid fibrils.23

Furthermore it has been shown amyloid aggregates

are polymorphic and that a single polypeptide can

fold into multiple amyloid conformations.24 It is now

accepted that pre-fibrillar aggregates, rather than

mature amyloid plaques, are the cytotoxic elements

in protein deposition diseases.25,26

Experiments using very short peptides and

larger proteins have attempted to elucidate features

of the primary sequence and specific residues, which

are responsible for and can be used to predict aggre-

gation and amyloid formation.27-42 Hydrophobicity is

an important determinant of the aggregation pro-

pensity of a polypeptide chain.32 Examination of

sequences in disease-related, amyloidogenic proteins

has revealed a higher than expected occurrence of

aromatic groups, consistent with the important role

of Phe residue side chains in pi-pi stacking in the

steric-zipper model of amyloid fibrils.6,43 Statistical

studies of natural protein sequences have revealed

that groups of three or more hydrophobic residues

occur less frequently than would be expected assum-

ing neutral selection, providing evidence that clus-

ters of hydrophobic residues have been selected

against during protein evolution.44

The net charge on the protein molecule is an im-

portant factor influencing aggregation with a high

net charge impeding aggregation.45 Investigations

into the effect of mutations altering the charge state

of a protein without altering its hydrophobicity or

secondary structural propensity showed that aggre-

gation was favoured by those mutations which

brought about a reduction in the net charge.11,46,47

Similarly, in vivo experiments have shown that

mutations decreasing the positive charge on a mole-

cule increase the aggregation propensity and muta-

tions increasing the net charge result in decreased

aggregation.48

Amyloidogenic proteins which are predomi-

nantly a-helical, must undergo an a-helix to b-sheet
conversion during the formation of amyloid fibrils.27

The tendency to form a helical secondary structure

thus mitigates against the tendency to form b-sheet
and hence amyloid fibrils.27,49 Conversely, the pro-

pensity to form b-sheet secondary structure enhan-

ces the chances of amyloid formation.28 In this

regard, it is interesting to note that patterns of

alternating hydrophobic and hydrophilic residues,

which favour formation of b-sheet secondary struc-

ture, occur less frequently in natural proteins than

would be expected by chance.50 A comparison of the

3D structural models in the Protein Data Bank with

secondary structures predicted for the same proteins

by various algorithms has shown that about 3% of

known protein structures contain an a-helix of seven

residues or more for which the prediction algorithm

suggests a b-strand.27 While such regions may be

due to errors in secondary structure prediction algo-

rithms, such discordant a-helices have been verified

experimentally in some cases. They are seen to occur

in the prion protein (positions 179–191), the b-amy-

loid peptide (positions 16–23) and the lung surfac-

tant protein (positions 12–27), as well as several pro-

teins which although not known to be amyloidogenic

in vivo, have been found to produce fibrils in vitro.27

There thus seems to be a correlation between a-he-
lix/b-strand discordant stretches and amyloid fibril

formation. Discordant helices may be starting points

for a-helix to b-sheet conversion; their modulation so

as to tip the balance toward a-helix propensity and

away from b-strand propensity, reduces the likeli-

hood of fibril formation.27,49

Amyloidogenic sequences tend to lack Pro and

Gly, presumably as they are destabilizing in b struc-

ture.51 Conservation of glycine and proline residues

at structurally strategic positions in b-sandwich pro-

teins appears to serve the purpose of aggregation

prevention. Experiments with de novo peptides and
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proteins as well as with mutated forms of naturally

occurring proteins, have elucidated features of poly-

peptide sequence which inhibit aggregation and

fibril formation—so-called ‘‘negative design’’ fea-

tures.52-54 The term ‘‘structural gatekeeper’’ was

coined by Otzen et al55 to describe charged side

chains that prevent aggregation by interrupting con-

tiguous stretches of hydrophobic residues in the pri-

mary sequence. A systematic survey of edge strands

in a large sample of all-b proteins revealed several

features which would prevent further b-sheet inter-

actions via main chain hydrogen-bonding, such as b-
bulges, proline residues, very short edge strands,

tertiary contacts with loop regions and charged resi-

dues occurring in positions unfavourable for further

strand interaction.53 Edge-to-edge aggregation in

naturally occurring b-sandwich proteins is also pre-

vented by placing an ‘‘inwardly-pointing’’ charged

residue on the hydrophobic side of a b-strand; just

one residue in the edge strand is sufficient to block

aggregation. In b-barrel proteins, unsatisfied hydro-

gen bonds are minimised: there are no edge strands.

Unsatisfied hydrogen bonds render b strands suscep-

tible to aggregation.

Structural studies as well as in vitro studies

with proteolytic fragments of amyloidogenic proteins

and synthetic peptides, have established that the

tendency for a protein to form amyloid is often lim-

ited to a short sequence of the full protein, known as

a ‘‘self-recognition element’’ (SRE). SREs constitute

the core peptide of amyloid fibrils in steric-zipper

structures.56,57 Such amyloidogenic sequences consti-

tute ‘‘hot spots’’ for aggregation of the native protein

into amyloid fibrils.37 In the case of paired helical

filament (PHF) tau, which accumulates in the neuro-

fibrillary tangles characteristic of AD and other neu-

rodegenerative diseases, it has been shown that only

three residues, VYK, are sufficient for fibril forma-

tion.58 Similarly, short sequences forming the core

domain of various amyloid fibrils have been identi-

fied, amongst which are KLVFFAE for b-amyloid,59

NFGSVQ for medin,60 DFNKF for calcitonin,61,62

FGAIL and NFGAIL for islet amyloid polypeptide,63

VEALYL and LYQLEN for insulin57 and VAQKTV

for a-synuclein.64 It may be possible to delete resi-

dues freely on either side of an SRE while retaining

the ability for form amyloid.

The object of this study is to structurally inves-

tigate the ways in which native proteins containing

‘‘dangerous’’ amyloidogenic stretches have evolved to

avoid aggregation and amyloid formation. Amyloido-

genic stretches can potentially be identified in sev-

eral ways, such as regions associated with mutations

leading to amyloid formation and the results of pro-

grams designed to predict amyloidogenic sequences.

The amyloidogenic stretches that we study are those

of peptides that have been shown to form amyloid in

isolation. This data set is more reliably known to

form amyloid than one derived from prediction pro-

grams that will inevitably lack some accuracy, or

one using regions where amyloid formation may

result from reasons not directly evident in a protein

structure, such as perturbing protein trafficking.

These sequences have an intrinsic preference to

form amyloid. If they are present in a native protein,

it will have had to evolve structural features to pre-

vent the amyloidogenic sequence forming an SRE

and causing protein aggregation. Discovering how

protein structures deal with such ‘‘toxic sequences’’

is the goal of this work.

Amyloid has a common structure composed of

extended b-sheets with hydrogen-bonding parallel to

the fibril axis. Amyloidogenic peptides therefore

must have an intrinsic tendency to adopt b struc-

ture. One might thus expect that amyloidogenic

peptides will usually be found in b-sheets within

proteins. Remarkably, we found that this was not

the case.

Results

Data set

Amyloidogenic proteins were found by surveying the

literature and review articles.10,14,56 For proteins to

be classified as amyloidogenic, they must have been

found in amyloid deposits in vivo or have been

shown to form amyloid fibrils experimentally in

vitro, either in their entirety or as fragments. Amy-

loidogenic proteins included in this study were those

for which the presence of discrete sequences capable

of amyloid fibril formation had been confirmed by

transmission EM in combination with Congo red

staining, ThT fluorescence or a cross-b X-ray diffrac-

tion pattern. In the case of transthyretin, amyloid

fibril formation of the sequence (105)YTIAALL-

SPYS(115) had been shown by magic angle spinning

NMR (Jaroniec et al, 2004). In addition to evidence

of fibril formation, the existence of an accurate 3D

model of the native protein deposited in the PDB

was essential. Structural models for proteins were

initially found by a combination of text searches of

the PDB and PDBsum databases as well as by using

the ‘‘Search by sequence’’ tool of the PDBsum data-

base65,66 entering as query sequence amyloidogenic

fragments gathered from the primary survey. Subse-

quently, Perl programs were applied to carry out

sequence identity searches of all sequence files rep-

resenting the PDB database, (downloaded from the

PISCES website: http://dunbrack.fccc.edu/PIS-

CES.php67) with each of the amyloidogenic frag-

ments gathered from the primary survey, resulting

in the detection of 10 more proteins for inclusion in

the study. These are the Bacillus subtilis ‘‘YjcG’’ pro-

tein (LYQLEN), the Methanococcus jannaschii tRNA

endonuclease (LVEALYL), DNA polymerase III
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subunit alpha, from Escherichia coli (GGVVIA),

chains N and 2 of the 20S proteasome from Bos

taurus (GGVVIA), enterotoxin k from Staphylococ-

cus aureus (DFNKF), the Naþ/Ca2þ-exchange pro-

tein 1 from Canis familiaris (NFLVH), chains A and

D of cytochrome b from Rhodobacter sphaeroides

(FGAIL), human cystolic thymidine kinase (FGAIL),

glycyl-tRNA synthetase from Thermus thermophilus

(IKVAV) and the leucine-binding protein from E.coli

(IKVAV). These proteins, although not previously

reported as fibril-forming, face an identical problem

in dealing with their amyloidogenic peptides, and it

is therefore appropriate to include them in our anal-

ysis. The amyloidogenic fragment IKVAV was also

found in chain H of the 60S ribosome from Saccha-

romyces cerervisiae, but this protein was not

included in the study owing to its large size: a 30-

mer of molecular mass 1513 kDa. Thirty native pro-

teins were identified for analysis using the search

methods described (Table I).

In the case of acylphosphatase (AcP) and medin,

amyloidogenicity was originally reported for the

human proteins in each case.28,46,60,88,76 Since no

structural model was available for the human pro-

teins, but there were structural models available for

the homologous proteins equine muscle AcP: PDB ID

1APS and bovine medin: PDB ID 3BN6, the latter

were taken for analysis. Measurements of relative ac-

cessible surface area, secondary structure and hydro-

gen-bond density were carried out on these struc-

tures, whose sequences differ slightly from the

original amyloidogenic proteins. Equine muscle AcP

shares 94% sequence identity with human muscle

AcP. The human AcP amyloidogenic sequence,

(16)RVQGVCFRMYTEDEAR(31), is (16)RVQGVCF

RMYAEDEAR(31) in 1APS; the human AcP amyloi-

dogenic sequence (87)SKLEYSNFSIRY(98) is (87)-

SKLEYSNFSVRY(98) in 1APS. Human medin is a

proteolytic fragment of human lactadherin, which

shares 70% sequence identity with bovine lactad-

herin. 3BN6 is a structural model of the C2 domain

of bovine lactadherin with residues V70-V87 match-

ing the amyloidogenic sequence V299-V316 in hu-

man medin. The human amyloidogenic sequence

(299)VTGIITQGAR(308) is identical in 3BN6; the

human amyloidogenic sequence, (309)NFGSVQF

V(316), is (80)DFGHIQYV(87) in 3BN6.

Nonoverlapping amyloidogenic fragments

greater than 20 amino acid residues in length were

excluded from the amyloidogenic category, in order

to reduce the probability of including non-amyloido-

genic residues. Thus, the 20–41 peptide of b2-micro-

globulin, the 36–67 peptide of B. subtilis cspB, and

the 1–29 amyloidogenic fragment of myoglobin, were

considered non-amyloidogenic in the calculations.

For pairs of overlapping fibril-forming peptides lon-

ger than 20 amino acid residues, the shorter was

taken, hence the 1–22 peptide of B. subtilis cspB

was considered representative. For any group of

overlapping fibril-forming fragments less than 20

amino acids in length, one composite sequence

including all amino acid residues observed in indi-

vidual amyloidogenic sequences was taken as repre-

sentative of the group. Where a sequence contained

a shorter amyloidogenic peptide, the latter was

taken as representative. Thus, the 106–147102 and

the 132–16091 peptides of the human prion protein

(hPrP) are represented by the shorter 138–144 pep-

tide reported in Sawaya et al (2007).57 For kerato-

epithelin, the shorter 515–525 peptide was taken as

representative.83 Similarly, the composite 66–92

amyloidogenic sequence for a-synuclein which forms

part of the a-synuclein 61–95 NAC peptide71 is rep-

resented by the three shorter 66–74, 77–82, and 86–

92 peptides57,71,70 (Table I).

Secondary structure

Table II shows the secondary structure of each pro-

tein under consideration, subdivided into the amyloi-

dogenic and non-amyloidogenic parts of each struc-

ture. Percentages of residues that are helix, strand,

or coil are given for each region. The mean values

given in Table II are of 30 values, one per protein,

for secondary structure in non-amyloidogenic

sequences, and of 45 values, for secondary structure

in each of 45 discrete amyloidogenic sequences. We

find that 35% of residues in amyloidogenic regions

are helical compared to only 28% in non-amyloido-

genic regions. This preference is at the expense of

coil, rather than strand, as 34% of residues in amy-

loidogenic regions are in strand compared to 28% in

non-amyloidogenic regions, while 31% of amyloido-

genic regions are coil, compared to 44% of non-amy-

loidogenic regions. Mann-Whitney tests show that

while these differences in helix and strand frequen-

cies are not significant, the difference in coil prefer-

ences is (P ¼ 0.0008). These results for proteins and

amyloidogenic sequences considered individually are

consolidated by calculations for pooled residues (577

amyloidogenic, 15,659 non-amyloidogenic) from all

30 proteins, which show that 35% of amyloidogenic

residues are helical compared to 31% in non-amyloi-

dogenic regions, 36% of amyloidogenic residues are

strand compared to 29% in non-amyloidogenic

regions, and 30% of amyloidogenic residues are coil

compared to 40% in non-amyloidogenic regions (Ta-

ble III). There is therefore a clear trend for amyloi-

dogenic sequences to be helical or strand structure,

rather than coil. This is perhaps surprising, since in

isolation the amyloidogenic sequences are all prone

to form aggregated b-sheets. This result tallies with

that of Linding et al.103 who found that regions pre-

dicted to be prone to b aggregation are more com-

mon in globular proteins, with high secondary struc-

ture content, than in intrinsically disordered

proteins. Examples of amyloidogenic sequences in
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proteins are shown in Figure 1 and Supplementary

Information Figure 1.

Surface accessibility
Relative solvent accessibilities show the fraction of a

residue’s surface that is buried compared to the

unfolded state. These data were determined for amy-

loidogenic and non-amyloidogenic sequences. Three

different methods were applied in these calculations.

Calculations using all residues from all proteins

pooled into one dataset for amyloidogenic (577 resi-

dues) and one for non-amyloidogenic (15,659

Table III. Summary of Secondary Structure and Solvent Accessibilitiesa

Amyloidogenic sequences Non-amyloidogenic sequences

Hydrogen-bonds per residueb 1.12 1.03
Accessible surface area per residue (relative) %c 25.6 26.5
Secondary structure distributiond % Helix 34.5 30.7

Strand 36.0 29.4
Coil 29.5 39.9

a Values for each characteristic in individual proteins were summed and expressed as an average of the total of 577 amyloi-
dogenic residues and 15,659 non-amyloidogenic residues (16,236 amino acid residues in toto).
b Number of hydrogen-bonds per residue estimated by VADAR.83 In the case of the 20S proteasome, only chains N and 2
containing the amyloidogenic sequence and chains interacting through hydrogen-bonds with these were included in the
analysis.
c Accessible surface area, average relative surface area per residue (%) computed by the NACCESS program.91
d Secondary structure distribution (%) according to DeepView: Swiss-PdbViewer.102

Figure 1. Selection of amyloidogenic proteins in native conformation with amyloidogenic sequences highlighted

(amyloidogenic residue numbers in parentheses for given protein model refer to residues considered amyloidogenic for

calculations in present study). Biological molecules are illustrated unless otherwise indicated. a) b-lactoglobulin, PDB ID 1BEB

(Asp11-Tyr20, Lys101-Ser110, Ser116-Pro126, His146-Asn152), b) prolactin, PDB ID 1RW5 (Gly7-Ser34, Arg43-Ser57), c)

repA pPS10 Pseudomonas, PDB ID 1HKQ (Leu26-Ile34), d) B. subtilis ‘YjcG’ protein, PDB ID 2D4G (Leu151-Asn156). Images

were created using PyMol (www.pymol.org).
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residues) showed a very small difference in relative

accessible surface area (RASA) between amyloido-

genic (25.6% RASA) and non-amyloidogenic (26.5%

RASA) (Table III). Considered on a per protein basis,

amyloidogenic residues showed a significantly lower

relative accessible surface area (24% RASA) com-

pared to non-amyloidogenic residues (35% RASA),

with a P-value of 0.0003. However, when amyloido-

genic residues were treated as a set of 45 discrete

amyloidogenic sequences, there was no significant

difference between amyloidogenic (30% RASA) and

non-amyloidogenic (35% RASA) residues in terms of

surface accessibility (Table IV). The results thus

indicate that when considered as part of their native

protein, amyloidogenic sequences have an average

surface accessibility, which is lower than non-amyloi-

dogenic sequences. Amyloidogenic regions are thus

more likely to be buried in a protein interior.

Hydrogen-bond density
Table IV shows the numbers of hydrogen bonds per

residue for each amyloidogenic sequence, for amyloi-

dogenic regions per protein and for non-amyloido-

genic regions for each protein in our data set. As for

the solvent accessibility calculations, three different

methods were applied. Calculations from pooled resi-

dues of all proteins showed that amyloidogenic resi-

dues have more hydrogen bonds per residue (1.12)

than non-amyloidogenic residues (1.03) (Table III).

Expressed on a per protein basis, there are 1.13

hydrogen bonds per residue in amyloidogenic resi-

dues compared to 0.98 in non-amyloidogenic resi-

dues, a difference of borderline significance (P ¼
0.057). Expressed as an average per discrete amyloi-

dogenic sequence, amyloidogenic sequences have

more hydrogen bonds per residue (1.09) than non-

amyloidogenic residues (0.98). The slight trend of

higher hydrogen-bond density in amyloidogenic com-

pared to non-amyloidogenic regions can be attrib-

uted to the higher likelihood of amyloidogenic

regions being in helix or strand which are inherently

rich in hydrogen-bonds.

The secondary structure, solvent accessible sur-

face area and hydrogen-bond data in Tables II and

IV is averaged as mean values per sequence. Table

III gives the same properties averaged per residue,

thus giving greater weight to longer sequences and

larger proteins. Similar trends are seen: amyloido-

genic regions have more hydrogen-bonds, marginally

lower solvent accessibility and are more likely to be

in helix or strand, at the expense of coil.

Solvent accessible surface areas in helices
and sheets

Subdivision of the solvent accessible surface area by

secondary structure reveals some clear differences

that are obscured when this data is pooled (Tables

III and IV). Table V gives surface area data per resi-

due only for residues in strands and Table VI gives

the same data for helical residues. The surface areas

of residues within amyloidogenic strands are nearly

always (15 out of 16 cases) lower than those within

non-amyloidogenic strands (11% vs. 20%, respec-

tively), with a significant P-value of 0.0045. In con-

trast, amyloidogenic residues in helices have similar

mean solvent accessible surface areas to non-amyloi-

dogenic helical residues (28% vs. 32%, respectively,

with no significant difference (P ¼ 0.49). Table VII

summarises the same data on a per residue basis,

rather than per strand, as in Tables V and VI.

Again, it is clear that amyloidogenic residues within

strands have significantly lower surface areas than

non-amyloidogenic strand residues, while there is no

significant difference between helical residues. This

suggests that there is pressure to bury amyloido-

genic sequences when in b-strands, while this is not

the case for helical amyloidogenic sequences.

Hydrophobicity

Mean residue hydrophobicities for amyloidogenic

and non-amyloidogenic residues are given in Table

VIII. Amyloidogenic residues are much more likely

to be hydrophobic than non-amyloidogenic residues.

The average hydrophobicity of amyloidogenic resi-

dues is greater than non-amyloidogenic residues in

all proteins except for human complement factor

and prolactin (data not shown). (Human complement

factor has a Cys to Ser mutation that causes amyloi-

dogenicity, perhaps via loss of a disulphide bond.)

This is the case when comparing residues within

strands or helices, though there is an overall trend

for strand residues to be more hydrophobic than hel-

ical residues. We compared our data set to a repre-

sentative set of 586 non-homologous PDB structures

(200,754 amino acid residues). Our data set has

slightly more hydrophobic helices and less hydropho-

bic coil regions overall, though these differences are

much smaller than those seen when comparing amy-

loidogenic with non-amyloidogenic sequences. There

is thus a clear trend for amyloidogenic sequences to

be hydrophobic, as expected since they are prone to

aggregation by definition. Also apparent is that amy-

loidogenic b-strand residues are the most hydropho-

bic of all types of residue (average hydrophobicity

per residue 0.800).

Comparison of solvent accessible surface areas

with secondary structure contents
The solvent accessible surface area data, subdivided

by secondary structure (Tables V–VII), suggests that

distinct strategies are used by proteins to avoid

aggregation depending on whether amyloidogenic

sequences are found within strands or helices. We

therefore divided our data set into two parts: the H-

set, which contains all amyloidogenic sequences that

have no residues in strand (Supp. Info. Table 1), and
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the S-set which contains all amyloidogenic sequences

that have one or more residues in strand (Supp.

Info. Table 2).

Figure 2 shows correlations between solvent ac-

cessible surface area and secondary structure strand

content. There is a significant correlation for

strands, with sequences that have more b content,

more likely to be buried. This is apparent when look-

ing at the amyloidogenic sequences in all our data

set (Fig. 2a), within the S-set (Fig. 2b) and for

strand content in non-amyloidogenic sequences (Fig.

2c). This general trend for sequences with a higher

strand content to be more buried can explain why

amyloidogenic sequences can be tolerated in proteins

if they are in b structure.

In contrast to strands, there is no preference for

sequences with more helical content to have a lower

solvent accessible surface area (Fig. 3). Figure 3a

shows a weak trend for sequences with a high heli-

cal content in amyloidogenic sequences to have a

higher surface area, though this correlation arises

from the inclusion of sequences with low accessibil-

ity and zero helical content, since within the H-set

the correlation is not apparent (Fig. 3b). There is

also no correlation between accessibility and helical

content within non-amyloidogenic sequences (Fig.

3c). This therefore suggests that amyloidogenic

sequences in helices do not need to be buried to

avoid aggregation, in contrast to strand sequences.

Discussion

Proteins that contain a sequence capable of forming

amyloid pose a real danger for a cell, since they can

be toxic if they fold into this form. A simple solution

to this problem might therefore be for such sequen-

ces to be never present within proteins. While selec-

tion against sequences that may form amyloid does

seem to occur,50 they are still present in some pro-

teins, perhaps because they are essential for func-

tion or important for folding. By examining experi-

mentally verified amyloidogenic sequences within

protein structures, we have identified two mecha-

nisms by which proteins avoid aggregation: Firstly,

amyloidogenic sequences are often found within

Table VIII. Hydrophobicity of Amyloidogenic and Non-amyloidogenic Residues in Amyloidogenic Proteins and of
Residues in Globular Proteins in Generala,b

Amyloidogenic proteinsc

Culled set of globular
proteinsb

Amyloidogenic
residues

Non-amyloidogenic
residues All residues

Secondary structured

All residues 0.600 0.372 0.380 0.366
Helical 0.638 0.409 0.418 0.356
Strand 0.800 0.625 0.634 0.616
Coil 0.356 0.159 0.165 0.218

a Thirty amyloidogenic proteins represented by PDB models: 1A79, 1APS, 1ATI, 1B0G, 1BEB, 1CKT, 1GKG, 1HKQ, 1IRU,
1KCQ, 1LFH, 1QLX, 1REX, 1RW5, 1SOH, 1TTA, 1USG, 1W4R, 1WLA, 1X3B, 1XDA, 1XQ8, 2D4G, 2DPK, 2ES2, 2HNH,
2JD4, 2NTT, 2QJP and 3BN6. Hydrophobicity calculated using Perl program ‘stride_hydrophob’. Analysis comprised 589
amyloidogenic and 15654 non-amyloidogenic residues: 214 helical amyloidogenic, 188 strand amyloidogenic and 187 coil
amyloidogenic residues; 5593 helical non-amyloidogenic, 4136 strand non-amyloidogenic and 5925 coil non-amyloidogenic
residues.
b Culled set obtained from PISCES website: http://dunbrack.fccc.edu/PISCES.php (<20% SID, <1.6 Å resolution, <0.25 R
factor).62 Hydrophobicity calculated using Perl program ‘stride_hydrophob’. Analysis comprised 586 PDB structures consist-
ing of 200,754 amino acid residues.
c For AcP and medin, structures of homologous proteins were used (PDB IDs: 1APS and 3BN6, respectively), and the
FASTA sequence from the UniProt entries, P14621 and Q08431, applies for hydrophobicity measurements.
d Secondary structure according to STRIDE: http://webclu.bio.wzw.tum.de/cgi-bin/stride/stridecgi.py.114

Table VII. Pooled Data for Accessible Surface Area of Amyloidogenic and Non-amyloidogenic b-strand and Helical
Residues

Average relative ASA per b-strand
residuea %

Average relative ASA per helical
residuea %

Amyloidogenic Non-amyloidogenic Amyloidogenic Non-amyloidogenic

Number of residues 208 1861 199 1487
Mean 6 SD 12 6 16 17 6 20 29 6 28 27 6 24
Mann-Whitney test, p-value 0.0011 0.95

aAccessible surface area (ASA), average relative surface area per residue (%) computed by the NACCESS program.
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Figure 3. (a) Correlation between relative accessible

surface area (ASA) per residue and helical content in

amyloidogenic sequences of 30 native proteins (one

average value per protein). Correlation coefficient ¼ 0.4244,

p ¼ 0.0194; slope of trendline ¼ 0.1744. (b) Correlation

between relative accessible surface area (ASA) per residue

and helical content in H-set of amyloidogenic sequences.

Correlation coefficient ¼ 0.0610, p ¼ 0.7823; slope of the

trendline ¼ �0.0351. (c) Correlation between relative

accessible surface area (ASA) per residue and helical

content in non-amyloidogenic sequences of 30 native

proteins. Correlation coefficient ¼ 0.2414, p ¼ 0.1987;

slope of the trendline ¼ 0.1384.

Figure 2. (a) Correlation between relative accessible

surface area (ASA) per residue and strand content in

amyloidogenic sequences of 30 native proteins (one

average value per protein). Correlation coefficient ¼
�0.4568, p ¼ 0.0112; slope of trendline ¼ �0.1896. (b)

Correlation between relative accessible surface area (ASA)

per residue and strand content in S-set of amyloidogenic

sequences. Correlation coefficient ¼ �0.5239, p ¼ 0.0123;

slope of the trendline ¼ �0.2804. (c) Correlation between

relative accessible surface area (ASA) per residue and

strand content in non-amyloidogenic sequences of 30

native proteins. Correlation coefficient ¼ �0.4735, p ¼
0.0082; slope of the trendline ¼ �0.2906.



helices. This is remarkable, since these sequences

have an inherent preference to form b structures, by

definition, since amyloid has a cross-b structure. De-

spite this preference, the rest of the protein forces

the amyloidogenic region into helix. Helix is argu-

ably as distant as possible from amyloid, since in

order to form amyloid the sequence will presumably

have to first unfold and then refold into a b struc-

ture. If the amyloidogenic sequence is in a helix,

there is no additional pressure for it to be buried.

Discordant helices have previously been discussed as

regions of a protein predicted to form strand, while

actually forming helix.27,30,49 During folding into the

native structure, such regions of secondary structure

ambivalence have similar potential to fold into a-hel-
ices or b-sheets. The results presented here clearly

demonstrate this ambivalence manifested in the dif-

ferent secondary structures adopted by fibril-forming

sequences in native proteins. The sequence LYQLEN

is 100% helical in human insulin, but 67% strand

and 33% random coil in Bacillus subtilis YjcG pro-

tein. The sequence FGAIL, is 100% helical in cyto-

chrome b, but 40% helical, 20% strand and 40% ran-

dom coil in thymidine kinase (Table II). Similarly,

the sequence GGVVIA, the region of the Abeta(1–42)

peptide with the highest aggregation propensity,36

where it is 100% helical,104 is shown in this study to

adopt a 100% strand conformation in E. coli DNA

polymerase and a conformation which is 83% strand,

17% random coil in chains N and 2 of the 20S pro-

teasome of Bos taurus (Table II).

Hydrophobicity is arguably the single most im-

portant physico-chemical feature influencing the

aggregation potential of a polypeptide chain.14,32,105

Our results clearly show that the hydrophobicity of

amyloidogenic residues in native proteins is similar

to that of b strand residues in globular proteins in

general. Furthermore, it is clear that amyloidogenic

b strand residues are highly hydrophobic (Table

VIII). Nevertheless, observations from this study

support conclusions from previous work that

observed patterns of b aggregation are not solely the

outcome of hydrophobicity and b-sheet propensity.103

Globular proteins contain three times as many

aggregation nucleating regions as intrinsically disor-

dered proteins suggesting that tertiary structure for-

mation competes with b aggregation propensity and

that burying of the aggregating regions in the folded

state is expected as a logical consequence.103 Desta-

bilisation of the native state by natural mutation

leads to amyloid disease.28 Globular proteins are

thus protected from self-association by having aggre-

gation-prone stretches sequestered by structure.23

The existence of strong selection pressure on the

conformational stability of the native state is well

established.106 Negative selection pressure will

ensure that amyloidogenic sequences having a detri-

mental effect on the organism will be sequestered

into protein structures where their harmful effect is

mitigated.106 In the case of functional amyloid, the

ability to exploit an environmental niche has

resulted in retention of these sequences.16,107,108

These earlier conclusions are borne out by this

study, which shows that in native proteins there is a

greater tendency for amyloidogenic sequences to

form either a helical or b strand secondary structure

rather than random coil. Furthermore, the results

show that potentially fibril-forming residues in b-
strand conformation are more buried than non-fibril-

forming residues. This is not the case for fibril-form-

ing helices which are equally as exposed to the

protein surface as their nonfibril-forming counter-

parts. The helical conformation would therefore

appear to offer equal protection against fibril forma-

tion as buried strand conformation. Surface exposed

amyloidogenic sequences are not tolerated in

strands, presumably because they lead to protein

aggregation via assembly of the amyloidogenic

regions.

Methods

Viewing the protein molecules
Protein structures, downloaded from the Protein

Data Bank, were viewed using the software package

DeepView, version 3.7 (formerly Swiss-

PdbViewer).109 Biological units were used through-

out. In the case of b-lactoglobulin, PDB ID 1BEB,

the two biological units were used to construct the

dimer, the physiologically functional form of the pro-

tein, using the ‘Create Merged Layer’ function in

DeepView.

Secondary structure

Secondary structure was recorded for each residue

according to the designation given by DeepView, in

which residues are classified as helical, strand, or

random coil.109 This classification often differs

slightly from that given in the PDB file header for a

particular protein.

Surface accessibility

The relative accessible surface area (RASA) (%) for

each residue of the biological unit was calculated

using the NACCESS program, version 2.1.1.110 Aver-

age relative surface accessibilities per residue were

calculated for amyloidogenic and non-amyloidogenic

sequences and for the different secondary structures

thereof, using Excel.

Hydrogen-bond density

Putative hydrogen-bonds were calculated using the

VADAR program, version 1.5111 and results

expressed as hydrogen-bonds per residue for a given

sequence. Structures were uploaded to the VADAR

website for single or multiple chain analysis, as
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appropriate. The 20S proteasome, PDB ID 1IRU,

exceeded the upper limit of VADAR (2000 residues)

and so a construct was used comprising chains N

and 2 which contain the amyloidogneic sequence

GGVVIA, and those chains having potential hydro-

gen-bond interactions with chains N and 2, as meas-

ured in DeepView.

Hydrophobicity

Hydrophobicity calculations were carried out apply-

ing Perl programs. FASTA sequence files down-

loaded from the respective PDB entry for each pro-

tein were used in the calculations, except for AcP

and medin where human sequences matching the

1APS and 3BN6 sequences were taken from the

UniProt entries P14621 and Q08431, respectively.

Each amino acid was assigned its hydrophobicity

value according to the scale of Fauchere and

Pliska112 and a simple average of the individual val-

ues was calculated for any given sequence. For com-

parative purposes, hydrophobicity measurements

were carried out on subsets of sequences culled from

the PDB using PISCES67 with a maximum sequence

identity of 20%, R factor of no greater than 0.25 and

resolution 1.6 Å or better. For the hydrophobicity

calculations, secondary structure was assigned

according to STRIDE114 with simplification of the

STRIDE classification into helical, strand, and coil

secondary structure types, whereby helical com-

prises 310 and a-helical types, strand comprises

strand and bridge types and coil comprises coil and

turn types.

Amyloidogenic sequences and datasets

Except in the case of pooled data, values for percent-

age secondary structure distribution, relative acces-

sible surface area (ASA)/residue and hydrogen-bond

density (hydrogen-bonds/residue) were calculated for

each protein and for each amyloidogenic sequence.

In the case of oligomeric proteins with more than

one copy of an amyloidogenic sequence, one average

value for the sequence and protein was calculated to

avoid redundancy. To observe more accurately the

relationship between surface accessibility and sec-

ondary structure in the amyloidogenic sequences,

the proteins were further divided into those with a

b-strand content of >0% in their amyloidogenic

sequences, the so-called S-set, and those whose amy-

loidogenic sequences contained 0% strand content,

the H-set. Some amyloidogenic sequences occur in

more than one protein and so are associated with

the corresponding number of values for each param-

eter. Thus, two values each for relative solvent ac-

cessible surface area, helical, strand, and coil con-

tent and hydrogen-bond density are associated with

the sequence LVEALYL, which occurs in the insulin

B chain and each chain of the M. jannaschii tRNA

endonuclease, a tetramer. Similarly, two values for

each parameter are associated with the S-set

sequences, GGVVIA and IKVAV. The amyloidogenic

sequence LYQLEN, which occurs in the A chain of

insulin and the ‘YjcG’ protein of B. subtilis, is

ambivalent with respect to secondary structure. Sim-

ilarly, FGAIL occurs in chains A and D of cyto-

chrome b from Rhodobacter sphaeroides (H-set) as

well as human cystolic thymidine kinase (S-set) (Ta-

ble I and supp. info.).

Statistical analyses
The Kolmogorov-Smirnov test was used to assess

normal distribution of datasets. The two-sample t-

test and the Mann-Whitney test were used for nor-

mally and non-normally distributed data, respec-

tively. The software package R, version 2.6.2, was

used for Kolmogorov-Smirnov, Mann-Whitney and t-

test calculations.113 Correlation coefficients were cal-

culated using Matlab, version 7.1.0.21 (The Math-

Works, Inc). Significance was assumed at the P <

0.05 level.
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