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ABSTRACT

In diploid populations, indirect benefits of sex may stem from segregation and recombination.
Although it has been recognized that finite population size is an important component of selection for
recombination, its effects on selection for segregation have been somewhat less studied. In this article, we
develop analytical two- and three-locus models to study the effect of recurrent deleterious mutations on
a modifier gene increasing sex, in a finite diploid population. The model also incorporates effects of
mitotic recombination, causing loss of heterozygosity (LOH). Predictions are tested using multilocus
simulations representing deleterious mutations occurring at a large number of loci. The model and
simulations show that excess of heterozygosity generated by finite population size is an important
component of selection for sex, favoring segregation when deleterious alleles are nearly additive to
dominant. Furthermore, sex tends to break correlations in homozygosity among selected loci, which
disfavors sex when deleterious alleles are either recessive or dominant. As a result, we find that it is
difficult to maintain costly sex when deleterious alleles are recessive. LOH tends to favor sex when
deleterious mutations are recessive, but the effect is relatively weak for rates of LOH corresponding to
current estimates (of the order 10�4�10�5).

ALTHOUGH sex is a costly (and often risky) en-
terprise, most eukaryotes engage in sex at least

sometimes during their life cycle (reproduction being
exclusively sexual in many species). Different theoret-
ical models (reviewed in Agrawal 2006; Otto 2009)
have explored the possible evolutionary advantages of
sex due to its effects on genetic variation. Whether such
benefits can maintain high rates of sex despite its im-
portant costs remains unclear, but modern computers
allow more and more quantitative predictions to be ob-
tained from simulation programs representing selec-
tion occurring at large numbers of loci (e.g., Keightley

and Otto 2006; Salathé et al. 2006). Eukaryotic sex is
the combination of two complementary events—meiosis
and syngamy—resulting in the alternation of a diploid
and a haploid phase during the life cycle. In diploids,
sex affects genetic variation through two effects: segre-
gation and recombination. The genetic effect of recom-
bination is to erode linkage disequilibrium (LD) among
loci, and different models have explored the strength
and direction of selection for recombination under var-
ious possible sources of LD: epistasis between benefi-
cial or deleterious alleles (Charlesworth 1990, 1993;
Barton 1995; Otto and Feldman 1997; Roze and

Lenormand 2005); fluctuating epistasis over time, gener-
ated, for example, by host–parasite interactions (Barton

1995; Peters and Lively 1999; Otto and Nuismer

2004; Gandon and Otto 2007; Salathé et al. 2008),
spatial heterogeneity in selection (Pylkov et al. 1998;
Lenormand and Otto 2000); and LD generated by the
interplay between selection and genetic drift, known as
the Hill–Robertson effect (Felsenstein and Yokohama

1976; Otto and Barton 1997, 2001; Iles et al. 2003;
Barton and Otto 2005; Keightley and Otto 2006;
Martin et al. 2006; Roze and Barton 2006).

The possible benefits of segregation have been stud-
ied more recently. ‘‘Segregation’’ in the strict sense in-
volves the separation of homologous chromosomes at
meiosis. However, following others (e.g., Otto 2003;
Agrawal 2006), we use the term segregation to refer to
the whole process of separation of homologous chro-
mosomes at meiosis into separate gametes along with
the eventual fusion (fertilization) of gametes taken
from different individuals (outcrossing). In this article
we consider only outcrossing and do not study selfing or
other aspects of the mating system. In the same way as
recombination ‘‘shuffles’’ alleles at different loci, erod-
ing linkage disequilibria, segregation with outcrossing
shuffles alleles at the same locus and brings populations
closer to Hardy–Weinberg (HW) equilibrium. A first
possible source of departure from HW equilibrium is
dominance between alleles at a selected locus (in par-
ticular when sex is rare). Several models have explored
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the effect of dominance on selection for sex due to the
segregation effect, in infinite populations. Uyenoyama

and Bengtsson (1989) derived conditions for invasion
of a modifier gene increasing the rate of sexual (vs.
clonal) reproduction, when a recurrent lethal mutation
occurs at a second locus. They found that under random
mating, intermediate rates of sex are favored when the
dominance coefficient h of the lethal mutation is , 1

3 ,
while complete sex is favored when h . 1

3 . Otto (2003)
considered a similar model, with arbitrary strength of
selection at the second locus, and showed that the pa-
rameter range where sex is favored shrinks dramatically
when selection becomes weak (in particular, deleterious
mutations have to be nearly additive). Both Uyenoyama

and Bengtsson (1989) and Otto (2003) studied the
effects of partial self-fertilization, which generates de-
partures from HW equilibrium (excess of homozygotes),
and showed that selfing increases the parameter range
where sex is favored. The effects of host–parasite co-
evolution on selection for segregation have been in-
vestigated by Agrawal and Otto (2006), who found
that coevolutionary dynamics are less favorable to segre-
gation than they are to recombination. Finally, Agrawal

(2009) showed that spatial heterogeneity may favor seg-
regation whenever locally beneficial alleles tend to be
dominant, because of the excess homozygosity caused by
spatial selection.

The effect of finite population size (or population
structure) on selection for sex due to segregation has
been little explored. Kirkpatrick and Jenkins (1989)
showed that beneficial mutations may generate an
advantage for sex in diploid populations, since muta-
tions remain in the heterozygous state in asexuals (until
a second mutation occurs), while in sexuals segregation
quickly generates homozygotes for the beneficial allele
(note that this benefit of sex does not occur in infinite
populations, because a small proportion of double
mutants would be produced every generation). Haag

and Roze (2007) compared the equilibrium mutation
load in sexual and asexual finite diploid populations
and showed that the load may be far greater in asexuals
in the parameter range where deleterious mutations
reach fixation in the heterozygous state in asexuals,
while they are still eliminated efficiently in sexuals due
to segregation. However, the fate of a modifier affecting
the rate of sex in such a system was not investigated.
Finite population size may have stronger effects on se-
lection for segregation than it has on selection for
recombination: indeed in the case of recombination,
linkage disequilibrium between loci is generated by the
interplay between random drift and selection (Hill–
Robertson effect) and should be of order sAsB/N be-
tween two loci A and B, where sA and sB measure the
strength of selection acting at these loci and N is
population size (e.g., Barton and Otto 2005; Martin

et al. 2006). By contrast, finite population size tends to
generate an excess of heterozygotes (particularly in

partially clonal populations) even in the absence of se-
lection (e.g., Balloux et al. 2003; Haag and Roze 2007),
and the resulting departure from Hardy–Weinberg
equilibrium should thus be of order 1/N. However, the
relative forces of selection for segregation and re-
combination in finite diploid populations have never
been explored.

Another potentially important factor affecting se-
lection for segregation is mitotic gene conversion
and/or recombination, which occur as a consequence
of DNA repair and tend to generate homozygosity (e.g.,
Mandegar and Otto 2007). A double-strand break
(DSB) is perhaps the most serious damage that can
happen to a DNA molecule. Eukaryotes use two main
pathways to repair such damage: nonhomologous end
joining (NHEJ) involves the detection and ligation of the
two broken ends, but is prone to error and chromosomal
aberrations, while homologous recombination (HR)
uses an homologous sequence as a template for repair,
preferentially from the sister chromatid if the chromo-
some is replicated or from the homologous chromo-
some if the cell is diploid (Liang et al. 1998; Pâques and
Haber 1999; Johnson and Jasin 2001; Helleday 2003;
Aylon and Kupiec 2004). Note that HR may also occur
in response to DNA lesions other than DSBs (Lettier

et al. 2006). Indeed, one of the potential advantages of
HR as a repair process is that in principle HR can cope
with any kind of DNA damage. A consequence of HR is
that a small fragment of the genome is transferred from
the donor template to the repaired chromosome with
heteroduplex DNA being generated to either side of the
break, and this process may cause gene conversion when
the template is the homologous chromosome. Another
possible consequence of HR is crossing over (exchange
of chromosome arms between homologs). Although
HR occurs during both meiosis and mitosis, there are
important differences between meiotic and mitotic HR:
for example, the length of gene conversion tracts may
differ: in yeast mitotic gene conversion tracts are often
.4 kb ( Judd and Petes 1988), longer than meiotic
tracts (�1–2 kb), while in mammals mitotic tracts are
usually short, �200 bp�1 kb (Chen et al. 2007). Fur-
thermore, a large proportion of meiotic HR events
result in crossing over [up to 66% in yeast (Prado et al.
2003)], while this proportion is usually a lot smaller in
the case of mitotic HR [,8% in several model systems
(Richardson et al. 1998; Virgin et al. 2001; Ira et al.
2006; Chen et al. 2007)]. Crossing over occurring at
mitosis (hereafter called ‘‘mitotic recombination,’’ MR)
may render daughter cells homozygous over large por-
tions of the chromosome (Mandegar and Otto 2007).
Such loss of heterozygosity (LOH) events represent
a frequent step in oncogenesis (Gupta et al. 1997;
Tischfield 1997; Hagstrom and Dryja 1999; Holt

et al. 1999; Sieber et al. 2002), which may partly explain
why mitotic crossing over is suppressed. Nevertheless,
mitotic recombination is thought to occur at rate
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�0.8 3 10�4 per cell per generation in yeast (Mandegar

and Otto 2007 and references therein), while LOH
is often observed at a frequency of 10�4–10�5 in nor-
mal cells in vivo, in mice and in humans (Tischfield

1997; Holt et al. 1999; Shao et al. 1999; Carr and
Gottschling 2008). Furthermore, Chamnanpunt

et al. (2001) measured rates of mitotic gene conversion
ranging from 3 3 10�2 to 10�5 in hybrids of the oomycete
Phytophthora sojae. Finally, LOH has been estimated to
occur at rate �10�4 per locus per generation in an
experiment involving mutation-accumulation lines of
asexual Daphnia (Omilian et al. 2006).

To our knowledge, the only model studying the effect
of mitotic recombination on selection for sex was done
by Mandegar and Otto (2007), who showed that the
benefit of sex described in Kirkpatrick and Jenkins

(1989) (creation of homozygotes for beneficial alleles,
by segregation) disappears in the presence of a low rate
of mitotic recombination (which allows homozygotes to
be generated in asexuals). Loss of heterozygosity due to
HR is also a central component of the DNA repair and
mutation complementation hypothesis for the evolu-
tion of sex (Bernstein et al. 1985, 1988). This hypoth-
esis distinguishes between the recombinational and the
outcrossing (segregational) aspects of sex, because it
assumes that these two aspects of sex have different
adaptive functions. According to this hypothesis, the
main function of recombination, in the sense of break-
age and rejoining of DNA molecules, is to repair DSBs
and other kinds of DNA damage, while the function of
segregation with outcrossing is to restore heterozygosity
lost by the repair process (LOH across large portions
of the genome leads to the expression of recessive
deleterious alleles). This hypothesis has been criticized,
notably because recombination without (or with little)
crossing over is possible (mitotic HR only rarely leads to
crossing over) and because double-strand breaks are
actively generated during the initiation of meiotic re-
combination, making it doubtful that the main role of
meiosis is to repair DSBs (Maynard Smith 1988;
Keeney et al. 1997; Barton and Charlesworth 1998;
Keeney and Neale 2006). Nevertheless, loss of hetero-
zygosity occurring within mitotic lineages may generate
a selective force for segregation and outcrossing (due
to the expression of recessive deleterious mutations).
Quantifying this force (which has never been done) is
one of the goals of our study.

In this article, we use a two-locus analytical model to
explore the effects of finite population size and of
mitotic recombination on selection for outcrossed sex
and segregation, focusing on the effect of recurrent
deleterious mutations. This model shows that finite pop-
ulation size generates a selective pressure on a modifier
affecting the rate of sexual vs. asexual reproduction,
mainly due to the fact that drift tends to generate an
excess of heterozygotes in the population (in particular
when the rate of sex is low). This selective force is often

stronger than the deterministic force that has been
described in the case of infinite, randomly mating pop-
ulations (Otto 2003), in particular when deleterious
alleles remain at low frequency. Furthermore, we show
that loss of heterozygosity (due to mitotic gene conver-
sion and recombination) may have important positive
effects on selection for sex if it occurs sufficiently fre-
quently (at rate $ �10�3 per generation), while rates of
LOH # 10�4 have little effect. We then extend our
model to introduce a second selected locus and show
that selection for sex due to the interaction between
selected loci may become important when the deleteri-
ous mutation rate is sufficiently high. These results are
confirmed by multilocus simulations in which deleteri-
ous mutations occur at a large number of loci and where
the rate of sex is free to evolve. Finally, from these
simulation results it appears unlikely that deleterious
mutations alone can allow the maintenance of high
rates of sex when the cost of sex is twofold.

ANALYTICAL MODEL

General setting: Table 1 summarizes the different
parameters and variables of the model. We consider two
loci M and A in a diploid population with nonoverlap-
ping generations. At the start of a generation, the
population consists of N adults. These adults produce
a large number of juveniles, with different fecundities
depending on their genotype at locus A. We assume
that two alleles A and a segregate at this locus and
that genotypes aa, Aa, and AA have (relative) fecund-
ities 1, 1 – hs, and 1 – s (where fecundity is simply the
number of juveniles produced). Allele A is thus delete-
rious, and we assume that mutations from a to A occur
at a rate u per generation and back mutations occur at
rate v. Note that uppercase letters do not refer to dom-
inant alleles, as we consider the case where A is recessive
(h , 1

2 ) and the case where it is dominant (h . 1
2 ).

Locus M controls the proportion of juveniles produced
sexually and asexually: two alleles M and m segregate at
this locus, and individuals of genotype mm, Mm, and MM
produce a proportion s, s 1 hMds, and s 1 ds of
offspring sexually, respectively, and the remainder asex-
ually (i.e., by mitosis). Locus M is thus a modifier locus
affecting the rate of sex (Otto 2003), ds measures
the modifier effect, and hM the dominance of allele
M. Sexual reproduction involves gamete production by
meiosis (we call r the recombination rate between loci
M and A), gamete release in the environment, and
random union of gametes in the whole population.
Except in the simulations, we assume no direct cost of
sex, so that individuals bearing the same genotype at
locus A produce the same number of juveniles, whatever
their genotype at locus M (the modifier has no direct
effect on fitness). Finally, N individuals are sampled
randomly among the large number of juveniles pro-
duced to form the next adult generation. To incorpo-
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rate effects of mitotic recombination, we assume that
a proportion g of juveniles produced asexually have
undergone (unbiased) gene conversion at locus A:
therefore, a proportion g/2 of offspring produced
asexually by Aa heterozygotes are AA homozygotes,
while a proportion g/2 are aa homozygotes. Although
gene conversion occurs at much higher rates during
meiosis than during mitosis (Chen et al. 2007), meiotic
gene conversion would not affect the dynamics (as long
as it is not biased) because it would have no effect on the
frequencies of homozygotes and heterozygotes among
offspring. Loss of heterozygosity does not affect the
modifier locus in the analytical model, but it will do so in
the simulations representing mitotic recombination, as
explained in the next section.

The population is described in terms of allele fre-
quencies and genetic associations. We call pA and pM the
frequencies of alleles A and M, respectively, and qA, qM

the frequencies of alleles a and m. Genetic associations
measure covariances in allelic state between genes pre-
sent at different loci and/or on different chromosomes
of an individual (Barton and Turelli 1991; Kirkpatrick

et al. 2002). They are represented by variables DU,V, where
U and V are sets of loci present on the first and second
haplotypes of a diploid individual. In the context of the

present model, one of the most important association is
DA,A, measuring the covariance in allelic state between the
two genes at locus A in an individual,

DA;A ¼ pAA � p2
A; ð1Þ

where pAA is the frequency of AA homozygotes in the
population (and p2

A is the probability of sampling two A
alleles with replacement from the population). When
DA,A ¼ 0, the population is at Hardy–Weinberg equilib-
rium, while a positive (negative) value of DA,A indicates
an excess (deficit) of homozygotes in the population
(note that DA,A and the more widely used inbreeding
coefficient F are linked by the relation DA,A ¼ FpAqA).
Because population size is finite, allele frequencies and
genetic associations are random variables. In the fol-
lowing, we use the notation Xh i to denote the expected
value of random variable X. A method for obtaining
recursions over the different phases of the life cycle
(selection, gene conversion, reproduction, and drift)
for expected values of allele frequencies, genetic asso-
ciations, and moments of allele frequencies and as-
sociations is presented in supporting information,
Appendix SA—note that this method differs from the
method used by Barton and Otto (2005) and by
Martin et al. (2006) in that it does not assume that the
population remains close to a deterministic trajectory;
however, we assume that population size is large. Re-
cursions for the different moments that affect the
change in frequency of the modifier are given in
Appendix SB. Throughout, we assume that selection is
weak, gene conversion is rare, and population size is
large: s, g, and 1/N are all of order e, where e is a small
term (in the simulations, we explore cases where s,
g?1=N ). We also assume that the rates of sex and re-
combination (s, r) are not too small. Under these
conditions, it can be shown that the population quickly
reaches a state of quasi-equilibrium, where expected
values of genetic associations are small and change very
slowly over time (Nagylaki 1993; Bürger 2000; see
Appendix SA). In that case, associations can be ex-
pressed as functions of allele frequencies and of the
different parameters of the model (e.g., Barton and
Turelli 1991; Kirkpatrick et al. 2002). Finally, we
assume that the modifier has only a small effect on the
rate of sex (ds small) and calculate terms to the first
order in ds only (we thus neglect terms in ds2, ds3, . . .).
These different assumptions are relaxed in the simula-
tion program presented in the next section.

Departure from Hardy–Weinberg equilibrium: Most
of the results of the model can be understood by the
effects of different forces generating departure from
Hardy–Weinberg equilibrium at the selected locus (mea-
sured by DA,A); indeed, the main effect of increasing sex
in our model is to bring the population closer to HW
equilibrium. From Appendix SB, the expected value of
DA,A at quasi-equilibrium (measured after selection and
gene conversion), to the first order in e, is given by

TABLE 1

Parameters and variables

N Population size
s Strength of selection against allele A
h Dominance of allele A
u Mutation rate from allele a to allele A
v Back mutation rate (from A to a)
r Rate of recombination between loci A and M
s Baseline rate of sex in the population
ds Effect of the modifier (allele M)

on the rate of sex
hM Dominance of allele M
g Rate of mitotic gene conversion
x Rate of mitotic crossing over (in simulations)
U Deleterious mutation rate per chromosome

(in simulations)
L Average number of crossovers at meiosis

(in simulations)
c Cost of sex (in simulations): relative fitness

of asexuals in the absence of
deleterious mutation

sinit Initial rate of sex (in simulations)
pA, pM Frequencies of alleles A and M
qA, qM Frequencies of alleles a and m
DA,A Departure from Hardy–Weinberg equilibrium

(excess of homozygotes) at locus A
DMA,A Association between the modifier and

homozygotes at locus A
DMA, DM,A Association between the modifier

and the deleterious allele at locus A,
on the same (DMA) or on the homologous
chromosome (DM,A)

hXit Expected value of random variable X at time t
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hDcnv
A;Ai ¼

1

s
g� 1

2N

� �
hpAqAi � sð1� 2hÞhp2

Aq2
Ai

� �
; ð2Þ

where ‘‘cnv’’ indicates that the association is measured
after selection and gene conversion (see Appendix SA).
Equation 2 isolates the effects of three forces generating
departure from HW equilibrium: selection, gene con-
version, and random drift. As was shown previously
(Otto 2003; Agrawal 2009), selection generates an
excess of heterozygotes (negative DA,A) whenever h , 1

2
(that is, when the deleterious allele is partly recessive):
indeed in that case, the fitness of heterozygotes at locus
A is higher than the average fitness of homozygotes.
When the deleterious allele is partly dominant (h . 1

2 ),
however, selection generates an excess of homozygotes
(positive DA,A). Because gene conversion generates ho-
mozygotes from heterozygotes, it produces a positive
DA,A (term in g in Equation 2). Finally, drift tends to
generate an excess of heterozygotes (negative DA,A),
through the term in 1/(2N) (note that this term does
not involve s and is thus not equivalent to the Hill–
Robertson effect). This effect can be understood by noting
that DA,A can also be written as freq(AA)freq(aa) �
[freq(Aa)/2][freq(Aa)/2]. Random sampling from a
population initially at HW equilibrium (without selec-
tion) may generate an excess either of homozygotes or
of heterozygotes; however, when one homozygote (say
AA) is oversampled, the effect on DA,A is weakened by
the fact that the other homozygote (aa) is likely to be
rarer due to the oversampling of AA. By contrast, when
Aa is oversampled, both terms of the second part of the
expression of DA,A equally contribute toward negative
DA,A. This may be seen most easily by considering a fully
asexual population in which A and a are neutral, and
mutation rates are so small that the population is fixed
most of the time for one of the three genotypes: DA,A¼ 0
when AA or aa is fixed, while DA,A ¼ �0.25 when Aa is
fixed (and thus DA,A is negative, on average). Note that
this asymmetry is not present with LD between two loci,
because the two halves of LD ¼ freq(AB)freq(ab) –

freq(Ab)freq(aB) both involve two different haplotypes
(we are grateful to Sally Otto for offering this explana-
tion). Finally, Equation 2 also indicates that when the
deleterious allele remains rare (pA small), so that the
term p2

Aq2
A

� �
� p2

A

� �
is small relative to pAqAh i � pAh i,

the effect of selection on the departure from HW
equilibrium may be negligible relative to the effects of
drift and/or gene conversion. In particular, p2

Aq2
A

� �
=

pAqAh i should roughly scale with u/(sh) when h . 0 and
s?u, 1/N, so that the relative importance of the three
effects should depend on the relative magnitude of 1/
(2N), g, and u(1 – 2h)/h.

Figure 1 shows the equilibrium value of Dcnv
A;A

D E
=

pAqAh i predicted from Equation 2, in the case of an
infinite population (no drift) and g ¼ 0 (solid curve),
with drift (N¼ 20,000) but no gene conversion (dashed
curve), and with both drift and gene conversion (N ¼
20,000 and g¼ 10�4, dotted curve). In the last two cases,
the value of p2

Aq2
A

� �
= pAqAh i is obtained by numerical

integration over Wright’s distribution of allele fre-
quency at mutation–selection–drift equilibrium (note
that partial asexual reproduction does not affect this
distribution as long as the rate of sex is not too small,
and DA,A is of order e). Figure 1 also shows results from a
simulation program, in which the effects of selection,
mutation, gene conversion, reproduction, and drift on
the frequencies of the three genotypes at locus A are
iterated over a large number (109) of generations,

Dcnv
A;A

D E
and pAqAh i being measured every 100 gener-

ations. These simulation results show that Equation 2
provides accurate predictions of the average departure
from HW equilibrium.

Selection on the modifier: weak selection: From the
methods of Appendix SA, one obtains that the expected
change in frequency of the modifier at generation t, to
leading order in e, is given by

hDpMit � �sð1� 2hÞhDMA;Ait ; ð3Þ

where DMA,A measures the association between allele M
and the two alleles of the same individual at locus A. In

Figure 1.—Average de-
parture from Hardy–Wein-
berg equilibrium at the
selected locus, after selec-
tion and gene conversion,
divided by the average ge-
netic variance at the same
locus, as a function of the
dominance coefficient of
deleterious mutations h (the
right side is a blow-up of
the left). Curves correspond
to analytical predictions from

Equation 2 for different parameter values. Solid curve, deterministic limit (N /‘), no gene conversion (g ¼ 0), the value of pA

at mutation–selection equilibrium is obtained by solving –spA[h 1 (1 – 2h)pA] 1 u ¼ 0; dashed curve, N ¼ 20,000, g ¼ 0; dotted
curve, N ¼ 20,000, g ¼ 10�4. For both the dashed and dotted curves, hpqA

2i/hpqAi is obtained by numerical integration over
Wright’s distribution, fðpAÞ ¼ Ke�2Ns pA ½2h 1 ð1�2hÞpA �p4Nu�1

A q4Nv�1
A , where K is a constant. Squares and circles: simulation results

for N ¼ 20,000, g ¼ 0 (squares) and N ¼ 20,000, g ¼ 10�4 (circles). Other parameter values: s ¼ 0.05, s ¼ 0.5, u ¼ 10�5, v ¼ 10�6.
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Appendix SC, we show that at quasi-equilibrium this
association is positive whenever the frequency of allele
M is higher in homozygotes at locus A than in hetero-
zygotes, while DMA,A is negative whenever the frequency
of M is higher in heterozygotes than in homozygotes.
Noting that –s(1 – 2h) is proportional to the difference
between the average fitness of homozygotes and the
fitness of heterozygotes at locus A, Equation 3 can be
understood easily: allele M can be favored either when
homozygotes have a higher fitness than heterozygotes
[h . 1

2 , so that –s(1 – 2h) . 0] and allele M tends to be
associated with homozygotes (DMA,A . 0) or when
heterozygotes have a higher fitness than homozygotes
(h , 1

2 ) and allele M tends to be associated with
heterozygotes (DMA,A , 0). Note that Equation 3 takes
the same form in an infinite population (Agrawal

2009).
In the following, we focus on the case of an additive

modifier (hM¼ 1
2 ); however, expressions for arbitrary hM

are given in Appendix SB. Using the quasi-equilibrium
approximation, we can derive an expression for DMA;Ah it
as a function of the parameters and moments of allele
frequencies. One obtains

hDMA;Ait

� � ds

2s
hpMqMDcnv

A;Ait �
1 1 2r ð1� rÞ � rs

2N s½1 1 r ð1� sÞ�ð2� rsÞ hpqMAit
� �

;

ð4Þ

where pqMA ¼ pMqMpAqA. The first term of Equation 4 is
equivalent to the expression obtained in the case of an
infinite population: in that case, DMA,A is generated by
the modifier effect (ds) and by the departure from HW
equilibrium (DA,A). This simply stems from the fact that
a modifier increasing sex tends to bring the population
closer to HW equilibrium; therefore if DA,A . 0 (excess
of homozygotes in the population), a modifier allele
increasing sex tends to create more heterozygotes and
thus tends to be more frequent in heterozygotes than in
homozygotes (DMA,A , 0 if ds . 0). If DA,A , 0 (excess
of heterozygotes in the population), a modifier in-
creasing sex creates more homozygotes and is thus
more frequent among homozygotes (DMA,A . 0 if ds .

0). The second term of Equation 4 is generated by drift
and by the modifier effect and involves associations
other than DA,A (in particular, associations hDMA

2i,
hDM,A

2i and hDMADM,Ai, see Appendix SB). This extra
effect comes from the fact that drift generates random
associations between alleles M and A at some gener-
ations and between M and a at other generations.
Because individuals carrying M engage in sex more
often (assuming ds . 0), these random associations
translate into an excess of homozygotes at locus A
among individuals carrying M.

Replacing the first term of Equation 4 by its expres-
sion at quasi-equilibrium, one obtains

hDMA;Ait �
ds

2s2

T1

2N
� g

� �
hpqMAit 1 sð1� 2hÞhpqM pq

2

Ait
� �

ð5Þ
with

T1 ¼
3� 2r 2 1 rð1� sÞð4� rsÞ
½1 1 r ð1� sÞ�ð2� rsÞ . 0; ð6Þ

which simplifies to T1¼ (6 – s)/(4 – s) when r¼ 1
2 (free

recombination). Note that from Equations 3 and 5, the
change in frequency of the modifier is of order dse2.
These equations predict that under weak selection (so
that the quasi-equilibrium approximation holds), in-
creased sex should never be favored in the absence of
drift and gene conversion, as was found previously (e.g.,
Agrawal 2009): when h , 1

2 , increasing sex tends to
produce homozygotes, but homozygotes have a lower
fitness than heterozygotes, while when h . 1

2 , increasing
sex tends to produce heterozygotes, but heterozygotes
have lower fitness. We see in the next section that sex
can nevertheless be favored through terms in dse3 that
may become relatively strong when dominance is weak
and/or sex is rare (the parameter window favoring sex
opening up as selection becomes stronger). From
Equations 3 and 5, drift causes a modifier increasing
sex to be associated with homozygotes at the selected
locus, which favors sex whenever deleterious mutations
are dominant (h . 1

2 ), but disfavors sex when deleteri-
ous mutations are recessive (h , 1

2 ). Finally, gene
conversion favors sex when mutations are recessive (as
increasing sex tends to mask mutations that have
become homozygous due to gene conversion), but
disfavors sex when mutations are dominant.

Figure 2 shows a test of Equation 5 against simula-
tions. The simulation program iterates the effects of
selection, mutation, gene conversion, reproduction (in-

Figure 2.—Average association DMA,A between the modi-
fier and homozygotes at the selected locus (additive modi-
fier), divided by the modifier effect ds and the average
product of genetic variances at both loci, as a function of
the dominance coefficient of deleterious mutations h.
Parameter values are the same as for Figure 1, with r ¼ 0.5,
ds ¼ 0.05.
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cluding a sex modifier), and drift on the 10 two-locus
diploid genotype frequencies (initial population with-
out deleterious mutation and the modifier being in
frequency 0.5) until the modifier frequency is .0.95 or
,0.05, measuring DMA,A and pqMA every 10 generations.
The whole process is repeated until 109 points have been
obtained. To generate the curves of Figure 2, we ne-
glected any correlation in genetic variance at the two
loci (pAqA and pMqM) and thus replaced hpqM pq2

Ai/
hpqMAi by hp2

Aq2
Ai/hpAqAi, which is again obtained by

numerical integration over Wright’s distribution.
Selection on the modifier: weak dominance: The

term on the right-hand side of Equation 3 becomes
vanishingly small as h tends to 1

2 ; in that case, other terms
affecting the change in frequency of the modifier
become predominant. In Appendix SB, we calculate
these terms when both s and h – 1

2 are of order e (‘‘weak
dominance,’’ where ‘‘weak’’ is relative to the strength of
selection s). In that case, the change in frequency of the
modifier is given by

hDpMit � �shðhDMAit 1 hDM;AitÞ � sð1� 2hÞhDMA;Ait ;
ð7Þ

which again takes the same form as in an infinite pop-
ulation (Agrawal 2009). The first term of Equation 7
represents selection on the modifier due to its associa-
tion with the deleterious allele, either on the same
chromosome (DMA) or on the other chromosome of the
same individual (DM,A). As shown in Appendix SC, a
positive value of DMA 1 DM,A means that the frequency
of M is higher in individuals in which the frequency of
the deleterious allele A is higher (which selects against
the modifier). Conversely, when DMA 1 DM,A , 0 the
frequency of M is lower in individuals carrying the
deleterious allele, which favors the modifier through
the first term of Equation 7. Quasi-equilibrium values of
hDMAit and hDM,Ait are given by

hDMAit ¼ �sh
1 1 r ð1� sÞ

rs
hDMA;Ait 1

ds

2N s3 T3hpqMAit
� �

ð8Þ

hDM;Ait ¼ �sh
1� s

s
hDMA;Ait 1

ds

2N s3 T3hpqMAit
� �

ð9Þ

with

T3 ¼
1

2� s
1 1
ð1� sÞ½1 1 2rð1� rÞ � rs�
½1 1 rð1� sÞ�ð2� rsÞ

� �
. 0;

ð10Þ

which simplifies to T3 ¼ 3/(4 – s) when r ¼ 1
2. The first

term within the brackets of Equations 8 and 9 is
equivalent to the expression obtained in the case of an
infinite population: in this case, hDMAi and hDM,Ai have
the opposite sign to hDMA,Ai at quasi-equilibrium. In-
deed, when the frequency of homozygotes at locus A is

higher in the subset of the population that carries allele
M (that is, when DMA,A . 0), selection against the
deleterious allele is more efficient in that subset
(because the variance in fitness is higher). This gen-
erates a negative association between allele M and the
deleterious allele A (DMA, DM,A , 0, meaning that the
frequency of the deleterious allele is lower in individuals
carrying the modifier allele). The magnitude of this
effect increases as r and s decrease, so that the benefit of
better purging remains confined to individuals carrying
allele M. Conversely, when the frequency of heterozy-
gotes at locus A is higher in the subset of the population
that carries allele M (DMA,A , 0), purging becomes less
efficient in that subset, generating positive associations
DMA and DM,A between the modifier and the deleterious
allele. The second term within the brackets of Equations
8 and 9 is an effect of finite population size, which tends
to generate negative values of DMA and DM,A for a
modifier increasing sex (ds . 0). As shown in Appendix
SB, this term is generated by the association hDMA,Mi,
which is itself generated by the combined action of
selection and drift and is positive at quasi-equilibrium.
Indeed, drift generates random associations between
the deleterious allele A and homozygotes at locus M at
some generations (DMA,M . 0) and between A and
heterozygotes at locus M at other generations (DMA,M ,

0). In the first case, selection increases the genetic
variance at locus M (because it increases the frequency
of heterozygotes at locus M), while in the second case
it decreases the variance. Because DMA,M is higher in
absolute value when there is more genetic variance, the
average value of DMA,M after selection is positive. On
average, the deleterious allele A is thus more frequent
in homozygotes at locus M than in heterozygotes;
however, the fact that MM individuals engage in sex
more often with Mm heterozygotes (in which A is less
frequent) than mm individuals (assuming ds . 0) tends
to create a negative association between M and A.
Unfortunately we could not test Equations 8 and 9 by
simulation, because the expected values of DMA and
DM,A are very small (of order dse2), while the variance of
these terms is much larger (of order e, see Appendix
SB). Finally, note that the first term of Equation 7 may be
relatively strong even when dominance is not weak, in
particular when the rate of sex is low (indeed, the first
term scales with 1/s3 while the second term scales with
1/s2) and/or selection is sufficiently strong.

In summary, we have seen that selection on the
modifier involves two effects: the effect of the modifier
on the frequencies of homozygotes and heterozygotes—
term –s(1 – 2h)hDMA,Ai of hDpMi, hereafter called
‘‘selection through effect on genotype frequencies’’—
and the effect of the modifier on the frequency of
the deleterious allele—term –sh(hDMAi 1 hDM,Ai) of
hDpMi, hereafter called ‘‘selection through effect on
allele frequencies’’ (we prefer these terms over the
commonly used ‘‘short-term’’ and ‘‘long-term’’ effects,

Deleterious Mutations and Sex 1101

http://www.genetics.org/cgi/data/genetics.109.108258/DC1/3
http://www.genetics.org/cgi/data/genetics.109.108258/DC1/4
http://www.genetics.org/cgi/data/genetics.109.108258/DC1/3
http://www.genetics.org/cgi/data/genetics.109.108258/DC1/3
http://www.genetics.org/cgi/data/genetics.109.108258/DC1/3
http://www.genetics.org/cgi/data/genetics.109.108258/DC1/3


as we think that they are more explicit). When selection
is weak (s very small), the second effect is expected to be
negligible unless h is close to 1

2 or sex and recombination
are low. Table 2 shows how these two terms are affected
by gene conversion, by finite population size, and by the
departure from HW equilibrium caused by selection,
assuming that the modifier increases sex (ds . 0). In
the case of recessive deleterious mutations (h , 1

2 ),
finite population size and the effect of selection on DA,A

both disfavor sex through the effect on genotype
frequencies but favor sex through the effect on allele
frequencies, while gene conversion has opposite effects.
When mutations are dominant (h . 1

2 ), gene conversion
and the effect of selection on DA,A disfavor sex through
both effects, while finite population size favors sex
through both effects.

The evolutionarily stable rate of sex (that is, the rate
of sex toward which the population should evolve, if
evolution proceeds by small-step mutations) can be
computed by replacing associations in Equation 7 by
their expression at quasi-equilibrium and finding the
values of s for which hDpMi ¼ 0. Solutions at which the
derivative of hDpMi with respect to s is negative
(positive) correspond to stable (unstable) equilibria.
Figure 3 shows these equilibria as a function of h, in
three different cases. In the deterministic limit (N tends
to infinity) and in the absence of gene conversion (g ¼
0), the rate of sex converges to a stable equilibrium line
when h , 1

2 (solid curve), while it converges to s ¼ 0
when h . 1

2 . For N ¼ 20,000, still in the absence of gene
conversion, the situation is similar when h , 1

2 (dashed
curve, corresponding to a stable equilibrium line),
while the rate of sex converges to 1 when h . 1

2 . Finally,
for N¼ 20,000 and a rate of gene conversion g¼ 10�4, a
stable equilibrium line appears for low values of h
(dotted curve) at low values of s, with a sharp increase
around h ¼ 0.2, while an unstable equilibrium line
appears at higher values of h (�0.25–0.5, dashed-
dotted curve). Starting between the dotted and
dashed-dotted curves, the rate of sex should thus

increase to 1, while starting on the right of the
dashed-dotted curve (or below), the rate of sex should
decrease toward zero. For g ¼ 10�3 and g ¼ 10�2, the
part of the stable dotted curve at s¼ 1 extends to h¼ 0,
while the dashed-dotted unstable curve becomes in-
distinguishable from the solid curve. In that case, the
population should thus evolve toward complete sex
(s ¼ 1) from any initial value located above the solid
curve and toward no sex starting on the right or below
the solid curve.

TABLE 2

Effect of the departure from HW equilibrium generated by selection, gene conversion, and finite population
size on the two components of indirect selection acting on the modifier

Selection through effect
on genotype frequencies

Selection through effect
on allele frequencies

h , 1
2 h . 1

2 h , 1
2 h . 1

2

DA,A generated by selection � � 1 �
Gene conversion (term in g) 1 � � �
Finite population size (term in 1/N) � 1 1 1

A ‘‘ 1 ’’ indicates a positive effect on the term�s(1� 2h)hDMA,Ai of the change in frequency of the modifier
(selection through effect on genotype frequencies) or on the term �sh(hDMAi 1 hDM,Ai) (selection through
effect on allele frequencies), in the case of a modifier increasing sex (ds . 0). A ‘‘ � ’’ indicates a negative
effect.

Figure 3.—Long-term evolution of the rate of sex (analyt-
ical prediction from the additive modifier model), as a function
of the dominance of deleterious mutations h. Deterministic
case (N /‘), no gene conversion: s converges to the solid
curve when h , 1

2 and to zero when h . 1
2 . N ¼ 20,000,

g ¼ 0: s converges to the dashed curve (which is at s ¼ 1
for h . 1

2 ). N ¼ 20,000, g ¼ 10�4: the dotted curve is a stable
equilibrium line, while the dashed-dotted curve is an unstable
equilibrium line; s thus converges to a very low value when
h , 0.2, while it converges to one starting between the dotted
and the dashed-dotted curves and to zero starting on the
right of the dashed-dotted curve. When g ¼ 10�3 or g ¼
10�2, the part of the stable dotted curve at s ¼ 1 extends
to h ¼ 0, while the unstable dashed-dotted curve becomes
indistinguishable from the solid curve for h , 1

2 (s still con-
verges to zero when h . 1

2 ). Parameter values are the same as
for Figures 1 and 2.
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The results discussed so far assume additivity at the
modifier locus (hM¼ 1

2 ). Expressions for arbitrary hM are
given in Appendix SB. Analyzing these expressions
shows that in many cases, the direction of selection at
the modifier locus depends both on hM and on allele
frequency at the modifier locus, which may lead to stable
polymorphic equilibria (results not shown). Such situa-
tions (which may involve more than two modifier alleles
being present simultaneously in the population) are not
dealt with by our simple biallelic model (note that effects
of dominance at the modifier locus have been explored
by Otto 2003 in the deterministic case). However, in the
next section we discuss effects of introducing modifier
dominance into our multilocus simulations.

Three-locus model: When deleterious mutations seg-
regate at a large number of loci, interactions between
selected loci may become an important component of
selection for sex (in particular, through the fact that sex
allows recombination between loci). To quantify the
relative effect of interactions between pairs of selected
loci on selection for sex, we extended our model to
include a second selected locus (denoted locus B). Two
alleles b and B segregate at this locus; we assume that
B is deleterious (with the same selection and domi-
nance coefficients as allele A) and that selection is
multiplicative across loci (no epistasis). In such a model,
different genetic associations between loci A and B are
generated by drift and selection. In particular, negative
linkage disequilibrium DAB between alleles A and B due
to the combined action of drift and selection (the Hill–
Robertson effect, e.g., Hill and Robertson 1966;
Barton and Otto 2005) generates a selective force
for increased sex and recombination. Furthermore,
genetic drift generates a correlation in homozygosity
between loci A and B (measured by association DAB,AB).
Sex tends to break this correlation (decreasing the
frequency of double homozygotes and double hetero-
zygotes), which is disadvantageous whenever h 6¼ 1

2 :
indeed, genotypes homozygous at one selected locus
and heterozygous at the other have a lower fitness than
the average of double heterozygotes and double homo-
zygotes when h 6¼ 1

2 (e.g., Roze 2009). Other types of
associations between loci A and B are also generated by
selection and drift. Results from the three-locus model
(for the case of an additive modifier) are presented in
Appendix SD. These results show that although the
selective force on sex generated by the interaction
between two selected loci is smaller in magnitude than
the selective force generated by each locus separately,
the overall effect of interactions between loci may
become important when the deleterious mutation rate
U is high, so that many loci segregate for deleterious
alleles: indeed in that case, the number of pairs of
segregating loci may by greater than the number of loci
by several orders of magnitude.

To leading order in e, the change in frequency of the
modifier at quasi-equilibrium is given by

hDpMit � �sð1� 2hÞ
X

A

hDMA;Ait 1 s2ð1� 2hÞ2
X
A;B

hDMAB;ABit ;

ð11Þ
where the first sum is over all segregating loci, and the
second sum is over all pairs of loci. The association
hDMAB,ABi is negative for a modifier increasing sex,
reflecting the fact that sex tends to break correlations
in homozygosity between loci A and B (as discussed
above). Note that associations hDMA,Ai are also affected
by interactions among pairs of loci, this effect also
disfavoring sex whenever h 6¼ 1

2 (see Appendix SD). As a
result, one obtains that when h 6¼ 1

2 , sex becomes
less favorable when selection becomes weaker and
the mutation rate U higher, so that the number of
segregating loci becomes larger (see figures in Appen-
dix SD). Note that when U is sufficiently large, it is likely
that higher-order associations (such as DMABC,ABC,
DMABCD,ABCD, . . .) would also become important; how-
ever, it seems difficult to obtain general predictions
about the effects of such associations.

When dominance is weak, the change in frequency of
the modifier is affected by many associations (given in
Appendix SD), among which is the linkage disequilib-
rium hDABi generated by the Hill–Robertson effect.
Again, one obtains that the overall effect of these
associations increases with U and may widen the pa-
rameter range in which sex is favored (in particular as
the strength of selection increases and as rates of sex
and recombination decrease). Interestingly, linkage dis-
equilibrium hDABi seems to be only a minor component
of selection for sex due to interactions between selected
loci (see Figure D3 in Appendix SD), as many other
associations produced by selection and drift generate
selection for sex (see Appendix SD for further details).

MULTILOCUS SIMULATIONS

Description of the program: Our simulation pro-
gram (written in C11 and available upon request) uses
a similar setting as in Roze (2009). The population is
made of N diploids, each possessing two copies of one
chromosome. Values of N chosen in the simulations
(between 10,000 and 50,000) were sufficiently large so
that they appear realistic at least for some species, while
sufficiently small so that execution time of the program
remains reasonable. Each chromosome is represented
by a table of real values between 0 and 1, indicating
the positions of deleterious mutations present on the
chromosome (0 and 1 corresponding to the chromo-
some ends); the number of loci at which mutation can
occur is thus effectively infinite. Each generation, the
number of new mutations occurring on a given chro-
mosome is sampled from a Poisson distribution with
parameter U (and the position of each mutation is sam-
pled in a uniform distribution). A sex modifier locus is
located at the midpoint of the chromosome (in position
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0.5); alleles at this locus are represented by real values
between 0 and 1. At the start of a generation, each
individual becomes either fully sexual (that is, all of its
offspring will be produced sexually) or fully asexual, the
probability of becoming sexual being given by the
average of the values of its two alleles at the modifier
locus (in the following we also consider dominance
effects between modifier alleles). Note that this scenario
is slightly different from our analytical model, where a
given individual may reproduce both sexually and
asexually. The next generation is produced as follows.
For each of the N individuals of the next generation, an
individual is sampled randomly among the present
generation; if a random value between 0 and 1 is ,w/
wmax, where w is the fecundity of the individual and wmax

the maximal fecundity in the population, the sampled
individual is chosen to be the mother of the new
individual (otherwise, another individual is sampled,
until the test is satisfied). Fecundity is given by

w ¼ dcð1� hsÞnHeð1� sÞnHo ; ð12Þ

where nHe and nHo are the numbers of deleterious
mutations present in the heterozygous and homozygous
state in the individual, and where dc¼ 1 in sexuals, while
dc ¼ c $ 1 in asexuals. The parameter c allows us to
introduce a direct cost of sex: for example, in an
oogamous hermaphroditic species, and under random
mating, individuals are expected to invest half of their
resources into male gametes that do not bring any
resource to the next generation. In this case (and all else
being equal) an asexual female may thus produce twice
as many eggs as an hermaphrodite (in which case c¼ 2).
If the mother is sexual, then a second individual is
sampled among all sexuals of the present generation
using the procedure described above, to serve as a
father. Recombinant chromosomes are then produced
in both mother and father: the number of crossovers
occurring at meiosis is sampled from a Poisson distri-
bution with parameter L (genome map length), the
position of each crossover being random. If the mother
is asexual, in the absence of gene conversion the
genotype of the offspring is exactly the same as the
mother’s genotype. With gene conversion (g . 0), each
mutation present in the heterozygous state becomes
homozygous for one of the two alleles with probability
g/2 (gene conversion thus occurs independently at the
different loci). We also considered the case of mitotic
crossing over (in a separate program): in that case, we
assume that every time an individual is produced
asexually, a mitotic crossover occurs with probability x

per chromosome (its position along the chromosome
being random). If a crossover occurs, the offspring
becomes homozygous for all loci located between the
crossover position and the distal part of the chromo-
some (we assume that the centromere is located at
position 0.25), including the modifier locus. Which of

the two parental chromosomes is used as a template is
random (note that the parameter x is thus really the rate
of mitotic crossovers that lead to loss of heterozygosity).
Gene conversion is not implemented in the program
that includes mitotic crossing over (note that the
analytical model presented in the previous section does
not differentiate between gene conversion and mitotic
crossing over, as it represents only a single selected
locus).

Each parameter combination is run one time. During
the first 2000 generations of a run, all individuals have
the same allele at the modifier locus, coding for a rate of
sex sinit. These 2000 generations are generally sufficient
to reach mutation–selection–drift balance, except when
sinit is too low and mutations accumulate (these cases
will be discussed). Then, during the next 2 3 106 gen-
erations, mutations occur at rate 10�4 per generation at
the modifier locus. When a mutation occurs, with
probability 0.5 the rate of sex coded by the new allele
is sampled in a uniform distribution between 0 and 1,
while with probability 0.5 it is sampled in a uniform
distribution between sold – 0.1 and sold 1 0.1, where
sold is rate of sex coded by the parent allele. The average
rate of sex in the population (average value of modifier
alleles), average fitness, number of mutations per chro-
mosome, and number of fixed mutations are recorded
every 100 generations. Because we assume no back mu-
tation, fixed mutations do not contribute to selection on
the modifier locus and are removed from the popula-
tion to increase execution speed. The evolutionarily
stable rate of sex is then obtained by averaging over the
last 1.9 3 106 generations (averaging over the last 106

generations yields very similar results). Error bars are
computed using Hastings’ (1970) batching method,
dividing the 1.9 3 106 generations into 10 batches and
calculating the standard error over the 10 averages
(these error bars are often of similar size as the symbols
used in the figures). In the absence of selection (U ¼ 0,
c ¼ 1), we checked that the average rate of sex at
equilibrium is 0.5 (results not shown).

General results: Figure 4 shows the effects of the
dominance coefficient of deleterious mutations (h) and
the rate of mitotic gene conversion (g) on the average
rate of sex at equilibrium (s) starting from sinit ¼ 1, for
U ¼ 0.05 (left) and U ¼ 0.5 (right). In the absence of
gene conversion (solid squares in Figure 4), the rate of
sex evolves toward zero when deleterious alleles are
completely (or nearly completely) recessive (h� 0–0.1);
deleterious mutations then accumulate in the hetero-
zygous state, and the simulation is stopped before 2 3

106 generations, as the program becomes very slow.
Higher values of h lead to greater rates of sex, s reaching
a plateau when 0.3 # h # 1. For U¼ 0.05 (Figure 4, left),
the average rate of sex does not depart from the neutral
expectation (dashed-dotted line) when h $ 0.2; in this
case, the selective pressure for sex is very weak unless s is
very small, and dynamics at the modifier locus are
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mainly driven by random drift. Because Figure 4 does
not inform us about selection for sex when h $ 0.2, we
used a modified version of the program to obtain an
estimate of this selective force when only two alleles
segregate at the modifier locus and obtained results that
are compatible with predictions from our two-locus
model (see Appendix SE). When U ¼ 0.5 (Figure 4,
right), the rate of sex evolves toward relatively high
values when h $ 0.3, while the two-locus model predicts
that high rates of sex should not be favored unless h $

�0.45 (Figure 3, dashed line). This discrepancy does
not come from the fact that Figure 3 was assuming free
recombination: indeed, modifying the program to have
free recombination among loci has only very little effect
on the results (not shown). Rather, selection for sex
when 0.3 # h # 0.45 is probably a consequence of
interactions between selected loci: indeed, our three-
locus model (Appendix SD) indicates that the effect of
such interactions is relatively important when U ¼ 0.5
and that it tends to widen the range of values of h for
which high rates of sex are favored. Furthermore, we
modified our simulation program to eliminate benefits
of recombination (by keeping the sL product constant
among individuals) and obtained that sex was not
favored unless h . 0.4 in this modified program (see
Figure F2 in Appendix SF). Note that our three-locus
model still does not predict that s should be .0.5 when
0.3 # h # 0.4 (Figure D4 in Appendix SD, with U ¼ 0.5,
s ¼ 0.05); this may be due to the fact that we computed
some three-locus associations under the assumption
that dominance is weak (see Appendix SD) and the
resulting expressions may thus not be precise when h ,

0.4; alternatively, it may be an effect of interactions
among more than two selected loci.

It can be noted that the average rate of sex reaches a
plateau at s� 0.6 when h $ 0.5 (for U¼ 0.5 and g¼ 0),
while both the two- and three-locus models predict an
evolutionarily stable rate of sex at s¼ 1 in this case. This
difference is likely to be due to the fact that the strength
of selection for sex decreases very fast as s increases
(selection through effect on genotype frequencies

decreases as 1/s2, while selection through effect on
allele frequencies decreases as 1/s3). For example, the
three-locus model predicts a selection gradient for sex
[measured by sM ¼ hDpMi=hðds=2ÞpqMi] �5 3 10�5

when h ¼ 0.5 and s ¼ 0.5 (under free recombination
and other parameters as in Figure 4, right) and �3 3

10�6 when s ¼ 1. Selection between alleles coding for
different, high rates of sex is thus extremely weak, and
the change in frequencies of these alleles will be
dominated by random drift (this is confirmed by the
fact that the rate of sex fluctuates widely over the course
of a simulation, as shown in Appendix SF). Drift at the
modifier locus thus prevents the average rate of sex
from reaching 1 (reducing the mutation rate at the
modifier locus from 10�4 to 10�5 has little effect on the
results—not shown).

The qualitative effects of mitotic gene conversion
match the predictions of the analytical model: gene
conversion tends to increase sex when deleterious muta-
tions are recessive and to decrease sex when mutations
are dominant. Figure 4 shows that a rate of gene
conversion of 10�4 has little effect on the results (solid
circles), while a rate of 10�3 has much more of an effect
(open squares). Although our analytical model (assum-
ing ds small) predicts an unstable equilibrium when g .

0 and h , 1
2 (dashed-dotted curve in Figure 3), it is not

clear how this should affect the dynamics in the sim-
ulations, since mutation at the modifier locus may
generate new alleles coding for any rate of sex. For all
points shown in Figure 4 (for which the initial rate of sex
was set to sinit ¼ 1), we performed additional simu-
lations with an initial rate of sex sinit ¼ 0.01. This led to
very similar quantitative results when U ¼ 0.05 (corre-
sponding to Figure 4, left) except for h¼ 0 and g¼ 10�3,
in which case s goes to zero (not shown). In this last case
mutation–selection equilibrium is not reached during
the preliminary generations of the simulation, as muta-
tions accumulate in the heterozygous state within nearly
clonal lineages, generating a very strong segregation
load that prevents sex from increasing. Similar results
are obtained when U ¼ 0.5 and sinit ¼ 0.01, except that

Figure 4.—Average rate
of sex observed in multilo-
cus simulations, as a func-
tion of the dominance
coefficient of deleterious
mutations (h) and for dif-
ferent rates of mitotic
gene conversion (g): solid
squares, solid lines, g ¼ 0;
solid circles, dashed lines,
g¼ 10�4; open squares, dot-
ted lines, g ¼ 10�3 (note
that lines simply connect

simulation results and do not correspond to analytical predictions). Left, U ¼ 0.05; right, U ¼ 0.5. Other parameter values:
N ¼ 20,000, s ¼ 0.05, L ¼ 10 (this high value is chosen to mimic multiple chromosomes), sinit ¼ 1, c ¼ 1 (no direct cost of
sex). The dashed-dotted line represents the average rate of sex in the absence of selection (direct or indirect) at the modifier
locus (s ¼ 0.5).
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mutation accumulation during the preliminary gener-
ations occurs for all values of h between 0 and 0.3,
preventing sex from increasing. When h $ 0.4, the rate
of sex reaches similar average values as when sinit ¼ 1
(not shown). When sinit is set to 0.05, results for h ¼ 0.3
become similar to results obtained when sinit¼ 1 (while
mutations accumulate during preliminary generations
when h # 0.2).

Results presented in Figure 4 (and in the next figures)
assume additivity at the modifier locus. Incorporating
dominance effects between modifier alleles in a very
general way is difficult in the framework of our simu-
lation model, because the dominance relationships be-
tween all segregating alleles need to be specified. To
have an idea of how dominance at the modifier locus
may affect our results, we modified our simulation pro-
gram so that each modifier allele i codes for a rate of sex
si and has a ‘‘dominance coefficient’’ ui, which is sam-
pled from a uniform distribution between 0 and 1 for
each new allele. The probability that an individual
reproduces sexually is then given by (u1s1 1 u2s2)/
(u1 1 u2), where s1, u1 and s2, u2 refer to the two
modifier alleles of the individual. We ran this modified
program for the parameter values corresponding to the
solid squares in Figure 4 (g¼ 0, U¼ 0.05, and U ¼ 0.5);
however, the results obtained from the two programs
were almost undistinguishable (results not shown). Still,
it is possible that dominance at the modifier locus would
have more effect if it was modeled differently (in par-
ticular, our modified program still implies some form of
average additivity).

Figure 5 shows the effect of the rate of mitotic
crossing over x on the average rate of sex, when U ¼
0.5. One can see that x ¼ 10�3 has less effect than g ¼
10�3 (in particular in the case of recessive mutations).
Indeed, mitotic crossing over leads to LOH at loci
located between the crossover and the distal part of the
chromosome only: therefore, the average rate of LOH
per locus and per asexual generation is lower for x ¼
10�3 than for g ¼ 10�3.

Effects of N, L, s: Figure 6 shows the effect of varying
population size N, genome map length L, and the
strength of selection against deleterious mutations s,
when g ¼ x ¼ 0. Changing N from 104 to 5 3 104 has
only little effect on the average rate of sex when h $ 0.3
(Figure 6, top left). This may be due to the fact that
increasing N has two opposite effects: it decreases the
strength of indirect selection acting on the modifier
(that favors high rates of sex when h $ 0.3), but it also
decreases the effect of drift at the modifier locus (that
tends to bring the rate of sex closer to 0.5), and the two
effects may cancel each other. When h , 0.3, de-
creasing N increases the range of values of h for which
the population evolves toward asexuality. This effect
may be due to the fact that when a modifier allele
coding for a low rate of sex reaches high frequency
(either by selection or by drift), deleterious mutations

can accumulate in the heterozygous state (in particular
when h is low), which prevents the rate of sex from
increasing back (as it generates a strong segregation
load). This effect should be stronger for smaller pop-
ulation sizes (because mutation accumulation occurs
faster). Effects of map length L are shown in Figure 6,
top right. For intermediate values of h, decreasing map
length L tends to increase the rate of sex. This is
predicted by the two-locus model, as selection on the
modifier through its effect on allele frequency (term
in DMA 1 DM,A) becomes stronger when linkage is
tighter, while recombination has less effect on selec-
tion through effect on genotype frequency (term in
DMA,A); note that the three-locus model also predicts
more selection for sex with tighter linkage (Appendix
SD). When h is low, however, low recombination
increases the speed of mutation accumulation, which
tends to trap the population in the asexual state (as
discussed above): for h ¼ 0.2, the population evolves
toward asexuality when L ¼ 0.1 and L¼ 1, while L ¼ 10
allows sex to be maintained (results under free re-
combination are very similar to L ¼ 10, not shown).
Note that for L¼ 0.1 and h $ 0.2, deleterious mutations
fix in the population, at relatively high rates for high
values of h (see additional results in Appendix SF).
Finally, Figure 6 shows that increasing s leads to higher
rates of sex, which is expected since the relative effect
of selection through effect on allele frequencies in-
creases with s (Equations 7–9). Furthermore, low values
of s facilitate the accumulation of mutations in the
heterozygous state when h is low, which again may trap
the population in the asexual state. Finally, Figure 6
shows that the population evolves toward low sex when
s is low and h is high (dotted line in Figure 6, bottom).
This effect is not expected from the two-locus model,
but can be explained in terms of interactions between
pairs of selected loci (three-locus model): indeed, we
have seen that sex tends to break correlations in homo-

Figure 5.—The same as Figure 4 for U ¼ 0.5 and for differ-
ent rates of mitotic crossing over: solid squares, solid lines, x¼
0; solid circles, dashed lines, x ¼ 10�3; open squares, dotted
lines, x ¼ 10�2.
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zygosity among selected loci (which disfavors sex when-
ever h 6¼ 1

2 ) and that this effect should predominate
over other effects of interactions between loci when s is
sufficiently small (see Appendix SD).

Epistasis: Interactions between selected loci may also
have important effects on selection for sex in the
presence of epistasis. Appendix SG shows simulation
results incorporating epistasis, assuming epistasis is the
same among all pairs of loci and neglecting higher-
order epistasis (i.e., epistatic effects between more than
two loci). These results indicate that negative additive-
by-additive epistasis favors sex (even when large in
absolute value), while negative additive-by-dominance
and dominance-by-dominance epistasis tends to disfa-
vor sex. These results are discussed more at length in
Appendix SG.

Costly sex: The previous results assumed that sex had
no intrinsic cost. Figure 7 presents the average rate of
sex as a function of the cost of sex c (recall that c ¼ 1
means no cost, while a twofold cost corresponds to c ¼
2), for a genomic mutation rate U ¼ 1. In Figure 7, left,
mutant alleles at the modifier locus may code for any
rate of sex between 0 and 1 (as in previous results). In
the case of additive deleterious alleles (h ¼ 0.5), s

decreases sharply as c becomes .1, but then decreases
slowly as c increases to 2. When the average rate of sex
is ,0.2, however (that is, when c $ �1.2), deleterious
mutations accumulate in the population: the numbers
of fixed mutations after 2 3 106 generations are �130,
2700, 9000, and 57,000 for c ¼ 1.2, 1.3, 1.5, and 2,
respectively (Appendix SF provides more detailed re-
sults), and mutational meltdown may thus lead to the

Figure 6.—Average rate
of sex observed in multilo-
cus simulations, as a func-
tion of the dominance
coefficient of deleterious
mutations (h), in the ab-
sence of gene conversion
or mitotic recombination
(g ¼ x ¼ 0). Top left, dif-
ferent values of popula-
tion size N: dotted line,
N ¼ 10,000; solid line, N ¼
20,000; dashed line, N ¼
50,000. Top right, different
values of genome map length
L: solid line, L ¼ 10; dashed
line, L¼ 1; dotted line, L¼
0.1. Bottom: different val-
ues of the strength of se-
lection against deleterious
alleles s: dotted line, s ¼
0.01; solid line, s ¼ 0.05;
dashed line, s ¼ 0.1. Other
parameter values are U ¼
0.5, c ¼ 1, N ¼ 20,000
(top right and bottom),

L ¼ 10 (top left and bottom), and s ¼ 0.05 (top). Note that when s ¼ 0.01 (bottom, dotted line), deleterious mutations fix
in the population at a high rate for h ¼ 0.7–1 (see Appendix SF).

Figure 7.—Average rate
of sex observed in multilo-
cus simulations, as a func-
tion of the cost of sex (c)
and for different values of
the dominance coefficient
of deleterious mutations
(h): solid squares, solid
lines, h ¼ 0.5; solid circles,
dashed lines, h ¼ 0.4; open
squares, dotted lines, h ¼
0.3; open circles, dashed-
dotted line, h ¼ 0.2 (left

panel only). Left, mutant alleles at the modifier locus can take any value between 0 and 1; right, competition between fully sexuals
(s¼ 1) and fully asexuals (s¼ 0). Other parameter values: U¼ 1, g¼ x¼ 0, and other parameters as in Figures 4 and 5. Error bars
are smaller than the size of symbols.
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extinction of the population (changing population size
from N¼ 20,000 to N¼ 50,000 leads to similar results, as
shown in Appendix SF). When deleterious alleles are
recessive (h , 0.5), s is similar to the value obtained for
h ¼ 0.5 when c is not too high, but for high costs of sex
the population becomes fully asexual. As discussed
previously, this is probably due to the fact that when a
mutation coding for no or very little sex happens to
reach a high frequency (for example, because it oc-
curred on a good genetic background), mutations start
accumulating in the heterozygous state, leading to an
irreversible process (sex cannot increase again because
the segregation load is too strong). Note that it is pos-
sible that asexual mutants would eventually invade at
lower values of c, if the simulation could run for a larger
number of generations. Figure 7, right, shows the aver-
age frequency of fully sexual individuals (s ¼ 1), when
fully asexuals (s ¼ 0) occur at rate 10�4 per generation
(back mutations also occurring at rate 10�4). Patterns
are similar, except that when h , 0.5 asexual mutants
invade at lower values of c (which may simply be due to
the fact that asexual mutants appear more rapidly in the
population than in the previous case). Additional
results for U ¼ 0.5, g ¼ 0, and g ¼ 10�3 are presented
in Appendix SF, showing that mitotic gene conversion
has little effect on these results. Introducing negative
additive-by-additive epistasis increases the mean rate of
sex for low to intermediate values of c (see Appendix
SF); it also prevents the accumulation of deleterious
alleles, allowing sex to be maintained at intermediate
levels when mutations are recessive and the cost of sex is
high (Figure F3, bottom right, in Appendix SF).

DISCUSSION

Two-locus model: Deleterious mutations have been
repeatedly presented as a potentially important factor
favoring sex and recombination, either due to determin-
istic interactions among mutations (synergistic epistasis,
e.g., Kondrashov 1988) or due to stochastic effects (e.g.,
Keightley and Otto 2006); however, many of these
earlier models focused on the case of haploid organisms
and did not investigate what should be the evolution-
arily stable rate of sex in the population (in particular
when sex is costly). In this article, we have explored the
effects of deleterious mutations on the direction and
strength of selection acting on a modifier gene affecting
the rate of sexual (vs. asexual) reproduction, in a finite
diploid population. Some of these effects stem from the
fact that sex tends to bring the population closer to HW
equilibrium at each selected locus (segregation). Otto

(2003) has shown that in an infinite, randomly mating
population, dominance generates departures from HW
equilibrium that may favor sex when deleterious muta-
tions are weakly recessive. Finite population size also
generates departures from HW equilibrium (excess of
heterozygotes), and we have shown that this effect favors

sex when deleterious mutations are dominant or weakly
recessive. It is important to stress that this stochastic
effect is not the intralocus equivalent of the Hill–
Robertson effect that generates negative linkage dis-
equilibrium between loci, as the Hill–Robertson effect
requires the interaction between selection and drift and
tends to be smaller in magnitude than departures from
HW equilibrium generated by drift alone. Because the
effect of finite population size is proportional to the
genetic variance at each selected locus, it may dominate
over the deterministic departure from HW equilibrium
generated by selection, which is proportional to the
square of genetic variance. In particular, our expres-
sion for hDA,Ai at quasi-equilibrium (Equation 2) shows
that the stochastic effect of finite population size should
dominate over the deterministic effect of selection
whenever 1=ð2N Þ?sð1� 2hÞhp2

Aq2
Ai=hpAqAi. In the de-

terministic limit and when h . 0, hp2
Aq2

Ai/hpAqAi � u/
(hs), and the last condition thus becomes independent
of s. With finite N, numerical integration over Wright’s
distribution shows that s(1 – 2h)hp2

Aq2
Ai/hpAqAi is also

unaffected by s over a wide range of values of s (results
not shown): therefore, increasing s will not increase the
relative effect of the deterministic term over the stochas-
tic term. We measured deleterious allele frequencies
at segregating loci in our multilocus simulations for N ¼
20,000, U ¼ 0.5, s ¼ 0.05, and h ¼ 0.2, 0.3, and 0.4 and
found that hpAi � 3.6 3 10�4, 2.7 3 10�4, and 2.2 3 10�4,
while hp2

Aq2
Ai/hpAqAi � 1.4 3 10�3, 9.3 3 10�4, and 7.2 3

10�4 for h ¼ 0.2, 0.3, and 0.4 (respectively). From this
(and from Equation 2), one finds that the deterministic
and stochastic terms are of similar orders of magnitude
(for these parameter values), the deterministic term
being slightly stronger than the stochastic term for h ¼
0.2, while it is weaker for h ¼ 0.3 and 0.4. Note, however,
that other associations than DA,A generate selection
for sex in finite populations (such as the variance in
DMA, see Equation B2 in Appendix SB).

Heterozygote excess: This work raises the question of
the occurrence of heterozygote excess within popula-
tions. Equation 2 indicates that DA,A should be only very
slightly negative in fully sexual, randomly mating pop-
ulations, while it may by more strongly negative when
sex becomes rare. Negative FIS values (indicating local
excess of heterozygotes) have indeed been measured in
some partly or fully clonal populations (e.g., Prugnolle

et al. 2005; Guillemin et al. 2008). Many other studies
have reported positive FIS values, often interpreted as
‘‘inbreeding’’. However, positive FIS may be generated by
different processes, with different consequences of the
evolution of sex modifiers. Self-fertilization (or mating
within families before dispersal) will generate excess of
homozygotes, favoring sex when deleterious mutations
are recessive (Otto 2003; Agrawal 2009) because sex
tends to mask these mutations. Positive FIS may also
result from population substructure into smaller pan-
mictic units (the Wahlund effect). In this last case,
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heterozygote excess may occur at the level of these units
(in particular in facultative sexuals), generating a sel-
ective force on sex similar to the one described in this
article (assuming that competition occurs at least partly
at the scale of the panmictic units). The effects of pop-
ulation structure on selection for sex in diploids will be
explored further in a future article.

Interactions between selected loci: Indirect selection
on a sex modifier locus is also affected by associations
involving the modifier and several selected loci. In
particular, finite population size tends to generate cor-
relations in homozygosity that are broken down by sex:
in the case of two selected loci, sex tends to decrease the
frequency of double homozygotes (hom–hom) and dou-
ble heterozygotes (het–het) at these loci and to increase
the frequency of homozygotes at one locus and het-
erozygotes at the other (hom–het). In the absence of
epistasis, the average fitness of hom–het genotypes is
lower than the average fitness of hom–hom and het–
het genotypes whenever h 6¼ 0.5 (Figure 4 in Roze

2009), selecting against sex through the term s2(1 �
2h)2hDMAB,ABit in Equation 11. In particular in the case
of partially recessive deleterious alleles, finite popula-
tion size tends to generate associative overdominance
between chromosomes carrying deleterious mutations at
different loci. In the same way as overdominance at a
single locus selects against sex (due to segregation load),
associative overdominance also disfavors sex because
sex generates lower fitness hom–het mixtures from
parents heterozygous at many loci (we thank Sally Otto
for pointing out this analogy). The effect of such
associations involving two or more selected loci may
become important when deleterious alleles segregate at
many loci (high U). It becomes also particularly impor-
tant when sex occurs very rarely and deleterious muta-
tions accumulate in the population. As was found before
(Charlesworth et al. 1993a,b; Charlesworth and
Charlesworth 1997), we observed in our simulations
that when h is sufficiently low, deleterious mutations
accumulate in the population without reaching fixa-
tion: different types of strongly mutated chromosomes
are then maintained in the population by associative
overdominance, which strongly selects against sex. This
generates an irreversible process, for when an allele
coding for no sex (or very little sex) reaches high fre-
quency, the population starts to accumulate recessive
deleterious alleles in the heterozygous state, preventing
sex from increasing back (this accumulation occurs
faster when s and h and N and L are low and when U is
high). This is particularly problematic when sex has a
strong direct cost, in which case a mutation coding for
low sex may quickly reach high frequency if it occurs
on a genetic background carrying only few mutations.
Indeed, our multilocus simulations show that when h ,

0.4, the rate of sex always goes to zero when the cost of
sex is sufficiently high. Estimates of average dominance
coefficients of deleterious alleles vary widely, ranging

from 0.1 to 0.4 in mutation-accumulation studies (e.g.,
Houle et al. 1997; Garcı́a-Dorado and Caballero

2000; Vassilieva et al. 2000; Garcı́a-Dorado et al. 2004;
Halligan and Keightley 2009), while fitness assays of
spontaneous mutations in yeast indicate an average h of
�0.2 (Szafraniec et al. 2003). Taken together, these
results suggest that h is likely to be ,0.4 on average.

Other types of interactions among selected loci favor
sex, however, and may be stronger than the effect of
breaking correlations in homozygosity, in particular
when h . �0.2–0.3, selection is not too weak, and/or
rates of sex and recombination are small. Among these
interactions are negative linkage disequilibria generated
by the Hill–Robertson effect (Hill and Robertson

1966; Barton and Otto 2005; Keightley and Otto

2006), favoring increased recombination. However,
our quasi-equilibrium results indicate that selection
for sex is also driven by many other associations be-
tween pairs of selected loci (also generated by selec-
tion and drift), the linkage disequilibrium hDABi being
only a minor component of selection for sex (see
Figures D2 and D3 in Appendix SD). Similar results
were obtained in a previous model on the evolution of
recombination modifiers in diploid, spatially structured
populations (Roze 2009), the major difference being
that associations hDMA,Ai, hDMB,Bi are much stronger
and play a more important role in the evolution of sex
modifiers than in the evolution of recombination
modifiers.

Previous multilocus simulation models on the evolu-
tion of sex in finite, haploid populations found that
selection for sex (measured by the probability of fixa-
tion of a modifier increasing sex or recombination
relative to the fixation probability of a neutral mutation)
increases with population size (Keightley and Otto

2006; Gordo and Campos 2008). Here, we found that
increasing population size may increase the average rate
of sex when deleterious mutations are partially recessive
(because increasing population size slows the buildup of
associative overdominance that disfavors sex), but not
when mutations are additive (compare, for example,
Figure 7, left, and Figure F3, bottom left, in Appendix
SF). Hence, increasing population size may have differ-
ent effects on relative fixation probabilities of sex
modifiers and on the evolutionarily stable rate of sex
(note that the diffusion approximation for the relative
fixation probability is 2sMNe for sM?1=Ne, which may
increase as N increases, even if sM decreases).

Effects of loss of heterozygosity: We have also ex-
plored the effects of loss of heterozygosity due to mitotic
gene conversion and/or mitotic recombination and
found that it tends to favor sex when deleterious muta-
tions are recessive (because sex tends to mask muta-
tions that have been made homozygous by mitotic gene
conversion/recombination). However, our results in-
dicate that without a cost of sex (c ¼ 1), this effect is
important only for rates of mitotic gene conversion of
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the order $10�3 and rates of mitotic crossing over of the
order $10�2 (Figures 4 and 5). These values are higher
than most available estimates on rates of loss of hetero-
zygosity (Tischfield 1997; Shao et al. 1999; Holt et al.
1999; Omilian et al. 2006; Mandegar and Otto 2007;
Carr and Gottschling 2008), suggesting that the
consequence of such events on the evolution of sex in
the presence of deleterious mutations may be limited.
Furthermore, we found that mitotic gene conversion
does not affect much our results when sex is costly (see
Appendix SF). Nevertheless, it would be interesting to
obtain more data about rates of mitotic recombination,
as only few estimates are available (in particular one
could imagine that mitotic recombination could be
more frequent in more stressful environments, if DNA
damage occurs more frequently). Finally, effects of
LOH on selection for sex are very similar to the effects
of self-fertilization (described in Otto 2003; Agrawal

2009) and should become negligible in partly selfing
populations (as rates of LOH are typically much lower
than selfing rates).

Conclusion: Taken together, our results cast doubt
on the hypothesis that deleterious mutations could
allow the maintenance of high rates of sex in the face of
strong costs (in diploids). Although the idea that the
twofold cost of sex can be paid if U $ 1 is often
encountered in the literature, it is not always remem-
bered that this result assumes synergistic epistasis
among mutations (Kondrashov 1988), while the data
available do not show any clear trend toward synergism
among mutations (e.g., Elena and Lenski 1997; Rice

2002). Our simulation results for U ¼ 1 and c ¼ 2
indicate that a low rate of sex can be maintained when
deleterious alleles are additive, while sex is not main-
tained when deleterious alleles are partially recessive
(Figure 7, Appendix SD). Note, however, that delete-
rious mutations may select for higher rates of sex when
they also affect the mating success of males, in species
in which sexual selection is sufficiently strong (Hadany

and Beker 2007). Furthermore, deleterious mutations
can act in combination with other factors such as host–
parasite interactions (Peters and Lively 1999; Otto

and Nuismer 2004; Gandon and Otto 2007; Salathé

et al. 2008), local adaptation (Pylkov et al. 1998;
Lenormand and Otto 2000; Agrawal 2009), or
adaptive evolution (Otto and Barton 2001). Testing
to which extent a combination of these factors can favor
high rates of costly sex would thus be interesting.

Finally, data about the occurrence and fitness effects
of mutations leading to asexuality are badly needed:
indeed, it may well be that in many cases, asexuals do
not benefit from the theoretical twofold advantage
over sexuals, due to pleiotropic effects of the mutation
leading to loss of sex. In mammals, for example, asex-
ual females may not be able to produce viable offspring
due to the genomic imprinting system, and similar
constraints may operate in other groups. In the species

in which purely asexual forms coexist with sexuals,
determining the relative fitnesses of sexuals and asex-
uals (and disentangling direct effects from effects of
the genetic background) represents a promising way
of evaluating current theories on the evolution of sex.
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File S1: Online Appendices

ONLINE APPENDIX A: GETTING THE RECURSIONS

Recursions for genetic associations in a finite, diploid population are obtained

as follows (all recursions have been implemented in Mathematica notebooks that are

available on request). Throughout this appendix, set letters (such as U, V, S, T...)

stand for sets of loci. In the context of our two-locus model these sets may be the

empty set ∅, M, A, or MA; however the notation is more general and applies to an

arbitrary number of loci.

Variables. The population is described in terms of allele frequencies and genetic

associations (Barton and Turelli, 1991; Kirkpatrick et al., 2002). The frequency

of the capital-letter allele (M or A) at locus X (where X may be M or A) in the two

haplotypes of the diploid individual j are denoted pX(j1) and pX(j2) (these variables

equal 0 or 1). The average frequency of the capital-letter allele at locus X in the whole

population is denoted pX . Centered variables ζ are defined as:

ζX(j1) = pX(j1) − ℘X , ζX(j2) = pX(j2) − ℘X (A1)

where ℘X is called a “reference value” (Kirkpatrick et al., 2002). Unless otherwise

specified, this reference value will be pX (the frequency of the capital-letter allele at

locus X in the population). The association between the sets S and T of loci present

in the two haplotypes of the same individual is defined as:

DS,T = E
[
ζS,T(j)

]
(A2)
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where E stands for the average over the whole population (average over all j), and

where

ζS,T(j) =
ζS(j1) ζT(j2) + ζS(j2) ζT(j1)

2
, ζS(j1) =

∏

X∈S
ζX(j1), ζT(j2) =

∏

X∈T
ζX(j2) .

(A3)

(note that DS,T = DT,S). Associations between genes present on the same haplotype

of an individual (DS,∅) will be simply denoted DS.

In a finite population, allele frequencies and genetic associations are random

variables. The expected value of the random variable x at generation t will be denoted

〈x〉t; for example, 〈DMA,A〉t is the expectation of DMA,A at generation t. We will also

need to express moments of associations, such as 〈DMA
2〉t or 〈DMADM,A〉t. In the

following, it will be useful to express these moments under the form of associations

between genes present in two (or more) individuals sampled with replacement from

the population. For example, DS,TDU,V can be considered as the association between

genes in the sets S and T from one individual, and genes in the sets U and V from

another individual, sampled with replacement from the population. This association

will be denoted DS,T
!
/U,V, where the

!
/ symbol separates sets of genes from the two

individuals. We thus have:

DS,T
!
/U,V = E

[
ζS,T(j) ζU,V(k)

]
(A4)

where E stands for the average over all possible pairs of individuals j and k (including

j = k). Associations between genes from more than two individuals sampled with

replacement (such as DS,T
!
/U,V

!
/X,Y) can be defined similarly. Finally, we will also need

to define associations between genes from two or more individuals sampled without

replacement. For this, we will use the slash symbol to separate sets of genes from
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different individuals. For example, DS,T/U,V denotes the association between the sets S

and T of genes from one individual, and the sets U and V from a different individual

(averaged over all possible pairs of individuals). Note that we have:

DS,T
!
/U,V =

DSU,TV + DSV,TU
2N

+

(
1 − 1

N

)
DS,T/U,V . (A5)

as sampling with replacement involves either the same individual sampled twice (first

term, see equation A3) or different individuals (second term). Associations between

genes present in more than two individuals sampled with replacement can be similarly

expressed in terms of associations involving individuals sampled without replacement.

In the following, we derive recursions for expectations of genetic associations

over the different phases of the life-cycle (selection, gene conversion, reproduction and

sampling of the next generation). Note that only the last phase (random sampling) is

stochastic, as we assume that selection occurs through differences in fecundity (number

of gametes and/or asexual eggs produced) and that fecundity is effectively infinite. We

will use different notations to denote genetic associations measured at different phases

of the life cycle, as summarized by the following figure:

〈DA〉t

selection

!!

〈Dsel
A 〉t 〈Dpar

A 〉t

gene conv.

""

〈Dcnv
A 〉t

reproduction

##

〈Djuv
A 〉t+1

drift

$$

〈Ddft
A 〉t+1 〈DA〉t+1

As we will see, 〈Dsel
A 〉t and 〈Ddft

A 〉t+1 correspond to intermediate steps in calculat-

ing the effects of selection and drift (respectively) on expected values of associations.

〈DA〉t+1 measures the expectation of the association among genes in the set A (which

may include genes present in several individuals) among adults of generation t + 1

(just after sampling). 〈Ddft
A 〉t+1 measures the same association, but using as reference
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values (the ℘X in equation A1) allele frequencies before sampling (that is, among ju-

veniles). 〈Djuv
A 〉t+1 denotes expected associations measured at the juvenile stage (after

reproduction, before sampling), while 〈Dcnv
A 〉t denotes associations measured in their

parents (generation t) after gene conversion, that is, in the parents diploid cells that

give rise to asexual eggs (by mitosis) or to gametes (by meiosis). 〈Dpar
A 〉t then denotes

associations among parents before gene conversion, but taking into account the effect

of selection by weighting zeta variables by the relative fecundity of the individual; for

example:

〈
Dpar

S,T
〉

t
=

〈
E

[
fj

f
ζS,T(j)

]〉

t

(A6)

where fj is the fecundity of parent j, f the average fecundity in the population, and

E stands for the average over all parents (adults of generation t). Similarly,

〈
Dpar

S,T
!
/U,V

〉

t
=

〈
E

[(
fj

f
ζS,T(j)

) (
fk

f
ζU,V(k)

)]〉

t

(A7)

where E is the average over all j and k (including j = k). Associations 〈Dpar
A 〉t will

be called “associations after selection”. The same associations, but using as reference

values allele frequencies before selection will be denoted 〈Dsel
A 〉t.

Drift. The last phase of the life cycle corresponds to the random sampling of N

individuals among the infinite number of juveniles produced. The association between

the sets of genes S and T on the two haplotypes of the same individual, after sampling,

is defined as (from equation A3):

〈DS,T〉t+1 =

〈
1

2
E

[∏

X∈S

(
pX(j1) − pX

) ∏

Y ∈T

(
pY (j2) − pY

)

+
∏

X∈S

(
pX(j2) − pX

) ∏

Y ∈T

(
pY (j1) − pY

)]〉

t+1

(A8)



D. Roze and R. E. Michod 6 SI

where E is the average over all individuals j after sampling, and the reference values

pX , pY correspond to allele frequencies after sampling. We first express this association

in terms of associations measured after sampling, but using as reference values allele

frequencies among juveniles (before sampling), denoted pjuv
X . We have pX = pjuv

X +

∆dpX , where∆ dpX is the change in allele frequency pX due to drift (i.e., to sampling).

We can rewrite equation A8 as:

〈DS,T〉t+1 =

〈
1

2
E

[∏

X∈S

(
pX(j1) − pjuv

X −∆dpX

) ∏

Y ∈T

(
pY (j2) − pjuv

Y −∆dpY

)

+
∏

X∈S

(
pX(j2) − pjuv

X −∆dpX

) ∏

Y ∈T

(
pY (j1) − pjuv

Y −∆dpY

)]〉

t+1

.

(A9)

Denoting Ddft associations measured after sampling, but using as reference values allele

frequencies before sampling (the pjuv
X ), equation A9 can be written as:

〈DS,T〉t+1 = 〈Ddft
S,T〉t+1 −

∑

X∈S
〈∆dpX Ddft

(S\X),T〉t+1 −
∑

Y ∈T
〈∆dpY Ddft

S,(T\Y )〉t+1

+
∑

X∈S

∑

Y ∈T
〈∆dpX∆dpY Ddft

(S\X),(T\Y )〉t+1 + . . .

(A10)

where S\X means “the set S, from which X is removed”, and other terms include

sums over all possible subsets of S and T. A more compact expression is provided by

equation 15 in Kirkpatrick et al., 2002:

〈DA〉t+1 =
∑

B⊂A

〈
Ddft

A\B

∏

X∈B

(−∆dpX)

〉

t+1

(A11)

where A is a set of loci that may be present in different individuals (for example we

can have A = S, T
!
/U, V), and the sum is over all possible subsets B of A. Finally, we
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can note that∆ dpX = Ddft
X , and thus:

〈DA〉t+1 =
∑

B⊂A

(−1)|B|
〈

Ddft
A\B

∏

X∈B

Ddft
X

〉

t+1

=
∑

B⊂A

(−1)|B|
〈

Ddft
(A\B)

!
/X

!
/Y

!
/Z...︸ ︷︷ ︸

X, Y, Z...∈B

〉

t+1

(A12)

where |B| is the number of genes in the set B (equation A12 can be implemented in

Mathematica). The change from the first to the second line of equation A12 is simply

a change of notation, as 〈DXDY DZ〉 can also be noted
〈
D

X
!
/Y

!
/Z

〉
(see A4). For

example, equation A12 yields:

〈DA,A〉t+1 =
〈
Ddft

A,A

〉
t+1

−
〈
Ddft

A
!
/A

〉

t+1
(A13)

〈DMA,A〉t+1 =
〈
Ddft

MA,A

〉
t+1

−
〈
Ddft

MA
!
/A

〉

t+1
−

〈
Ddft

M,A
!
/A

〉

t+1

−
〈
Ddft

A,A
!
/M

〉

t+1
+ 2

〈
Ddft

M
!
/A

!
/A

〉

t+1

(A14)

〈
D

MA
!
/MA

〉

t+1
=

〈
Ddft

MA
!
/MA

〉

t+1
− 2

〈
Ddft

MA
!
/M

!
/A

〉

t+1
+

〈
Ddft

M
!
/M

!
/A

!
/A

〉

t+1
. (A15)

The next step is to express associations between genes from individuals sampled with

replacement (after drift) in terms of associations involving individuals sampled without

replacement. For example, we have:

〈
Ddft

A
!
/A

〉

t+1
=

〈
Ddft

AA

〉
t+1

+
〈
Ddft

A,A

〉
t+1

2N
+

(
1 − 1

N

) 〈
Ddft

A/A

〉
t+1

. (A16)

A more general expression allowing us to express associations involving an arbitrary

number of individuals sampled with replacement in terms of associations between

individuals sampled without replacement has been implemented in Mathematica.
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Finally, we can note that because adults are sampled independently from an

infinite number of juveniles, the expectation of an association between genes present

in the same or in different adults, after sampling (and using as reference values allele

frequencies before sampling) equals the same association measured among juveniles

(i.e., before sampling). Therefore

〈
Ddft

A
〉

t+1
=

〈
Djuv

A

〉

t+1
(A17)

when genes in the set A are present in a single individual, or in several individuals

sampled without replacement. We thus have a method to express expected values of

associations after drift in terms of associations measured at the juvenile stage, after

reproduction. For example, combining equations A13 and A16 yields:

〈DA,A〉t+1 =
〈
Djuv

A,A

〉

t+1
−

〈
Djuv

AA

〉

t+1
+

〈
Djuv

A,A

〉

t+1

2N
−

(
1 − 1

N

) 〈
Djuv

A/A

〉

t+1
(A18)

where associations on the right-hand-side are measured at the juvenile stage. Finally,

we can note that the last term of equation A18 equals zero: indeed, because the

number of juveniles is assumed to be infinite, we have
〈
Djuv

A/A

〉

t+1
=

〈
Djuv

A
!
/A

〉

t+1
=

〈
Djuv

A Djuv
A

〉

t+1
= 0 (since Djuv

A = 0).

Recursions for products of allele frequencies and associations can be obtained

similarly. For example, a recursion for 〈pMDA,A〉 over sampling is obtained as follows

(dropping indices t + 1):

〈pMDA,A〉 =
〈(

pjuv
M + ∆dpM

)
E

[(
pA(j1) − pjuv

A −∆dpA

) (
pA(j2) − pjuv

A −∆dpA

)]〉

=
〈
pjuv

M Ddft
A,A

〉
+

〈
Ddft

A,A
!
/M

〉
−

〈
pjuv

M Ddft
A

!
/A

〉
−

〈
Ddft

A
!
/A

!
/M

〉

=
〈
pjuv

M Djuv
A,A

〉
+

1

2N

(
2
〈
Djuv

MA,A

〉
−

〈
pjuv

M Djuv
AA

〉
−

〈
pjuv

M Djuv
A,A

〉)

− 1

4N2

(
2
〈
Djuv

MA,A

〉
−

〈
Djuv

MAA

〉
−

〈
Djuv

M,AA

〉)
.

(A19)
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A general expression for deriving recursions for any product of allele frequencies and

associations has been implemented in Mathematica.

Reproduction (no sex modifier). We then need to express associations measured

after reproduction in terms of associations measured in the parental generation. We

first consider the case where the modifier has no effect (δσ = 0). The association Djuv
S,T

(measured after reproduction) can be expressed in terms of associations in the parental

generation by:

〈
Djuv

S,T

〉

t+1
= (1 − σ)

〈
Dcnv

S,T
〉

t
+ σ

∑

UV=S

∑

XY=T
tU|V tX|Y

〈
Dcnv

U,V
!
/X,Y

〉

t
(A20)

where associations on the right-hand-side are measured in the parental population,

after selection and gene conversion. This equation reads as follows. Djuv
S,T is the as-

sociation between the sets S and T of loci from the two haplotypes of a randomly

sampled juvenile. With probability 1 − σ, this juvenile has been produced asexually,

in which case the association equals the same association measured in the parental

generation (first term of equation A20). With probability σ, the juvenile has been

produced sexually; in that case, genes present on the same haplotype are rearranged

by recombination at meiosis. The effect of recombination is described by coefficients

tU|V (see Barton and Turelli, 1991; Kirkpatrick et al., 2002), where (U, V) is

a partition of the set S, and tU|V is the probability that loci in the set U come from

one of the haplotypes of the parent, and loci in T from the other; the sum is over all

possible subsets of S, including (S, ∅). For example, for S = MA, we have tMA|∅ = 1−r,

and tM|A = r. Finally, because we assume random mating, genes present on different

haplotypes of a juvenile come from two parents, sampled with replacement from the
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parental generation (when selection occurs, the probability that a parent is sampled is

proportional to its fecundity). Equation A20 can be generalized to express associations

between genes present in different juveniles, for example:

〈
Djuv

S,T/U,V

〉

t+1
= (1 − σ)2

〈
Dcnv

S,T
!
/U,V

〉

t

+ σ (1 − σ)
∑

AB=S

∑

CD=T
tA|B tC|D

〈
Dcnv

A,B
!
/C,D

!
/U,V

〉

t

+ σ (1 − σ)
∑

AB=U

∑

CD=V
tA|B tC|D

〈
Dcnv

S,T
!
/A,B

!
/C,D

〉

t

+ σ2
∑

AB=S

∑

CD=T

∑

EF=U

∑

GH=V
tA|B tC|D tE|F tG|H

〈
Dcnv

A,B
!
/C,D

!
/E,F

!
/G,H

〉

t
.

(A21)

A general expression (valid for an arbitrary number of loci and individuals) has been

implemented in Mathematica. For example in the absence of selection and gene con-

version (s = γ = 0) so that 〈Dcnv
A 〉t = 〈DA〉t, we have:

〈
Djuv

A,A

〉

t+1
= (1 − σ) 〈DA,A〉t + σ

〈
D

A
!
/A

〉

t
(A22)

Because D
A

!
/A

= (DA)2 = 0, this simplifies to:

〈
Djuv

A,A

〉

t+1
= (1 − σ) 〈DA,A〉t (A23)

Similarly, one obtains (still for s = γ = 0):

〈
Djuv

MA/MA

〉

t+1
= (1 − σ)2

〈
D

MA
!
/MA

〉

t

+ 2σ (1 − σ)
[
(1 − r)

〈
D

MA
!
/MA

〉

t
+ r

〈
D

MA
!
/M,A

〉

t

]

+ σ2
[
(1 − r)2

〈
D

MA
!
/MA

〉

t
+ 2r (1 − r)

〈
D

MA
!
/M,A

〉

t

+ r2
〈
D

M,A
!
/M,A

〉

t

]
.

(A24)

Quasi-equilibrium. The form of the recursions obtained for genetic associations

indicates that when population size N is large, and when rates of sex and recombination
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are sufficiently large (σ % 1/N , r % 1/N), the population will quickly reach a quasi-

equilibrium state in which associations are small, and change very slowly over time.

Consider for example the association DA,A (measuring departure from Hardy-Weinberg

equilibrium at locus A) in the absence of selection and gene conversion (s = γ = 0).

From equations A18 and A23, we have:

〈DA,A〉t+1 = (1 − σ) 〈DA,A〉t −
1

2N

[
〈DAA〉t + (1 − σ) 〈DA,A〉t

]
(A25)

Note that 〈DAA〉t is the association between a gene at locus A and itself, given by

(
E

[
ζA(j1)

2
]
+ E

[
ζA(j2)

2
])

/2. Because we consider biallelic loci, repeated indices in

associations can be eliminated using equation 5 in Kirkpatrick et al., 2002:

DSXX,T = pXqXDS,T + (1 − 2pX) DSX,T (A26)

where qX = 1 − pX . In particular, we have DAA = pAqA. Using a similar reasoning

as in Nagylaki, 1993, one can show that when σ is sufficiently large, 〈DA,A〉t quickly

becomes of order 1/N , while the rate of change of 〈DA,A〉 per generation becomes of

order 1/N2. In particular, equation A25 indicates that 〈DA,A〉t should be of order 1/N

when t ≥ t1 ∼ ln (1/N) /ln (1 − σ). Once 〈DA,A〉t is of order 1/N , we have (still from

equation A25):

∆t+1 〈DA,A〉 = (1 − σ)∆t 〈DA,A〉 −
∆t 〈pAqA〉

2N
+ o (1/N) (A27)

where∆ tZ = Zt+1 − Zt. Note that the rate of change of allele frequencies is of order

1/N , and thus the term∆ t 〈pAqA〉 / (2N) is of order 1/N2. Equation A27 thus indicates

that when t > 2t1, ∆t 〈DA,A〉 should be of order 1/N2. Once this quasi-equilibrium

has been reached, we have from equation A25:

〈DA,A〉t + ∆t 〈DA,A〉 = (1 − σ) 〈DA,A〉t −
〈pAqA〉t

2N
+ o (1/N) (A28)
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and we may neglect∆ t 〈DA,A〉 (which is of order 1/N2) and solve equation A28 to

express 〈DA,A〉t as a function of 〈pAqA〉t:

〈DA,A〉t = −〈pAqA〉t
2Nσ

+ o (1/N) . (A29)

The quasi-equilibrium approximation also holds when other forces (selection, gene

conversion, modifier effect) affect changes in allele frequencies, as long as these forces

are weak relative to rates of sex and recombination (Barton and Turelli, 1991;

Nagylaki, 1993; Bürger, 2000; Kirkpatrick et al., 2002).

The other neutral associations that play a role in the model are 〈DMA,MA〉,
〈
D

MA
!
/MA

〉
,
〈
D

MA
!
/M,A

〉
and

〈
D

M,A
!
/M,A

〉
. These associations can also be expressed

at quasi-equilibrium, to the first order in 1/N , using the above methods. For example,

the recursion for
〈
D

M,A
!
/M,A

〉
is given by (after elimination of terms that quickly

become of order 1/N2):

〈
D

M,A
!
/M,A

〉

t+1
= (1 − σ)2

〈
D

M,A
!
/M,A

〉

t
+

〈DMM,AA〉t
2N

+ o (1/N) . (A30)

Using equation A26, we have:

〈DMM,AA〉 = 〈pqMA〉 + 〈DM,A〉 − 2 〈pMDM,A〉 − 2 〈pADM,A〉 + 4 〈pMpADM,A〉 (A31)

with pqMA = pMqMpAqA. One finds easily that 〈DM,A〉 = 0 at quasi-equilibrium, to the

first order in 1/N . Indeed, the recursion for DM,A is given by:

〈DM,A〉t+1 = (1 − σ) 〈DM,A〉t + o (1/N) . (A32)

Recursions for 〈pMDM,A〉, 〈pADM,A〉 and 〈pMpADM,A〉 can be obtained using the meth-

ods developed above. One finds that, to the first order in 1/N , these moments equal

zero at quasi-equilibrium. Therefore, we have:

〈DMM,AA〉t = 〈pqMA〉t + o (1/N) . (A33)
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A similar argument gives 〈DMMAA〉t = 〈pqMA〉t + o (1/N). Equation A30 thus gives at

quasi-equilibrium:

〈
D

M,A
!
/M,A

〉

t
=

〈pqMA〉t
2N

[
1 − (1 − σ)2] + o (1/N) . (A34)

Reproduction, with sex modifier. To incorporate an effect of locus M on the rate

of sex (proportion of sexually produced offspring) so that genotypes mm, Mm and

MM at locus M have rates of sex σ, σ + hM δσ and σ + δσ, we can write the rate of

sex of parent j under the form (e.g. Barton, 1995):

σj = σ + dσM

(
ζM(j1) + ζM(j2)

)
+ dσM,M

(
ζM,M(j) − DM,M

)
(A35)

with:

σ = σ + δσ
[
2hM pM + (1 − 2hM)

(
pM

2 + DM,M

)]

dσM = δσ [hM + (1 − 2hM) pM]

dσM,M = δσ (1 − 2hM)

(A36)

(note that σ is the average rate of sex in the population). The probability that a

random juvenile has been produced asexually is 1−σ, while the probability that it has

been produced sexually is σ. If it has been produced asexually, the probability that it

has been produced by parent j is (1 − σj) / (1 − σ). If it has been produced sexually,

the probability that one of its haplotypes comes from individual j, and the other from

individual k is (σj/σ) (σk/σ). The same reasoning as for equation A20 above gives us:

〈
Djuv

S,T

〉

t+1
=

〈
E

[
(1 − σ)

1 − σj

1 − σ
ζS,T(j)

+ σ
(σj

σ

) (σk

σ

) ∑

UV=S

∑

XY=T
tU|V tX|Y ζU,V(j)ζX,Y(k)

]〉

t

(A37)
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where again E stands for the average over all parental individuals j and k (including

j = k). Some rearranging gives:

〈
Djuv

S,T

〉

t+1
=

〈
Dpar

S,T
〉

t
−

〈
E

[
σj ζS,T(j)

]〉
t

+

〈
1

σ

∑

UV=S

∑

XY=T
tU|V tX|Y E

[(
σj ζU,V(j)

) (
σk ζX,Y(k)

)]
〉

t

.

(A38)

Equation A35 can then be used to replace σj and σk by functions of δσ, hM, pM and

ζ-variables. Further simplification is obtained by assuming that the sex modifier has

a weak effect (δσ small), and deriving recursions to the first order in δσ only. This

allows us to express equation A38 in terms of expectations of genetic associations

among parents 〈Dcnv
A 〉t (after selection and gene conversion), and products of allele

frequencies and genetic associations.

For example, one obtains for Djuv
MA,A (in the absence of selection and gene con-

version, and keeping only terms that are of first order in δσ and in 1/N at quasi-

equilibrium):

〈
Djuv

MA,A

〉

t+1
= (1 − σ) 〈DMA,A〉t − dσM,M

〈
(1 − 2pM) DMA,MA

〉

t

+

〈
dσM

[
(1 − r) D

MA
!
/MA

+ D
MA

!
/M,A

+ r D
M,A

!
/M,A

− pMqMDA,A − DMA,MA

]〉

t

.

(A39)

Note that when hM (= 1/2 (dominance at the modifier locus), dσM depends on pM (see

equation A36).

Gene conversion. Gene conversion occurring at locus A only affects associations

involving this locus. In particular, we have:

〈
Dcnv

UA,V
〉

t
=

(
1 − γ +

γ

2

) 〈
Dpar

UA,V
〉

t
+

γ

2

〈
Dpar

U,VA

〉
t

(A40)
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〈
Dcnv

UA,VA

〉
t
= (1 − γ)

〈
Dpar

UA,VA

〉
t
+

γ

2

(〈
Dpar

UAA,V
〉

t
+

〈
Dpar

U,VAA

〉
t

)
(A41)

where γ is the rate of gene conversion, and where the sets U and V do not contain

A. In our model, gene conversion only appears in the derivation of 〈DA,A〉 at quasi-

equilibrium. Indeed, we have:

〈
Dcnv

A,A

〉
t
= (1 − γ)

〈
Dpar

A,A

〉
t
+ γ 〈Dpar

AA〉t . (A42)

Selection. When selection occurs (parents have different fecundities), we need to

express 〈Dpar
A 〉t (associations among parents after selection) in terms of 〈DA〉t (associ-

ations before selection). As in Kirkpatrick et al. (2002) and as in the case of drift

above, we proceed in two steps: first express 〈Dpar
A 〉t in terms of associations after

selection, but using as reference values allele frequencies before selection (these asso-

ciations are denoted
〈
Dsel

A
〉

t
), and then express

〈
Dsel

A
〉

t
in terms of associations before

selection 〈DA〉t.

Changing reference values is done as above in the case of drift (equations A8

to A11). We have:

〈Dpar
A 〉t =

∑

B⊂A

〈
Dsel

A\B

∏

X∈B

(−∆spX)

〉

t

(A43)

where the sum is over all possible subsets B of A, and∆ spX is the change in allele

frequency pX due to selection. Because∆ spX = Dsel
X , equation A43 can be written as:

〈Dpar
A 〉t =

∑

B⊂A

(−1)|B|
〈

Dsel
(A\B)

!
/X

!
/Y

!
/Z...︸ ︷︷ ︸

X, Y, Z...∈B

〉

t

. (A44)

For example, we have:

〈Dpar
MA〉t =

〈
Dsel

MA

〉
t
−

〈
Dsel

M
!
/A

〉

t
(A45)
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〈
Dpar

MA,M

〉
t
=

〈
Dsel

MA,M

〉
t
−

〈
Dsel

MA
!
/M

〉

t
−

〈
Dsel

M,A
!
/M

〉

t

−
〈
Dsel

M,M
!
/A

〉

t
+ 2

〈
Dsel

M
!
/M

!
/A

〉

t
.

(A46)

〈
pjuv

M Dpar
MA

〉

t
=

〈
pMDsel

MA

〉
t
+

〈
Dsel

MA
!
/M

〉

t
−

〈
pMDsel

M
!
/A

〉

t

−
〈
Dsel

M
!
/M

!
/A

〉

t
.

(A47)

Last, we have to express associations after selection, using as reference values allele

frequencies before selection, in terms of associations before selection. We have:

〈
Dsel

S,T
〉

t
=

〈
E

[
fj

f
ζS,T(j)

]〉

t

(A48)

〈
Dsel

S,T
!
/U,V

〉

t
=

〈
E

[(
fj

f
ζS,T(j)

) (
fk

f
ζU,V(k)

)]〉

t

(A49)

where again fj is the fecundity of parent j and f the average fecundity, E stands for

the average over all individuals j and k (including j = k), and reference values in the

ζ’s are allele frequencies before selection.

In the two-locus model, we can write the fecundity of individual j under the

form:

fj = 1 + TA + aA

(
ζA,∅(j) + ζ∅,A(j)

)
+ aA,A ζA,A(j) (A50)

with

TA = −s pA [2h + (1 − 2h) pA] , aA = −s [h + (1 − 2h) pA] ,

aA,A = −s (1 − 2h) .

(A51)

The average fecundity in the population is thus given by:

f = 1 + TA + aA,A DA,A . (A52)
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The fraction fj/f can then be expressed to various orders in s, and the result plugged

into equations A48 and A49. For example, we have:

fj

f
= 1 + aA

(
ζA,∅(j) + ζ∅,A(j)

)
+ aA,A

(
ζA,A(j) − DA,A

)
+ o (s) . (A53)

This has been implemented in a Mathematica notebook, in order to obtain recursions

to arbitrary orders in selection coefficients.

We proceed similarly in the three-locus model, writing fecundity as:

fj =
[
1 + TA + aA

(
ζA,∅(j) + ζ∅,A(j)

)
+ aA,A ζA,A(j)

]

×
[
1 + TB + aB

(
ζB,∅(j) + ζ∅,B(j)

)
+ aB,B ζB,B(j)

]
(A54)

where TB, aB and aB,B are given by the same expressions as TA, aA and aA,A above,

replacing pA by pB.
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ONLINE APPENDIX B: THE RECURSIONS

We derive here expressions for the change in frequency of a sex modifier in the

two-locus model, assuming that the rate of gene conversion and selection are weak (γ

and s of order ε, where epsilon is a small term), population size is large (1/N is of order

ε), and rates of sex and recombination are large relative to ε, so that the population

quickly reaches a state of quasi-equilibrium where genetic associations are small and

change very slowly over time (see Appendix A for further details). We also assume

that the modifier has a weak effect (δσ), and calculate all terms to the first order in δσ

only. We first consider the case where deleterious mutations have arbitrary dominance

(no assumption on h), and then explore the case of weak dominance (i.e., h − 1/2 of

order ε).

Weak selection, h arbitrary. We assume here that s, γ and 1/N are of order ε, and

do not make any assumption on h. From the methods presented in Appendix A, the

expected change in frequency of the modifier at generation t is given by:

〈∆pM〉t = −s (1 − 2h) 〈DMA,A〉t + o
(
ε2

)
. (B1)

At quasi-equilibrum, a positive value of 〈DMA,A〉 means that allele M is more frequent

in homozygotes at the A locus than in heterozygotes, while a negative value means

that M is more frequent in heterozygotes (see Appendix C). Three forces affect this

association: random drift due to finite population size (which generates a positive

DMA,A), gene conversion (which generates a negative DMA,A) and selection at the A

locus, whose effect on DMA,A has the sign of s (1 − 2h). Using the methods of Appendix



D. Roze and R. E. Michod 19 SI

A, the recursion for 〈DMA,A〉t once quasi-equilibrium has been reached is given by:

〈DMA,A〉t+1 = (1 − σ) 〈DMA,A〉t

+ δσh M

[
(1 − r)

〈
DMA

2
〉

t
+ 〈DMADM,A〉t + r

〈
DM,A

2
〉

t

− 〈DMA,MA〉t −
〈
pqMDcnv

A,A

〉
t

]

+ δσ (1 − 2hM)
[
(1 − r)

〈
pMDMA

2
〉

t
+ 〈pMDMADM,A〉t + r

〈
pMDM,A

2
〉

t

− 〈DMA,MA〉t + 〈pMDMA,MA〉t −
〈
pM

2qMDcnv
A,A

〉
t

]

(B2)

where Dcnv
A,A corresponds to DA,A measured after selection and gene conversion, before

reproduction (see Appendix A). An expression for 〈DMA,A〉t at quasi-equilibrium can be

obtained by setting 〈DMA,A〉t = 〈DMA,A〉t+1 in equation B2, and solving for 〈DMA,A〉t.

In the case of an additive modifier (hM = 1/2), the last term of equation B2 equals zero,

and 〈DMA,A〉t is generated by associations 〈DMA
2〉t, 〈DMADM,A〉t, 〈DM,A

2〉t, 〈DMA,MA〉t

and
〈
pqMDcnv

A,A

〉
t
(second term of equation B2). The quasi-equilibrium values of these

associations are obtained by solving the following recursions (expressed to the first

order in ε):

〈
pqMDcnv

A,A

〉
t+1

= (1 − σ)
〈
pqMDcnv

A,A

〉
t
− s (1 − 2h)

〈
pqM (pqA)2〉

t
+ γ 〈pqMA〉t

− 〈pqMA〉t
2N

(B3)

〈DMA,MA〉t+1 = (1 − σ) 〈DMA,MA〉t + σ

[
(1 − r)2 〈

DMA
2
〉

t

+ 2r (1 − r) 〈DMADM,A〉t + r2
〈
DM,A

2
〉

t

] (B4)

〈
DMA

2
〉

t+1
=

〈pqMA〉t
2N

+ (1 − rσ)2 〈
DMA

2
〉

t

+ 2rσ (1 − rσ) 〈DMADM,A〉t + r2σ2
〈
DM,A

2
〉

t

(B5)

〈DMADM,A〉t+1 = (1 − σ)
[
(1 − rσ) 〈DMADM,A〉t + rσ

〈
DM,A

2
〉

t

]
(B6)
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〈
DM,A

2
〉

t+1
= (1 − σ)2 〈

DM,A
2
〉

t
+

〈pqMA〉t
2N

(B7)

giving at quasi-equilibrium:

〈
pqMDcnv

A,A

〉
t
=

1

σ

[(
γ − 1

2N

)
〈pqMA〉t − s (1 − 2h)

〈
pqM (pqA)2〉

t

]
(B8)

〈DMA,MA〉t =
[1 − 2r (1 − r)] 〈pqMA〉t

2Nrσ (2 − rσ)
(B9)

〈
DMA

2
〉

t
=

〈pqMA〉t
2Nrσ (2 − rσ)

[
1 +

r2σ

2 − σ

1 + (1 − σ) (1 − rσ)

1 − (1 − σ) (1 − rσ)

]
(B10)

〈DMADM,A〉t =
(1 − σ) r 〈pqMA〉t

2Nσ (2 − σ) [1 + r (1 − σ)]
(B11)

〈
DM,A

2
〉

t
=

〈pqMA〉t
2Nσ (2 − σ)

. (B12)

In the case of a non-additive modifier (hM (= 1/2), 〈DMA,A〉t is also affected by the

moments
〈
pM

2qMDcnv
A,A

〉
t
, 〈pMDMA,MA〉t, 〈pMDMA

2〉t, 〈pMDMADM,A〉t and 〈pMDM,A
2〉t

(third term of equation B2). However, applying the methods of Appendix A shows

that expressions for these associations at quasi-equilibrium are given by equations B8

to B12, replacing 〈pqMA〉t by 〈pMpqMA〉t. Putting everything together, one obtains:

〈DMA,A〉t =
δσ

σ2

[( T1

2N
− γ

)
(hM 〈pqMA〉t + (1 − 2hM) 〈pMpqMA〉t)

− T2

2N
(1 − 2hM) (〈pqMA〉t − 2 〈pMpqMA〉t)

+ s (1 − 2h)
(
hM

〈
pqM (pqA)2〉

t
+ (1 − 2hM)

〈
pMpqM (pqA)2〉

t

)]

(B13)

with:

T1 =
3 − 2r2 + r (1 − σ) (4 − rσ)

[1 + r (1 − σ)] (2 − r σ)
(B14)
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T2 =
1 − 2r (1 − r)

r (2 − r σ)
. (B15)

When r = 1/2 (free recombination), we have T1 = (6 − σ) / (4 − σ) and T2 = 2/ (4 − σ).

The term on the last line of equation B13 is equivalent to the result obtained in the

case of an infinite population, without gene conversion (e.g., Agrawal, 2009). The

effect of gene conversion appears in the first line of equation B13 (term in γ), while

the effect of drift is represented by the terms in T1 and T2.

Weak dominance. When dominance is weak (h − 1/2 of order ε), the change in

frequency of the modifier is given by:

〈∆tpM〉 = −sh
(
〈DMA〉t + 〈DM,A〉t

)
− s (1 − 2h) 〈DMA,A〉t + o

(
ε3

)
. (B16)

The expected value of the association DMA,A at quasi-equilibrium is still given by

equation B13, except that the term in s (1 − 2h) (third line of equation B13) is now of

order ε2 and may be neglected. Associations DMA and DM,A are of order ε2 at quasi-

equilibrium, and are generated by the combined action of random drift, selection and

the modifier effect. Recursions for these associations at quasi-equilibrium are given by

the following expressions:

〈DMA〉t+1 = (1 − rσ) 〈DMA〉t + rσ 〈DM,A〉t − sh 〈DMA,A〉t (B17)

〈DM,A〉t+1 = (1 − σ)
(
〈DM,A〉t − sh 〈DMA,A〉t

)
− δσh M

〈
Dpar

MA,M

〉
t

− δσ (1 − 2hM)
[
〈pqMDpar

MA〉t +
〈
pqMDpar

M,A

〉
t
+

〈
Dpar

MA,M

〉
t
−

〈
pMDpar

MA,M

〉
t

]
.

(B18)

where “par” denotes associations measured after selection (see Appendix A). Note

that the last term of equation B18 equals zero in the case of an additive modifier



D. Roze and R. E. Michod 22 SI

(hM = 1/2). These expressions are functions of the association 〈DMA,A〉 generated by

drift and/or gene conversion and by the modifier effect (given by equation B13) and

the associations
〈
Dpar

MA,M

〉
,
〈
pMDpar

MA,M

〉
, 〈pqMDpar

MA〉 and
〈
pqMDpar

M,A

〉
generated by the

combined effects of selection and drift. In the following, we derive quasi-equilibrium

expressions for these last associations. A recursion for
〈
Dpar

MA,M

〉
is given by:

〈
Dpar

MA,M

〉
t+1

= (1 − σ)
〈
Dpar

MA,M

〉
t
− sh

(
〈DMA,MA〉t −

〈
DMA

2
〉

t

− 2 〈DMADM,A〉t −
〈
DM,A

2
〉

t

) (B19)

giving at quasi-equilibrium:

〈
Dpar

MA,M

〉
t
=

sh [3 − σ + r [4 − σ (6 − σ) − r (2 − σ (1 + σ))]] 〈pqMA〉t
Nσ2 (2 − σ) (2 − r σ) [1 + r (1 − σ)]

. (B20)

Under free recombination (r = 1/2), this simplifies to:

〈
Dpar

MA,M

〉
t
=

3sh 〈pqMA〉t
Nσ2 (4 − σ)

. (B21)

〈
pMDpar

MA,M

〉
t
at quasi-equilibrium is given by the same expression, replacing 〈pqMA〉t by

〈pMpqMA〉t. Finally,the moments 〈pqMDpar
MA〉 and

〈
pqMDpar

M,A

〉
are obtained by solving:

〈pMDpar
MA〉t+1 = (1 − r σ) 〈pMDpar

MA〉t + r σ
〈
pMDpar

M,A

〉
t

− sh
(〈

DMA
2
〉

t
+ 〈DMADM,A〉t

)
(B22)

〈
pM

2Dpar
MA

〉
t+1

= (1 − r σ)
〈
pM

2Dpar
MA

〉
t
+ r σ

〈
pM

2Dpar
M,A

〉
t

− 2sh
(〈

pMDMA
2
〉

t
+ 〈pMDMADM,A〉t

)
(B23)

〈
pMDpar

M,A

〉
t+1

= (1 − σ)
〈
pMDpar

M,A

〉
t
− sh

(
〈DMADM,A〉t +

〈
DM,A

2
〉

t

)
(B24)

〈
pM

2Dpar
M,A

〉
t+1

= (1 − σ)
〈
pM

2Dpar
M,A

〉
t
− 2sh

(
〈pMDMADM,A〉t +

〈
pMDM,A

2
〉

t

)
(B25)
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Expressions for associations 〈DMA〉 and 〈DM,A〉 are obtained by solving equations B17

and B18 at equilibrium, and plugging quasi-equilibrium values of other moments that

appear in equations B17 and B18. In the case of an additive modifier (hM = 1/2), no

gene conversion (γ = 0) and free recombination (r = 1/2), one obtains:

〈DMA〉t = −
(
δσ

2

)
sh (24 − 9σ + σ2) 〈pqMA〉t

2Nσ3 (4 − σ)
(B26)

〈DM,A〉t = −
(
δσ

2

)
sh (3 − σ) 〈pqMA〉t

2Nσ3
. (B27)
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ONLINE APPENDIX C: INTERPRETATION OF ASSOCIATIONS

We give here some intuitive interpretation of the different components of se-

lection on the modifier. Denote xi (i going from 0 to 9) the frequencies of the dif-

ferent diploid genotypes in the population, with x0 = fr (ma/ma), x1 = fr (Ma/ma),

x2 = fr (Ma/Ma), x3 = fr (mA/ma), x4 = fr (MA/ma), x5 = fr (Ma/mA), x6 =

fr (MA/Ma), x7 = fr (mA/mA), x8 = fr (MA/mA), x9 = fr (MA/MA). The rela-

tive fecundity fi of type i is determined by its genotype at locus A, and is given by

f0 = f1 = f2 = 1, f3 = f4 = f5 = f6 = 1 − h s, f7 = f8 = f9 = 1 − s. Calling pM,i the

frequency of allele M in genotype i (which is either 0, 1/2 or 1), the expected change

in frequency of the modifier at generation t is given by:

〈∆pM〉t =

〈∑
i fi xi pM,i∑

i fi xi
− pM

〉

t

. (C1)

To the first order in s, this can be written as a sum of two terms:

〈∆pM〉t = −s

2

〈
2 pA pa

(
pM |A − pM |a

)〉
t
− s

2
(1 − 2h)

〈
pHo pHe

(
pM |Ho − pM |He

)〉
t
. (C2)

The first term of equation C2 represents selection acting on M due to association

between M and the deleterious allele A: pA and pa are the frequencies of alleles

A and a in the population, while pM |A = [(x4 + x5) /2 + x6 + x8 + 2x9] / (2 pA) rep-

resents the probability that when sampling one gene at each locus from the same

individual (either on the same or on different haplotypes) and given that allele A is

sampled at the selected locus, one samples allele M at the modifier locus. Similarly,

pM |a = [(x4 + x5) /2 + x1 + x6 + 2x2] / (2 pA) represents the probability that given al-

lele a is sampled at the selected locus, M is sampled at the modifier locus. When

pM |A − pM |a > 0, allele M is thus more often associated with the deleterious allele
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A (on the same or on the other haplotype) than by chance, which selects against M

through the first term of equation C2. The second term of equation C2 represents

selection acting on M due to the association between M and homozygotes or het-

erozygotes at locus A: pHe = x3 + x4 + x5 + x6 and pHo = 1 − pHe are the frequencies

of heterozygotes and homozygotes at locus A, while pM |He = [(x4 + x5) /2 + x6] /pHe

and pM |Ho = [(x1 + x8) /2 + x2 + x9] /pHo measure the frequency of M among het-

erozygotes and among homozygotes at locus A. When pM |Ho − pM |He > 0, allele M

is more frequent in homozygotes than in heterozygotes at locus A, which favors M

when homozygotes have a higher fecundity (note that − (s/2) (1 − 2h) is the average

fecundity of homozygotes, minus the fecundity of heterozygotes).

Assuming that s, γ and 1/N are all of order ε, equation C2 also gives the

expected change in frequency of M at quasi-equilibrium to the second order in ε.

Indeed, expanding equation C1 to the second order in s yields a term in s2 that equals

zero in the absence of any association in the population. Because associations are of

order ε at quasi-equilibrium, this term is of order ε3, and thus negligible. In order

to compute the two terms of equation C2 at quasi-equilibrium, it is easier to rewrite

them in terms of genetic associations. One obtains:

pA pa

(
pM |A − pM |a

)
= DMA + DM,A (C3)

1

2
pHo pHe

(
pM |Ho − pM |He

)
= DMA,A − 1

2
(1 − 2pA) (DMA + DM,A) (C4)

(this can be checked by expressing DMA, DM,A and DMA,A in terms of genotype fre-

quencies xi). The methods developed in Appendix A can then be used to derive

recursions for the expected values of these associations, and obtain expressions at



D. Roze and R. E. Michod 26 SI

quasi-equilibrium. One finds that 〈DMA,A〉 is of order δσ ε at quasi-equilibrium, while

〈DMA〉, 〈DM,A〉, 〈pADMA〉 and 〈pADM,A〉 are of order δσ ε2. Therefore, the first term

of the change in frequency of M (equation C2) is negligible compared to the second

term, and this second term equals −s (1 − 2h) 〈DMA,A〉t to the second order in ε. This

also shows that to the first order in ε, 〈DMA,A〉 equals
〈
pHo pHe

(
pM |Ho − pM |He

)
/2

〉
at

quasi-equilibrium (equation C4). A positive value of 〈DMA,A〉 therefore means that the

frequency of M tends to be higher in homozygotes than in heterozygotes at locus A,

while a negative value of 〈DMA,A〉 means that the frequency of M tends to be higher

in heterozygotes.

When dominance is weak (h−1/2 is of order ε), the two components of selection

on the modifier become of the same order of magnitude. In that case, the expected

change in frequency of the modifier becomes:

〈∆pM〉t = −s

2

〈
(1 + s pA) pA pa

(
pM |A − pM |a

)〉
t

− s

2
(1 − 2h)

〈
pHo pHe

(
pM |Ho − pM |He

)〉
t
+ o

(
ε3

)
.

(C5)

Again, these two components can be computed at quasi-equilibrium by expressing

them in terms of genetic associations. As before, 〈DMA,A〉 is of order δσ ε at quasi-

equilibrium, while 〈DMA〉, 〈DM,A〉, 〈pADMA〉 and 〈pADM,A〉 are of order δσ ε2. The fac-

tor 1+s pA in the first term of equation C5 can thus be neglected (as it generates terms

of order δσ ε4), and the first term becomes equivalent to − (s/2)
(
〈DMA〉t + 〈DM,A〉t

)
,

while the second term is again equivalent to −s (1 − 2h) 〈DMA,A〉t.



D. Roze and R. E. Michod 27 SI

ONLINE APPENDIX D: THREE-LOCUS MODEL

In order to study the effect of interactions among pairs of selected loci on

selection for sex, we extended our two-locus model to include a second selected locus

(called locus B). We assume that selection is multiplicative across loci A and B (no

epistasis), with the same selection and dominance coefficients at both loci. Expressions

for the change in frequency of the modifier as a function of genetic associations, and

expressions for associations at quasi-equilibrium can be computed using the methods

of Appendix A. To keep the analysis tractable, we focused on the case of an additive

modifier (hM = 1/2), and do not consider effects of gene conversion (γ = 0). We will

also express all terms to the first order in 1/N (assuming N is sufficiently large so that

terms in 1/N2 can be neglected), and to the first order in the modifier effect δσ. In

a first part, we assume that selection is weak (of order ε) and express the change in

frequency of the modifier to leading order in ε, while in a second part we will consider

the case where both selection and dominance are weak: s = O (ε), h − 1/2 = O (ε).

Weak selection. To leading order in ε, the change in frequency of the modifier is

given by:

〈∆pM〉t ≈ −s (1 − 2h)
[
〈DMA,A〉t + 〈DMB,B〉t

]
+ s2 (1 − 2h)2 〈DMAB,AB〉t (D1)

Association 〈DMAB,AB〉 is generated by drift and by the modifier effect. This association

is negative for a modifier increasing sex, reflecting the fact that sex tends to break

correlations in homozygosity between loci A and B (which disfavors sex whenever

h (= 1/2). The solution obtained at quasi-equilibrium takes the form:

〈DMAB,AB〉t = − δσ

2Nσ2
T4 〈pqMAB〉t (D2)
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where T4 is a positive (and complicated) function of recombination rates rMA and rAB

(we assume that loci are in the order M - A - B along the chromosome) and of the

baseline rate of sex σ. When rMA = 1/2, T4 simplifies to

T4 =
[1 − 2rAB (1 − rAB)] [2 − σ (1 + 2rAB)]

(1 + rAB) (2 − σ rAB) [4 − σ (1 + rAB)]
(D3)

while when rMA and rAB both equal 1/2 it becomes:

T4 =
8 (1 − σ)

3 (4 − σ) (8 − 3σ)
. (D4)

A simulation test of our expression for 〈DMAB,AB〉 against simulations (in which loci A

and B are neutral) is shown on the following figure, for N = 3000, σ = 0.2, δσ = 0.03

(curve: analytical prediction; dots: simulation results, averages over 107 points).

!DMAB,AB"
∆Σ #pqMAB$

rMA # rAB
0.1 0.2 0.3 0.4 0.5

$0.020

$0.015

$0.010

$0.005

Note that in an infinite population, DMAB,AB is generated by selection and by the

modifier effect, and takes the form at quasi-equilibrium:

DMAB,AB = − δσ

2σ2
s2 (1 − 2h)2 pqM (pqAB)2 . (D5)

However, in a finite population this term should be negligible compared to the term

shown in equation D2 when deleterious mutations remain in low frequency, unless N

is really extremely large.
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One can also note that the second term of equation D1 (involving 〈DMAB,AB〉) is

of order δσ ε2/N , while the first term is of order δσ (ε2 + ε/N). However, we will assume

that when summed over a large number of segregating loci, the effect of interactions

between pairs of selected loci may become of the same order of magnitude as the effect

of individual loci (because the number of pairs of loci will be much greater than the

number of individual loci).

Associations 〈DMA,A〉 and 〈DMB,B〉 are also affected by three-locus associations.

A recursion for 〈DMA,A〉 is given by:

〈DMA,A〉t+1 = (1 − σ)
[
〈DMA,A〉t − s (1 − 2h) 〈DMAB,AB〉t

]

+
δσ

2

[
(1 − r)

〈
DMA

2
〉

t
+ 〈DMADM,A〉t + r

〈
DM,A

2
〉

t

−
〈
Dpar

MA,MA

〉
t
−

〈
pqMDpar

A,A

〉
t

]

(D6)

where associations
〈
Dpar

MA,MA

〉
and

〈
pqMDpar

A,A

〉
are measured after selection. To lead-

ing order in s and 1/N , expressions for 〈DMA
2〉, 〈DMADM,A〉 and 〈DM,A

2〉 at quasi-

equilibrium are not affected by three-locus interactions, and are still given by equations

B10 to B12. Expressions for
〈
Dpar

MA,MA

〉
and

〈
pqMDpar

A,A

〉
are obtained by solving the

recursions:

〈
pqMDpar

A,A

〉
t+1

= (1 − σ)
〈
pqMDcnv

A,A

〉
t
− 〈pqMA〉t

2N

− s (1 − 2h)
〈
pqM (pqA)2〉

t
− s (1 − 2h) 〈pqMDAB,AB〉t

(D7)

〈
Dpar

MA,MA

〉
t+1

= (1 − σ) 〈DMA,MA〉t − s (1 − 2h) 〈DMAB,MAB〉t

+ σ
[
(1 − r)2 〈

DMA
2
〉

t
+ 2r (1 − r) 〈DMADM,A〉t + r2

〈
DM,A

2
〉

t

]
(D8)

where 〈pqMDAB,AB〉 and 〈DMAB,MAB〉 at quasi-equilibrium are given by:

〈pqMDAB,AB〉t =
[1 − 2rAB (1 − rAB)] 〈pqMAB〉t

2NrABσ (2 − rABσ)
(D9)
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〈DMAB,MAB〉t =
[1 − 2rMA (1 − rMA)] [1 − 2rAB (1 − rAB)] 〈pqMAB〉t

2Nσ (rMA + rAB − rMArAB) [2 − σ (rMA + rAB − rMArAB)]
(D10)

From equations D6 to D10, one obtains at quasi-equilibrium:

〈DMA,A〉t ≈
δσ

2σ2

[(
T1

2N
− γ

)
〈pqMA〉t + s (1 − 2h)

〈
pqM pqA

2
〉

t

]

+
δσ

2Nσ3
s (1 − 2h)

∑

B

T5 〈pqMAB〉
(D11)

where T1 is given by equation 6 in the main text, and T5 is a positive (and compli-

cated) function of rMA, rAB and σ. This term in T5 (together with the second term of

equation D1) generates selection against a modifier increasing sex whenever h (= 1/2.

Again, although each term in 〈pqMAB〉 that appears in 〈∆pM〉 is smaller in magnitude

than terms in 〈pqMA〉, 〈pqMB〉, their overall effect may be important when many loci

segregate for deleterious alleles.

Weak dominance. In the case where dominance is weak (h − 1/2 is of order ε),

the change in frequency of the modifier is affected by many associations. One obtains

(dropping “t” indices):

〈∆pM〉 = Ξ1 + Ξ2 + Ξ3 + Ξ4 (D12)

with:

Ξ1 = −sh [〈DMA〉 + 〈DM,A〉] − sh [〈DMB〉 + 〈DM,B〉] (D13)

Ξ2 = −s (1 − 2h) [〈DMA,A〉 + 〈DMB,B〉]

+ (sh)2 [〈DMAB〉 + 〈DMA,B〉 + 〈DMB,A〉 + 〈DM,AB〉]

− s
(
1 − 2h + 2sh2

)
[〈pADMA〉 + 〈pADM,A〉 + 〈pBDMB〉 + 〈pBDM,B〉]

(D14)
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Ξ3 = s2h (1 − 2h) [〈DMAB,A〉 + 〈DMA,AB〉 + 〈DMAB,B〉 + 〈DMB,AB〉]

+ 2 (sh)3 [
〈DMADAB〉 + 〈DM,ADAB〉 + 〈DMADA,B〉 + 〈DM,ADA,B〉

+ 〈DMBDAB〉 + 〈DM,BDAB〉 + 〈DMBDA,B〉 + 〈DM,BDA,B〉
]

+ s2h
(
1 − 2h + 2sh2

) [
〈pADMAB〉 + 〈pADMA,B〉 + 〈pADMB,A〉 + 〈pADM,AB〉

+ 〈pBDMAB〉 + 〈pBDMA,B〉 + 〈pBDMB,A〉 + 〈pBDM,AB〉
]

(D15)

Ξ4 = s2 (1 − 2h)2 〈DMAB,AB〉

− 2 (sh)4 [
〈DMABDAB〉 + 〈DMA,BDAB〉 + 〈DMB,ADAB〉 + 〈DM,ABDAB〉

+ 〈DMABDA,B〉 + 〈DMA,BDA,B〉 + 〈DMB,ADA,B〉 + 〈DM,ABDA,B〉
]
.

(D16)

Associations that appear inΞ 4 are of order δσ/N , and result from the effect of the

modifier on neutral associations such as 〈DAB,AB〉, 〈DMAB,MAB〉, 〈DMAB
2〉... These

associations affect the change in frequency of the modifier directly throughΞ 4, and

indirectly by affecting associations that appear inΞ 1, Ξ2 andΞ 3. Associations that

appear inΞ 3 are of order δσ ε/N . These are generated by the associations that appear

inΞ 4 and by selection, and also by the effect of the modifier on associations generated

by selection and drift, such as 〈DAB,A〉, 〈pADAB〉, 〈DMAB,MA〉... (these associations are

of order ε/N). Associations inΞ 3 also affect the associations that appear inΞ 1 and

Ξ2. As we have seen in the two-locus model (Appendix B), associations 〈DMA,A〉 and

〈DMB,B〉 that appear inΞ 2 are generated by two-locus interactions (between M and

A, and between M and B), resulting from the effect of the modifier on associations

〈DA,A〉, 〈DMA,MA〉, 〈DMA
2〉... These associations are also affected by three-locus inter-

actions through terms in δσ ε2/N , due to the fact that associations 〈DA,A〉, 〈DMA,MA〉,



D. Roze and R. E. Michod 32 SI

〈DMA
2〉... are affected by selection at locus B through terms in ε2/N , and also to the

fact that selection converts some of the associations that appear inΞ 3 andΞ 4 into

〈DMA,A〉 and 〈DMB,B〉. The other associations that appear inΞ 2 are also generated by

associations that appear inΞ 3 andΞ 4 and by selection (in particular, the moments

〈pADMA〉 and 〈pADM,A〉 were negligible in the two-locus model, but are now gener-

ated by three-locus associations that appear inΞ 3 andΞ 4). Additionally, associations

〈DMAB〉, 〈DMA,B〉, 〈DMB,A〉 and 〈DM,AB〉 also result from the effect of the modifier

on associations generated by selection and drift, such as 〈DAB〉, 〈DA,B〉, 〈DMAB,M〉,

〈DMADMB〉... (these associations are of order ε2/N). Finally, we have seen in Ap-

pendix B that associations that appear inΞ 1 are generated by two-locus interactions,

through the combined action of associations 〈DMA,A〉 and 〈DMB,B〉 and selection, and

through the effect of the modifier on associations 〈DMA,M〉 and 〈DMB,M〉 generated by

selection and drift. Associations inΞ 1 are also affected by three-locus interactions

(through terms in δσ ε3/N), due to the fact that selection at locus B affects 〈DMA,M〉

through terms in ε3/N (and similarly for 〈DMB,M〉), to the fact that 〈DMA,A〉 and

〈DMB,B〉 are affected by three-locus interactions (as we have just discussed), and also

to the fact that other associations that appear inΞ 2, Ξ3 andΞ 4 influence associations

inΞ 1. As a consequence, one obtains that three-locus interactions affect the change in

frequency of the modifier through terms in δσ ε4 〈pqMAB〉 /N .

For space reasons we do not provide expressions for the differents associations

that appear above, but these can be found in a Mathematica notebook available on

request, for both cases where loci are in order M − A − B and in order A − M −

B. In Figures D1 to D3, we analyze different components of selection for sex due

to three-locus interactions. Figure D1 shows that positive selection for sex occurs
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mainly through associations 〈DMA〉, 〈DM,A〉, 〈DMB〉 and 〈DM,B〉 (Ξ1 term), theΞ 2 term

selecting against sex unless h is close to 1/2, andΞ 3 andΞ 4 having little effect. Note

that components of selection for sex due to two-locus interactions (terms in 〈pqMA〉,

〈pqMB〉 that have been derived in the two-locus model) have been removed here, in order

to focus on the effect of three-locus interactions (terms in 〈pqMAB〉). However, we have

just seen that associations inΞ 1 are generated by all associations that appear inΞ 2, Ξ3

andΞ 4. Figure D2 shows another decomposition of the effect of three-locus interactions

on the change in frequency of the modifier: the solid curves show selection on the

modifier due to the breaking of neutral associations such as 〈DAB,AB〉, 〈DMAB,MAB〉,

〈DMAB
2〉 (Ξ4 term, plus the effect of associations that appear inΞ 4 onΞ 1, Ξ2, Ξ3), the

dotted curve shows selection due to the breaking of associations of order ε/N , such as

〈DAB,A〉, 〈pADAB〉, 〈DMAB,MA〉 (through some of the terms ofΞ 1, Ξ2, Ξ3), while the

dashed curve shows selection due to the breaking of associations of order ε2/N , such

as 〈DAB〉, 〈DA,B〉, 〈DMAB,M〉, 〈DMADMB〉 (through some of the terms ofΞ 1 andΞ 2).

Finally, the dashed-single-dotted curves show the effect of three-locus interactions on

selection on the modifier through its effect on associations 〈DA,A〉, 〈DB,B〉, 〈DMA
2〉,

〈DMB
2〉... (that generate associations 〈DMA,A〉, 〈DMB,B〉), while the dashed-double-

dotted curves show the effect of three-locus interactions on selection on the modifier

through its effect on associations 〈DMA,M〉, 〈DMB,M〉 (that affect associations inΞ 1).

Figure D2 shows that when dominance is weak (h close to 1/2), components of selection

for sex due to the breaking of associations of order 1/N (solid), ε/N (dotted) and

ε2/N (dashed) are of similar strength. Figure D3 shows the strength of selection for

sex generated by the linkage disequilibrium 〈DAB〉, relative to selection generated by

other associations involving loci A and B. As can be seen on figure D3, the effect of
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〈DAB〉 is relatively minor, in particular when h is close to 1/2.

Finally, we use our model to obtain extrapolations about selection on a sex

modifier when deleterious mutations occur at a large number of loci within the genome.

From our quasi-equilibrium expressions, and assuming free recombination among all

loci, the selection gradient acting on the modifier takes the form:

sM ≡ 〈∆pM〉
δσ
2 〈pqM〉

=
Ω1

N

∑

A

〈pqA〉 + Ω2

∑

A

〈
pqA

2
〉

+
Ω3

N

∑

A,B

〈pqAB〉 (D17)

where theΩ s are functions of s, h and σ, and where the first two terms correspond to

the stochastic and deterministic terms of the two-locus model, while the third term is

the effect of three-locus interactions (Ω1 is of order ε2, whileΩ 2 andΩ 3 are of order ε4);

sums are over all segregating loci. We performed numerical integrations over Wright’s

distribution to evaluate
∑

A 〈pqA〉 and
∑

A 〈pqA
2〉 (which converge to finite limits

when the number of loci gets very large and the mutation rate per locus very small),

and replaced
∑

A,B 〈pqAB〉 by (1/2) [
∑

A 〈pqA〉]2 (simulations indicate that U/(sh) and

(1/2) [U/(sh)]2 are often good approximations of
∑

A 〈pqA〉 and
∑

A,B 〈pqAB〉 as long

as s % u, 1/N and h is not too small). With linkage, integrating the selection gradient

over a given map length is difficult because some quasi-equilibrium expressions diverge

when rMA, rAB tend to zero. In order to obtain an idea of the effect of increasing link-

age, we considered an artificial situation where the recombination rate is 0.1 between

the modifier and each selected locus (setting rMA = rMB = 0.1 in the model where

loci are in order A − M − B). Although this situation is quite artificial, comparing

the results with the case of free recombination gives an idea of how increasing linkage

affects the relative strength of the different terms in equation D17.

Results are shown on figures D4, D5 and D6, for different values of U and s.
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These figures show that the effect of three-locus interactions (third term of equation

D17) become relatively strong as U increases (compare top and bottom panels), as

σ decreases (compare D4 and D5), and as linkage becomes tighter (compare D4 and

D6). As s decreases, the parameter range in which sex is favored tends to shrink, in

particular when U is high (compare left and right panels).
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Figure D1. Effect of three-locus interactions on selection for sex. The different curves

show different components of the effect of three-locus interactions on the change in

frequency of the modifier (terms in 〈pqMAB〉 of 〈∆pM〉): solid curves:Ξ 1 term, dashed

curves:Ξ 2, dotted curves:Ξ 3, dotted-dashed curves:Ξ 4. Note that terms generated

by two-locus interactions (terms in 〈pqMA〉 and 〈pqMB〉 that that affectΞ 1 andΞ 2)

have been removed. The different terms have been divided by δσ 〈pqMAB〉 /N . Top

row: σ = 0.5, rMA = rAB = 0.5, middle row: σ = 0.2, rMA = rAB = 0.5, bottom row:

σ = 0.5, rMA = rMB = 0.1, loci in order A − M − B. Left: s = 0.05, right: s = 0.01.
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Figure D2. Selection generated by breaking neutral associations involving loci A

and B (solid curves), associations of order ε/N (dotted curves) and associations of

order ε2/N (dashed curves). Dashed-single-dotted curves: selection generated by the

effect of three locus interactions on associations 〈DA,A〉, 〈DB,B〉, 〈DMA
2〉... that affect

〈DMA,A〉, 〈DMB,B〉. Dashed-double-dotted curves: selection generated by the effect of

three locus interactions on associations 〈DMA,M〉, 〈DMB,M〉 that affect 〈DMA〉, 〈DMB〉,

〈DM,A〉, 〈DM,B〉. The different components have been scaled by δσ 〈pqMAB〉 /N . Same

parameter values as in Figure D1.
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Figure D3. Relative effect of the linkage disequilibrium 〈DAB〉 on selection for sex

due to three-locus interactions. In each panel the solid curve represents the termΩ 3

that appears in equation D17, the dotted curve is the part ofΩ 3 that is generated

by 〈DAB〉, and the dashed curve the part ofΩ 3 generated by associations other than

〈DAB〉. Left: free recombination (rMA = rAB = 0.5), right: loci in order A − M − B,

rMA = rMB = 0.1. Other parameters: s = 0.05, σ = 0.5 (σ = 0.1 leads to similar

results – not shown).
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Figure D4. Components of selection for the modifier, as a function of h. In each panel,

the solid curve shows the selection gradient sM defined by equation D17, the dotted

curve shows the effect of two-locus interactions (first two terms of equation D17), and

the dashed curve the effect of three-locus interactions (third term of equation D17).

Parameter values are rMA = rAB = 0.5, σ = 0.5.
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Figure D5. Same as figure D4, with σ = 0.2.
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Figure D6. Same as figure D4, assuming that the recombination rate between the

modifier and each selected locus is 0.1 (using the model where loci are in order A−M−B

and setting rMA = rMB = 0.1); σ = 0.5.
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ONLINE APPENDIX E: SIMULATING TWO MODIFIER ALLELES

As discussed in the main text, figure 4 does not inform us about the strength

and direction of selection for sex when U = 0.05 and h ≥ 0.2 (as the rate of sex

does does depart from the mutation - drift equilibrium at σ = 0.5). We performed

additional simulations where only two alleles (m and M) segregate at the modifier

locus, with a symmetric mutation rate of 10−4 between the two alleles. The strength

of selection for allele M can then be deduced from its average frequency at equilibrium.

In this modified program recombination is free among all loci, in order to facilitate

comparisons with the analytical model. We ran 90 replications of this program for

different values of h, for σ = 0.2, δσ = 0.1, hM = 0.5, U = 0.05, γ = 0 and other

parameters as in figure 4. Each replicate ran for 2× 106 generations (after 2000 initial

generations where allele M is absent), and the frequency of M was measured every 10

generations. We also ran 4 replications for different values of h, σ = 0.01 and δσ = 0.09.

Results are shown in figure E1: vertical bars correspond the the 95% confidence interval

of the strength of selection for M estimated from the simulations for the different values

of h (standard error is calculated over the different replicate simulations), while curves

correspond to analytical predictions, given by 〈∆pM〉 /
〈

1
2 pqM

〉
.
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Figure E1. Strength of selection for allele M as a function of h. Vertical bars corre-

spond to 95% confidence intervals from the simulations, where the strength of selection

for M is estimated from the average value of pM. Solid curves correspond to the pre-

dictions from the two-locus model under weak dominance (from equations 5, 7, 8 and

9 in the main text); dashed curves correspond to expressions derived to the third order

in ε, for arbitrary h (see below). Top: σ = 0.2, δσ = 0.1; bottom: σ = 0.01, δσ = 0.09.

Other parameters: N = 20000, s = 0.05, U = 0.05, hM = 0.5, γ = 0, free recombina-

tion. Note that the third (right) panel shows the strength of selection separately for

simulation results because the values were much smaller than the analytic predictions.
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Figure E1 shows that for σ = 0.2 and δσ = 0.1 (top), allele M is disfavored

when h = 0.2, while allele M seems favored when h ≥ 0.5 (although selection is very

weak and error bars reach zero). These simulation results are compatible with the

two-locus model. Note that the prediction derived from equations 5, 7, 8 and 9 in the

main text (solid curves in figure E1) assumes weak dominance (h close to 0.5); a better

approximation is obtained by expressing associations 〈DMA〉, 〈DM,A〉 and 〈DMA,A〉 to

the second order in ε for arbitrary h (dashed curves in figure E1). Recursions for these

associations to the second order in ε are given below. When σ = 0.01, predictions from

the analytical model are false by two orders of magnitude; this is expected, as the quasi-

equilibrium approximation does not hold when the rate of sex is small. Nevertheless,

it can be noted that the dashed curve predicts that selection for sex increases as h

decreases, which is observed in the simulations. Finally, simulations show that a rate

of sex of 0.1 is favored over 0.01 for all values of h between 0.1 and 0.9.

In the case of an additive modifier (hM = 0.5), recursions for 〈DMA〉, 〈DM,A〉 and

〈DMA,A〉 to the second order in ε for arbitrary h are given by the following equations.

More precisely, we assume that N is large and keep only terms in s/N and in s2

(we thus neglect terms in 1/N2). Furthermore, we assume that the frequency of

deleterious allele is small, so that terms in 〈pqA
2〉 /N can be neglected compared to

terms in 〈pqA〉 /N . One obtains:

〈DMA〉t+1 = (1 − rσ) 〈DMA〉t + rσ 〈DM,A〉t − s (1 − h) 〈DMA,A〉t (E1)
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〈DM,A〉t+1 = (1 − σ)
[
〈DM,A〉t − s (1 − h) 〈DMA,A〉t

]

− δσ

2

[
〈DMA,M〉t − s (1 − h) 〈DMA,MA〉t

+ sh
(〈

DMA
2
〉

t
+ 2 〈DMADM,A〉t +

〈
DM,A

2
〉

t

)]

(E2)

〈DMA,M〉t+1 = (1 − σ)
[
〈DMA,M〉t − s (1 − h) 〈DMA,MA〉t

+ sh
(〈

DMA
2
〉

t
+ 2 〈DMADM,A〉t +

〈
DM,A

2
〉

t

)]
(E3)

〈DMA,A〉t+1 = (1 − σ) (1 − s) 〈DMA,A〉t

+
δσ

2

[
(1 − 2sh)

[
(1 − r)

〈
DMA

2
〉

t
+ 〈DMADM,A〉t + r

〈
DM,A

2
〉

t

]

− (1 − s) 〈DMA,MA〉t −
〈
pqMDpar

A,A

〉
t

]

(E4)

where
〈
pqMDpar

A,A

〉
t

is measured after selection. In the last expression, associations

〈DMA
2〉t, 〈DMADM,A〉t, 〈DM,A

2〉t and 〈DMA,MA〉t must be expressed at quasi-equilibrium

to the first order in s. One finds that recursions for these associations are given by equa-

tions B4 to B7, multiplying 〈DMA,MA〉t by 1−s and multiplying 〈DMA
2〉t, 〈DMADM,A〉t,

and 〈DM,A
2〉t by 1 − 2sh. Finally, the recursion for

〈
pqMDpar

A,A

〉
t
is given by:

〈
pqMDpar

A,A

〉
t+1

= (1 − σ)
〈
pqMDpar

A,A

〉
t

−
[
1 − s

1 − σ

σ

] [
〈pqMA〉

2N
+ s (1 − 2h)

〈
pqM pqA

2
〉]

.

(E5)
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ONLINE APPENDIX F: ADDITIONAL SIMULATION RESULTS
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Figure F1: trajectories. Average rate of sex σ in the population over time (in

generations) during the course of a simulation, for N = 20000, s = 0.05, h = 0.5,

L = 10, σinit = 1, c = 1, γ = χ = 0, U = 0.05 (left) and U = 0.5 (right). Other

parameter values lead to similar dynamics (with wide fluctuations of the rate of sex)

except when σ goes to zero.
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Figure F2: eliminating benefits of recombination. Average rate of sex observed

in simulations, as a function of the dominance coefficient h of deleterious mutations.

Empty squares, solid line: L = 0.1. Filled squares, dashed lines: the σL product

is kept constant across individuals (by adjusting map length L as a function of the

value of modifier alleles carried by the individual) in order to eliminate selection for

recombination; σL = 0.05 (the program is constrained so that the rate of sex cannot

be less than 0.001). Other parameter values: N = 20000, U = 0.5, s = 0.05, γ = 0,

c = 1, σinit = 1. Note that this method for eliminating benefits of recombination will

not work when L is already large, so that recombination between many pairs of loci

is close to 0.5 (because incresing L even further will not have much effect). Indeed,

results for L = 10 (as in figure 4) and σL fixed to 5 are undistinguishable (not shown).
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Figure F3: effect of the cost of sex (additional results). This figure is the

equivalent of figure 7 left (average rate of sex at equilibrium, as a function of the cost

of sex c) for U = 0.5, N = 20000, γ = 0 (top left), U = 0.5, N = 20000, γ = 10−3

(top right), and U = 1, N = 50000, γ = 0 (bottom left), U = 0.5, N = 20000, γ = 0,

ea×a = −0.02 (bottom right; epistasis is zero in the three other plots). Symbols refer

the to the same values of h as in figure 7. Other parameters are the same as in figure

7. Error bars are smaller than the size of symbols.
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Detailed simulation results. The following tables show the average rate of sex (σ),

average fitness (w), average number of mutations per haplotype (nmut) and number of

fixed mutations at the end of the simulation (nfix) for the different parameter values

considered in the figures (see figure legends for parameter values). The “–” sign means

that the rate of sex goes to zero, in which case deleterious mutations accumulate in the

heterozygous state and the program has to be stopped. When fixation of deleterious

mutations occurs (nfix > 0), fixed mutations are removed from the population every 20

generations. Measures of average fitness and number of mutations per haplotype do

not take into account mutations that have been removed from the population. Note

that when mutations do not reach fixation, mean fitness is often close to the determin-

istic expectation e−2U , while the number of mutations per chromosome is also often

close to the deterministic expectation U/ (sh).

Simulation results corresponding to figure 4:

U = 0.05, γ = 0:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – 0.16 0.50 0.51 0.50 0.54 0.50 0.50 0.48 0.50 0.49

w – 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

nmut – 9.87 4.94 3.28 2.45 1.95 1.62 1.38 1.20 1.06 0.95

nfix – 0 0 0 0 0 0 0 0 0 0
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U = 0.05, γ = 10−4:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – 0.44 0.55 0.53 0.50 0.52 0.53 0.53 0.49 0.53 0.50

w – 0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

nmut – 9.79 4.94 3.28 2.45 1.95 1.62 1.38 1.20 1.06 0.95

nfix – 0 0 0 0 0 0 0 0 0 0

U = 0.05, γ = 10−3:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ 0.92 0.82 0.72 0.60 0.51 0.42 0.28 0.23 0.16 0.092 0.098

w 0.95 0.91 0.90 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.91

nmut 80.39 9.76 4.93 3.28 2.44 1.95 1.61 1.38 1.20 1.06 0.95

nfix 0 0 0 0 0 0 0 0 0 0 0

U = 0.5, γ = 0:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – – 0.37 0.58 0.62 0.65 0.64 0.64 0.66 0.64 0.67

w – – 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

nmut – – 49.4 32.8 24.5 19.5 16.2 13.8 12.0 10.6 9.51

nfix – – 0 0 0 0 0 0 0 0 0
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U = 0.5, γ = 10−4:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – – 0.63 0.65 0.64 0.63 0.62 0.62 0.59 0.60 0.62

w – – 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

nmut – – 74.6 32.8 24.5 19.5 16.2 13.8 12.0 10.6 9.50

nfix – – 0 0 0 0 0 0 0 0 0

U = 0.5, γ = 10−3:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ 0.95 0.97 0.92 0.87 0.74 0.53 0.44 0.40 0.40 0.36 0.38

w 0.59 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

nmut 816.2 97.8 49.4 32.8 24.5 19.5 16.2 13.8 12.0 10.6 9.53

nfix 0 0 0 0 0 0 0 0 0 0 0

Simulation results corresponding to figure 5:

χ = 10−3:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – – 0.67 0.73 0.67 0.61 0.50 0.46 0.37 0.37 0.37

w – – 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

nmut – – 49.4 32.8 24.5 19.5 16.2 13.8 12.0 10.7 9.56

nfix – – 0 0 0 0 0 0 10 1 77
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χ = 10−2:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – 0.97 0.96 0.94 0.86 0.22 0.14 0.10 0.10 0.097 0.095

w – 0.37 0.37 0.37 0.37 0.37 0.36 0.33 0.32 0.32 0.32

nmut – 97.9 49.4 32.8 24.5 19.4 16.9 16.3 15.0 13.9 12.8

nfix – 0 0 0 0 0 878 17431 27474 38062 41602

Simulation results corresponding to figure 6:

N = 10000:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – – – 0.57 0.65 0.65 0.65 0.64 0.66 0.66 0.67

w – – – 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

nmut – – – 32.8 24.5 19.5 16.2 13.8 12.0 10.6 9.52

nfix – – – 0 0 0 0 0 0 0 0

N = 50000:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – – 0.47 0.58 0.61 0.61 0.65 0.63 0.65 0.61 0.61

w – – 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

nmut – – 49.5 32.8 24.5 19.5 16.2 13.8 12.0 10.6 9.50

nfix – – 0 0 0 0 0 0 0 0 0
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L = 1:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – – – 0.79 0.76 0.74 0.72 0.73 0.70 0.75 0.65

w – – – 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

nmut – – – 32.9 24.6 19.5 16.2 13.8 12.0 10.6 9.52

nfix – – – 0 0 0 0 0 0 29 1

L = 0.1:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – – – 0.92 0.87 0.83 0.76 0.69 0.69 0.63 0.61

w – – – 0.29 0.30 0.31 0.31 0.32 0.33 0.34 0.34

nmut – – – 39.6 29.1 23.1 19.3 16.3 14.0 12.2 10.8

nfix – – – 109 1268 4051 10251 16554 17928 17284 19332

s = 0.01:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – – – 0.39 0.57 0.57 0.55 0.086 0.064 0.058 0.065

w – – – 0.36 0.37 0.37 0.37 0.29 0.31 0.34 0.35

nmut – – – 170.1 124.8 99.8 83.2 101.1 87.5 74.8 68.3

nfix – – – 47 0 0 66 198149 304529 346657 352502
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s = 0.1:

h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ – – 0.50 0.64 0.67 0.66 0.68 0.69 0.65 0.68 0.70

w – – 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

nmut – – 24.5 16.2 12.0 9.50 7.84 6.65 5.75 5.06 4.50

nfix – – 0 0 0 0 0 0 0 0 0

Simulation results corresponding to figure 7 left:

h = 0.5:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.5 2

σ 0.71 0.32 0.26 0.23 0.21 0.20 0.17 0.15 0.13

w 0.13 0.14 0.13 0.13 0.13 0.13 0.13 0.12 0.10

nmut 39.1 39.5 40.2 40.9 41.7 42.5 44.0 48.7 57.6

nfix 0 0 0 1 63 136 2689 9076 57156

h = 0.4:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.4 1.5 1.7 1.8 2

σ 0.71 0.31 0.24 0.22 0.20 0.18 0.16 0.15 0.15 0.12 – –

w 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.10 – –

nmut 49.1 49.6 50.5 51.1 51.8 53.2 56.1 58.5 60.0 68.0 – –

nfix 0 0 0 0 0 18 256 1127 2866 14951 – –
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h = 0.3:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.5

σ 0.64 0.28 0.22 0.20 0.18 – – –

w 0.13 0.13 0.13 0.13 0.13 – – –

nmut 65.7 66.4 67.8 68.9 70.6 – – –

nfix 0 0 0 0 0 – – –

Simulation results corresponding to figure 7 right:

h = 0.5:

c 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

σ 0.98 0.95 0.88 0.80 0.71 0.61 0.51 0.42 0.34 0.27 0.22

w 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

nmut 39.0 39.0 39.1 39.2 39.4 39.7 40.0 40.5 41 41.5 42.1

nfix 4 0 11 0 13 22 83 87 144 411 667

h = 0.4:

c 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

σ 0.98 0.94 0.88 0.79 – – – – – – –

w 0.14 0.14 0.14 0.14 – – – – – – –

nmut 49.0 49.0 49.1 49.3 – – – – – – –

nfix 0 0 0 0 – – – – – – –
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Simulation results corresponding to figure F3 top left:

h = 0.5:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.5 2

σ 0.66 0.22 0.17 0.15 0.13 0.13 0.11 0.10 0.083

w 0.37 0.37 0.38 0.38 0.39 0.40 0.42 0.46 0.51

nmut 19.5 19.7 20.0 20.3 20.5 20.8 21.5 22.6 25.8

nfix 0 0 0 0 8 45 115 667 8041

h = 0.4:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.4 1.5 2

σ 0.62 0.21 0.16 0.14 0.13 0.12 0.11 0.10 0.092 0.081

w 0.37 0.37 0.38 0.38 0.39 0.40 0.43 0.44 0.45 0.50

nmut 24.5 24.7 25.1 25.5 25.6 26.2 26.6 27.7 28.6 33.0

nfix 0 0 0 0 0 6 26 164 325 5451

h = 0.3:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.4

σ 0.59 0.19 0.14 0.13 0.12 0.10 – –

w 0.37 0.37 0.37 0.38 0.39 0.39 – –

nmut 32.8 33.2 33.7 34.2 34.7 35.1 – –

nfix 0 0 0 0 0 89 – –
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Simulation results corresponding to figure F3 top right:

h = 0.5:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.5 2

σ 0.53 0.21 0.16 0.14 0.14 0.12 0.11 0.090 0.080

w 0.37 0.37 0.38 0.38 0.40 0.40 0.42 0.45 0.53

nmut 19.5 19.6 20.0 20.3 20.4 20.9 20.6 22.9 25.4

nfix 0 0 0 0 8 32 264 927 5531

h = 0.4:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.4 1.5 2

σ 0.74 0.21 0.16 0.14 0.13 0.12 0.10 0.094 0.086 0.078

w 0.37 0.37 0.38 0.39 0.39 0.41 0.42 0.44 0.45 0.52

nmut 24.5 24.6 24.9 25.2 25.6 25.9 26.8 27.6 28.5 31.6

nfix 0 0 0 0 0 0 12 88 109 2127

h = 0.3:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.4 1.5 1.6

σ 0.87 0.21 0.15 0.13 0.12 0.11 0.098 0.087 – –

w 0.37 0.37 0.38 0.39 0.39 0.40 0.42 0.43 – –

nmut 32.8 32.8 33.2 33.6 34.0 34.7 35.8 37.2 – –

nfix 0 0 0 0 0 0 4 50 – –
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Simulation results corresponding to figure F3 bottom left:

h = 0.5:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.5 2

σ 0.66 0.30 0.24 0.22 0.20 0.18 0.17 0.14 0.12

w 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.12

nmut 39.0 39.3 39.9 40.5 41.1 41.9 42.9 46.5 54.3

nfix 0 0 0 0 1 45 202 3338 32413

h = 0.4:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.5 2

σ 0.67 0.28 0.23 0.20 0.19 0.17 0.15 0.13 0.11

w 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.11

nmut 49.0 49.4 50.0 50.9 51.3 52.9 54.1 58.3 69.8

nfix 0 0 0 0 0 32 59 1268 15115

h = 0.3:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.4

σ 0.60 0.26 0.21 0.18 0.17 0.15 – –

w 0.14 0.13 0.13 0.13 0.13 0.13 – –

nmut 65.7 66.2 67.1 68.1 68.9 71.0 – –

nfix 0 0 0 0 0 2 – –
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Simulation results corresponding to figure F3 bottom right:

h = 0.5:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.5 2

σ 0.99 0.86 0.49 0.37 0.30 0.25 0.19 0.13 0.11

w 0.52 0.51 0.51 0.51 0.52 0.53 0.56 0.63 0.80

nmut 3.2 3.3 3.4 3.5 3.5 3.6 3.7 3.8 3.9

nfix 0 0 0 0 0 0 0 0 0

h = 0.4:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.5 2

σ 0.99 0.86 0.51 0.37 0.30 0.24 0.19 0.12 0.088

w 0.53 0.52 0.51 0.52 0.53 0.54 0.57 0.63 0.80

nmut 3.3 3.3 3.5 3.6 3.6 3.7 3.8 3.9 4.0

nfix 0 0 0 0 0 0 0 0 0

h = 0.3:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.5 2

σ 0.99 0.86 0.51 0.38 0.31 0.24 0.20 0.13 0.11

w 0.53 0.53 0.52 0.53 0.53 0.55 0.58 0.64 0.82

nmut 3.4 3.4 3.6 3.6 3.7 3.8 3.8 3.9 4.0

nfix 0 0 0 0 0 0 0 0 0
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h = 0.2:

c 1 1.02 1.06 1.1 1.14 1.2 1.3 1.5 2

σ 0.99 0.86 0.49 0.38 0.31 0.26 0.20 0.14 0.092

w 0.54 0.54 0.53 0.53 0.54 0.56 0.59 0.65 0.82

nmut 3.4 3.5 3.6 3.7 3.8 3.8 3.9 4.0 4.2

nfix 0 0 0 0 0 0 0 0 0
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ONLINE APPENDIX G: EFFECTS OF EPISTASIS

Epistasis is incoporated in the simulation program as in Roze, 2009. In par-

ticular, three forms of epistasis are distinguished: additive-by-additive epistasis (ea×a)

measures the effect of the interaction between two deleterious alleles at two loci, while

additive-by-dominance (ea×d) and dominance-by-dominance (ed×d) epistasis measure

the effect of the interaction between three and four deleterious alleles (respectively)

at two loci. From previous work, ea×a and ed×d should be particularly important

for selection on sex modifiers. Additive-by-additive epistasis (ea×a) should favor sex

when it is weakly negative (e.g., Barton, 1995), due to the fact that it generates

negative linkage disequilibrium between selected loci. Dominance-by-dominance epis-

tasis (ed×d, measuring the effect of the interaction between 4 deleterious alleles at

two loci) may also have important effects in inbred or finite populations (Roze and

Lenormand, 2005; Roze, 2009; Agrawal, 2009). In particular, we have seen that

in finite populations, sex tends to increase the frequency of genotypes homozygous at

one selected locus and heterozygous at another, this effect being represented by the

term 〈DMAB,AB〉 in equation 11, which is negative (see also Appendix D). When ed×d

is sufficiently negative, these genotypes have higher fitness (on average), generating

selection for increased sex (see also figure 4 in Roze, 2009). However, our simulation

results indicate that negative ed×d has the opposite effect, selecting against sex (see

figure G1). Figure G1 also shows that negative additive-by-dominance epistasis also

disfavors sex.
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Figure G1: effects of epistasis on the rate of sex: simulation results. Aver-

age rate of sex σ in the population as a function of additive-by-additive epistasis (top

left), additive-by-dominance epistasis (top right) and dominance-by-dominance epis-

tasis (bottom), for s = 0.1 (filled squares, solid lines), s = 0.01 (filled circles, dashed

lines) and s = 0.001 (empty squares, dotted lines, top right and bottom only). Other

parameter values are N = 20000, U = 0.5, L = 10, h = 0.5, σinit = 1, γ = 0. In each

panel, other components of epistasis are set to zero.
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The fact that strongly negative ea×a favors sex in the present model can be

explained by the fact that the effect of selection at each locus becomes strong relative

to epistasis when mutations segregate at many loci (see Roze, 2009). Similarly, selec-

tion against sex under negative ed×d probably comes from the fact that negative ed×d

increases selection against homozygotes at each locus (due to interactions with other

homozygous loci). Indeed, one obtains that ed×d affects the change in frequency of the

sex modifier through a term

ed×d

(〈
pB

2DMA,A

〉
+

〈
pA

2DMB,B

〉
+ 〈DMAB,AB〉

)
(G1)

(to first order in ed×d). The first two terms are approximately 〈pB
2〉 〈DMA,A〉 and

〈pA
2〉 〈DMB,B〉, selecting against sex under negative ed×d due to the fact that a mod-

ifier increasing sex tends to be associated with homozygotes: 〈DMA,A〉, 〈DMB,B〉 are

positive (see Appendix B). The last term, however, favors sex under negative ed×d

since 〈DMAB,AB〉 < 0. Note that negative ed×d has similar antagonistic effects on se-

lection for recombination in structured, diploid populations (Roze, 2009); however,

while negative ed×d can favor recombination in a given range of parameters (figure 9

in Roze, 2009), we could not find any combination of parameters for which negative

ed×d favors higher rates of sex. Negative ed×d may thus be more favorable to recombi-

nation than it is to sex (which is probably due to the fact that DMA,A associations are

smaller in magnitude in the case of a recombination modifier, as they are generated

by the effect of selection on three-locus associations). Finally, ea×d affects the change

in frequency of the sex modifier through a term

ea×d (〈pBDMA,A〉 + 〈pADMB,B〉) (G2)

(to first order in ea×d), which also generates selection against sex under negative ea×d.
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These results indicate that positive ea×d and ed×d should favor sex; however it is

difficult to test this prediction using our simulation model, because positive ea×d or

ed×d lead to the rapid fixation of mutations (as combinations of mutations become

advantageous), unless ea×d, ed×d are very weak relative to s (but in this last case ea×d

and ed×d have little effect).


