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ABSTRACT

While a variety of methods exist to reconstruct ancestral sequences, all of them assume that a single
phylogeny underlies all the positions in the alignment and therefore that recombination has not taken
place. Using computer simulations we show that recombination can severely bias ancestral sequence
reconstruction (ASR), and quantify this effect. If recombination is ignored, the ancestral sequences
recovered can be quite distinct from the grand most recent common ancestor (GMRCA) of the sample
and better resemble the concatenate of partial most recent common ancestors (MRCAs) at each recom-
bination fragment. When independent phylogenetic trees are assumed for the different recombinant
segments, the estimation of the fragment MRCAs improves significantly. Importantly, we show that
recombination can change the biological predictions derived from ASRs carried out with real data. Given
that recombination is widespread on nuclear genes and in particular in RNA viruses and some bacteria,
the reconstruction of ancestral sequences in these cases should consider the potential impact of
recombination and ideally be carried out using approaches that accommodate recombination.

NCESTRAL sequence reconstruction (ASR) is one
of the most popular uses of phylogenies, allowing
us to test hypotheses about the evolution of ancestral
genes and genomes (LIBERLES 2007). Moreover, in-
ferred ancestral sequences can be synthesized in the
laboratory, so their function can be studied in wvitro
CHANG et al. 2002). There are many applications of ASR,
including the reconstruction of ancestral biochemical
pathways (GABALDON et al. 2006) and paleoenviron-
ments (Boussau etal. 2008; GAUCHER et al. 2008) , vaccine
design (GASCHEN el al. 2002), or the resurrection of
ancestral viruses (DEWANNIEUX et al. 2006).

A number of methods to reconstruct ancestral DNA
and protein sequences have been developed during the
last decades, in parallel with the development of
methods for inferring phylogenies like maximum parsi-
mony (MP), maximum likelihood (ML), and Bayesian
approaches (CUNNINGHAM et al. 1998; RoNQuisT 2004;
LiBerrLES 2007). Several studies have shown that ASR
works reasonably well (e.g., Kosar and GOLDSTEIN 1996;
7ZuANG and NEr 1997; Car e al. 2004; HarLr 2006;
WILLIAMS et al. 2006). Importantly, a common assump-
tion of ASR methods is that all the positions in the
alignment have evolved under the same phylogeny, and
therefore that there is a unique, single most recent
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common ancestor (MRCA) for all the sequences in the
sample. However, if recombination has occurred along
the history of the sample, different parts of the align-
ment can have distinct evolutionary relationships (see
Posapa et al. 2002). In this case, each recombinant
fragment will correspond to a particular genealogy or
tree and will have its own MRCA (Figure 1). Indeed, all
recombinant fragments finally coalesce into a single
ancestor, which in the coalescentjargon is often referred
toas the grand most recent common ancestor (GMRCA)
(GrrrrrTHS and MarjorAM 1997) (Figure 1). In the ab-
sence of recombination, the GMRCA and the fragment
MRCA sequences are necessarily identical, as they refer
to the same node. However, this is not necessarily true
if there is recombination, because in this case different
regions of the alignment will have their own MRCA at
different times. Importantly, the reconstruction of the
GMRCA can be very difficult, as changes in the GMRCA
will be fixed at the fragment MRCAs (Figure 2). More-
over, it is known that ignoring recombination can bias
phylogenetic estimation (Posapa and CRANDALL 2002;
BEeIkO et al. 2008) and derived inferences (SCHIERUP
and HEIN 2000a,b). Given all these complexities, we
expect recombination to bias ASR. Therefore, the con-
sequences can be important, as recombination is wide-
spread in nuclear, viral, and bacterial genomes (Posapa
et al. 2002; AWADALLA 2003; FRASER et al. 2007; GAUT
et al. 2007; DURET and ARNDT 2008). Here we used com-
puter simulations to assess and quantify the effect of
recombination on ASR.
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Frcure 1.—Example of an ancestral recombination graph.
Inside each node (circles) there are recombinant segments
with ancestral (shaded horizontal blocks) and nonancestral
material (horizontal lines). RE indicates recombination events.
Vertical lines across the segments indicate recombination
breakpoints. Numbers above nodes indicate the nucleotide
interval of ancestral material included. Note that each inde-
pendent recombinant fragment (1-3, 4-7, and 8-9) has its
own most recent common ancestor (MRCA), all of which fi-
nally coalesce into a grand most recent common ancestor
(GMRCA). At the bottom, we can see the individual trees cor-
responding to each recombinant fragment.

MATERIALS AND METHODS

Simulation of recombinant sequences: We simulated align-
ments of coding and noncoding nucleotide sequences under
different scenarios, allowing for both intercodon and intra-
codon recombination, and where both GMRCA sequence and
the MRCA fragments were known (ARENAS and Posapa 2010).
In all cases, we used the same number of sequences (n = 11;
10 ingroup sequences + 1 outgroup sequence), alignment
length (I = 999 nucleotides/333 codons) and effective pop-
ulation size (N = 1000). We explored three different values of
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FiGure 2.—Example of the evolution of nucleotides on the
ancestral recombination graph in Figure 1. Substitutions
along branches are marked with solid circles, followed by
the position and the states involved. The two changes that oc-
cur between the GMRCA and the MRCAs (enclosed in a box
and shaded) are fixed in the sampled sequences, so the cor-
responding ancestral states in the GMRCA (1A and 6C) can-
not be recovered from this sample.

the population mutation parameter (6 = 4Nuwl= 50, 100, and
200) and six population recombination rates (p = 4Nrl= 0, 1,
4, 16, 64, and 128), where w and r are the substitution and
recombination rates per site per generation, respectively. Note
that these rates encompass many different organisms, as they
range from zero to extreme values like those observed in
rapidly evolving pathogens (MCVEAN et al. 2002; STumPF and
McVEAN 2003; CARVAJAL-RODRIGUEZ et al. 2006). Noncoding
nucleotide sequences were evolved under the JC69 substitu-
tion model (Juxkes and CANTOR 1969) while protein-coding
sequences were evolved under the GY94 model (GOLDMAN
and YANG 1994), with a transition/transversion ratio of 0.5
and equal nonsynonymous (dy) and synonymous (ds) rates
per nonsynonymous and synonymous site, respectively (o =
dn/ds = 1.0). We used simple substitution models to focus on
the role of recombination. For every combination of param-
eters, we simulated 200 alignments. The latter resulted in ~6,
11, and 19% average pairwise nucleotide distances, respec-
tively for 6 = 50, 100, and 200. Amino acid alignments were
obtained by translation of the simulated coding sequences,
assuming the universal genetic code; allowing us to include
intracodon recombination at the protein level.
Reconstruction of ancestral sequences: For every simulated
alignment, we built neighborjoining (NJ), maximum parsi-
mony (MP) and maximum likelihood (ML) phylogenetic trees
using PAUP* (Sworrorp 2000) and HYPHY (KoSAKOVSKY
Ponp et al. 2005) and rooted them using the outgroup. We
carried out ASR using different methods and implementa-
tions: joint and marginal ML ASR in PAUP¥, joint MLL ASR in
HYPHY, and marginal empirical Bayes ASR (HUELSENBECK
and Borrack 2001) in PAML (YANG 2007). For nucleotides
and codons the model of substitution assumed in all the
analyses was the same model used to generate the data, thereby
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avoiding the effect of model misspecification. In the case of
amino acids, the ASR was carried out assuming the WAG model
(WHELAN and GoLpman 2001).

ASR for recombinant fragments: We also devised a pro-
cedure that considers recombination during ASR. First,
recombination breakpoints were located with GARD
(KosAkOVSKY POND et al. 2006). The resulting alignment frag-
ments and corresponding NJ trees were redirected to HYPHY/
PAUP* for joint ML ASR for each fragment. In the case of
PAUP#*, recombinant fragments lacking one of the four bases
were pooled with the largest neighboring fragment. Also,
breakpoints detected inside codons were moved to the nearest
intercodon position. In addition, we repeated the reconstruc-
tions using the simulated (true) trees for each fragment.

Error measure: Error was measured as the percentage of
differences (at the nucleotide, codon, or amino acid level)
between the inferred and simulated ancestral sequence at the
ingroup MRCA. In the absence of recombination, this
comparison is straightforward because there is only one MRCA
for the whole alignment (and it is the same as the GMRCA).
However, when there is recombination, there are several
MRCAs for the different recombination fragments and one
GMRCA. In this case, we computed two different errors, the
distance from the estimated ancestral sequence to the simu-
lated GMRCA and the average distance from the inferred
ancestral sequence to the fragment MRCAs.

Phylogenetic error: We also calculated the phylogenetic
error between the inferred tree/s (one if recombination is
ignored; several if recombination is accounted for) and the
true tree/s (one if recombination has not occurred; several if
there is recombination) for each segment. This error was
estimated using two different metrics, the Robinson-Foulds
(RF) distance (RosiNsoN and Fourps 1981), which only
considers differences in topology, and the branch score (BS)
distance (KUHNER and FELSENSTEIN 1994), which also consid-
ers differences in branch lengths.

Analysis of real data: We analyzed two different alignments
of the env region of HIV-1. The first data set was downloaded
from the HIV Sequence Database (http:/www.hiv.lanl.gov)
and included the HIV-1 group M reference alignment plus an
outgroup (40 sequences, 2514 bp). The second data set
included only subtype B viruses and an outgroup (38 sequen-
ces, 2557 bp) (DoRr1A-RoOSE et al. 2005). Sequence U19647 was
too short, and therefore we removed it from the latter data set.
In both cases, we realigned the sequences using MAFFT
(KaTon and Ton 2008) and removed ambiguous positions
with Gblocks (TALAVERA and CASTRESANA 2007). We selected
best-fit models with jModelTest (Posapa 2008) and inferred
ML trees using Phyml (GuinpoN and GascurL 2003). We
inferred ancestral sequences ignoring/considering recombi-
nation using the methodology described above and estimated
population recombination rates with omegaMap (WILSON
and McVEAN 2006). Then, we scanned the resulting sequen-
ces for known HIV-1 and CTL epitopes using ELF (http:/
www.hiv.lanl.gov/content/sequence/ELF/epitope_analyzer.
html) and MHCPred (GUAN et al. 2003), respectively, and
for Mlinked glycosylation sites using NetNGlyc (GupTa et al.
2004).

RESULTS

Impact of recombination on ASR: Recombination
biased the reconstruction of the GRMCA sequence. For
nucleotide sequences, the error reached up to 11, 20,
and 36% for 6 = 50, 100, and 200, respectively (Figure 3;
open bars). For codons, the error was higher, up to 30,
50, and 72%, respectively (supporting information,
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F1Gure 3.—Nucleotide ASR error as a function of the re-
combination rate. The percentage of nucleotide differences
is shown between the inferred and the simulated GMRCA
sequences, ignoring recombination (open), using the frag-
ments and trees inferred by GARD (shaded), or using the sim-
ulated (true) fragments and trees (solid) for different levels
of diversity (0) and recombination (p). Error bars indicate
95% confidence intervals. In the example shown, ancestral
nucleotide sequences were inferred using joint ML in HYPHY.

Figure SI). For proteins, the error was also noticeable,
up to 24, 41, and 62%, respectively (Figure S2; open
bars). Note that if we just referred to the reconstruction
at variable sites, which is where the ASR can make a
difference, the error would increase notably, up to 39,
48, and 56% (nucleotides), up to 51, 63, and 76%
(codons), and up to 51, 60, and 71% (proteins) for 6 =
50, 100, and 200, respectively. In all cases, the error
logically increased with the recombination rate and was


http://www.hiv.lanl.gov
http://www.hiv.lanl.gov
http://www.hiv.lanl.gov/content/sequence/ELF/epitope_analyzer.html
http://www.hiv.lanl.gov/content/sequence/ELF/epitope_analyzer.html
http://www.hiv.lanl.gov/content/sequence/ELF/epitope_analyzer.html
http://www.hiv.lanl.gov/content/sequence/ELF/epitope_analyzer.html
http://www.genetics.org/cgi/data/genetics.109.113423/DC1/1
http://www.genetics.org/cgi/data/genetics.109.113423/DC1/2
http://www.genetics.org/cgi/data/genetics.109.113423/DC1/3

1136 M. Arenas and D. Posada

A N W0

o O [ie [l DL DL

8=100

Nucleotide ASR error (MRCAs)

[

i ]

6=200 -+

o = N W A U1 O N 0w O

0 1 4 16 64 128
Recombination rate (p)

FiGure 4.—FError in the reconstruction of the fragment
MRCAs as a function of the recombination rate. The percent-
age of nucleotide differences is shown between the inferred
and the simulated fragment MRCAs sequences, ignoring re-
combination (open), using the fragments and trees inferred
by GARD (shaded), or using the simulated (true) fragments
and trees (solid) for different levels of divergence (6) and
recombination (p). Error bars indicate 95% confidence inter-
vals. In this case ancestral nucleotide sequences were inferred
using joint ML in HYPHY.

larger for divergent sequences. Remarkably, this error
was independent of the exact ASR algorithm (joint,
marginal), phylogenetic framework (MP, NJ, ML) or
software (PAUP* PAML, HYPHY) (Figure S3). Recom-
bination also confounded, although to a much less
extent, the estimation of the MRCA for each individual
recombinant fragment (Figure 4; Figure S4, Figure S5,
and Figure S6).

Indeed, in the simulations, the average distance
between the GMRCA sequence and the fragment

TABLE 1

Average nucleotide distance between the GMRCA sequence
and the fragment MRCAs in the simulations, for different
levels of diversity (0) and recombination (p)

Distance (%) between

0 p GMRCA and fragment MRCAs
50 0 0.00 = 0.00
1 1.10 = 0.25
4 2.64 = 0.35
16 5.12 * 0.47
64 7.98 + 0.52
128 9.10 = 0.49
100 0 0.00 = 0.00
1 2.14 = 0.48
4 5.15 * 0.66
16 9.74 = 0.86
64 14.91 £ 0.88
128 16.92 + 0.84
200 0 0.00 = 0.00
1 3.96 = 0.86
4 9.52 = 1.15
16 17.43 = 1.39
64 26.14 = 1.35
128 29.21 = 1.26

Numbers after * indicate 95% confidence intervals.

MRCAs increased with the recombination and sub-
stitution rates (Table 1). Looking at the error figures
for the GMRCA and fragment MRCAs (Figure 3; Figure
S1 and Figure S2 vs. Figure 4; Figure S5 and Figure S6),
it is clear that the ancestral sequences estimated were
always much more similar to the fragment MRCAs than
to the GMRCA, especially at high recombination and
substitution rates. The ASR error relative to the GMRCA
was several times larger regardless of the method or
implementation used (data not shown).

ASR considering recombination: When ASR was
carried out taking into account the recombination
fragments delimited by GARD, the error in the re-
construction of the GMRCA always decreased, although
not in a significant fashion (but note that in five out of
five cases it is smaller, which itself is a nonsignificant
result) (Figure 3; shaded bars). When the true trees and
fragments were used in the analysis, the error decreased
further, sometimes significantly (Figure 3; solid bars).
The same trend was observed for amino acid sequences
(Figure S2; shaded and solid bars).

In the case of the fragment MRCAs, the use of the
segments identified by GARD reduced the ASR error
significantly, ~25%, for recombination rates higher
than 1, independently of the substitution rate (Figure 4;
shaded bars). When the true trees and fragments
were used in the analysis, the error clearly decreased,
although it was quite independent of the recombination
rate (Figure 4; solid bars). The same trend was observed
for amino acid sequences (Figure S6).
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Relationship between phylogenetic error and ASR
accuracy: When recombination was ignored, the RF
distance was significantly correlated across replicates
with the ASR error [Pearson’s correlation coefficient
(corr.) = 0.75, Pvalue < 2.2¢16] and it was significantly
larger for those sites that were assigned a wrong
ancestral state (two-way ANOVA, Pvalue = 0.02). The
BS distance was also correlated with the ASR error
(corr. = 0.97, Pvalue < 2.2¢16), but it was independent
of whether the assigned ancestral state was correct or
wrong (Pvalue = 0.98). The same results were obtained
when recombination was considered using GARD,
although in this case the RF distances (but not the BS
distances) were significantly smaller (two-way ANOVA,
Pvalue < 2.2¢16).

Analysis of real data: For the HIV-1 group M data set,
the estimate of p was 8.5 and the number of recombi-
nation breakpoints detected by GARD was 4. For the
HIV-1 subtype B data set the estimated p was 4.5 and the
number of recombination breakpoints detected was 7.
For HIV-1 M, the ancestral sequences inferred ignor-
ing/considering recombination differed by 4.69% (118
nt) and 9.24% (70 aa), for nucleotide and amino acid
ASR, respectively, while for HIV-1 B this difference was
3.56% (91 nt) and 4.82% (39 aa). When recombination
was ignored, the number of epitopes identified in the
inferred ancestral M sequence was 354, although when
recombination was taken into account this number was
447. In the ancestral B sequence, 494 epitopes were
detected in both cases, although these epitopes were
not exactly the same. The number of CTL epitopes
inferred was different depending on whether recom-
bination was considered or not (Table S1), and the
number of N-glycosylation sites inferred for the ances-
tral M sequence inferred ignoring/considering recom-
bination was 14/17. For the HIV-1 B data, the number of
detected N-glycosylation sites was 22 regardless of re-
combination, but the inference corresponded to differ-
ent positions.

DISCUSSION

Our simulations clearly show that recombination
biases the reconstruction of ancestral nucleotide, co-
don, and amino acid sequences, regardless of the
method and/or software used. The effect of recombi-
nation on ASR was stronger at higher recombination
and substitution rates, but it was also considerable at low
recombination rates. This trend was expected because
tree height grows with the recombination rate due to an
increment of incompatibilities in the data (Eyre-
WALKER et al. 1999; ScHIERUP and HEIN 2000a). The
ASR error was largest at the codon level, suggesting that
ASR with recombination is better accomplished at the
nucleotide or amino acid level. The ASR error de-
creased when the true trees and fragments were used
in the analysis, suggesting that itis due to the fact thatin

the presence of recombination the history of the whole
alignment cannot be explained by a single phylogeny
anymore, but by a set of distinct phylogenies for the
different recombinant fragments. In this case, if we
ignore recombination, the inferred tree can be an
incorrect representation of the true underlying phylog-
enies (Posapa and CranparL 2002), and the ASR
would fail when trying to infer ancestral states at
(wrong) nodes. In fact, in the presence of recombina-
tion the positions that were assigned a wrong ancestral
state supported worse topologies but similar branch
lengths than sites that were correctly reconstructed.

While the error in the reconstruction of the fragment
MRCAs was independent of the recombination rate, the
estimated GMRCA sequence became less accurate with
increasing recombination rates. Indeed, we expect the
GMRCA and the fragment MRCAs to be more different
with increasing recombination rates, because in this
case the height of the simulated tree and the number of
recombinant fragments will be larger, and therefore the
sum of branch lengths between the GRMCA and the
MRCAs will be bigger. In most situations, the GMRCA
will be much more difficult to estimate than the
fragment MRCAs, because all the substitutions that
occur between the GMRCA and the fragment MRCAs
will be fixed, and the ancestral states at the sites involved
will never show up in the sampled sequences. Therefore,
the ancestral sequence reconstructed in the presence of
recombination will always be closer to the fragment
MRCAs than to the GMRCA sequence.

Detecting breakpoints and estimating independent
trees for each recombinant fragment is of little help in
obtaining a more accurate GMRCA sequence, but it can
be very useful if we are interested in the fragment
MRCAs. Although the fragment MRCAs will correspond
to different nodes of the genealogy, their sequences
could be used for a better depiction of the history of
changes in the sample or to reconstruct specific protein
domains. For example, in the case of HIV-1, the latter
applies to the design of polyvalent vaccines, in which the
interest is on particular epitopes spread across the
entire sequence (Gao et al. 2003; NICKLE et al. 2003;
DoR1A-ROSE et al. 2005). Still, a more robust method for
the reconstruction of the ancestral (GMRCA) sequence
in presence of recombination is clearly needed. A
potential avenue could be the use of explicit phyloge-
netic networks (Huson and BryanT 2006), where one
could do the ASR integrating over the different trees
embedded in the network, as in Bayesian phylogenetics
(HueLsenBECK and BorrBack 2001). However, this
might be quite challenging given the impact of re-
combination on the accuracy of phylogenetic networks
(WOOLLEY et al. 2008) and potential problems identify-
ing the GMRCA (CasTELLOE and TEMPLETON 1994). An
alternative could be the reconstruction of rooted ances-
tral recombination graphs (SoNG and Hrin 2005;
MiNICHIELLO and DURBIN 2006; PARIDA et al. 2008).
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Nearly every published study incorporating ancestral
sequence reconstruction assumes no recombination,
despite the fact that recombination is widespread on the
nuclear genome of many eukaryotes, and in particular
in RNA viruses and some bacteria. In these cases,
although the target is most often the GMRCA, what is
being estimated in practice will be much closer to the
fragment MRCAs. To what point the error induced by
recombination has relevant implications should be
discussed on a case-by-case basis and within the context
of the intended use of the reconstructed sequences.
Indeed, it is possible that just a few nucleotide changes
in the inferred ancestral sequence can lead to different
functional or evolutionary inferences, while in other
cases a larger number of changes may have little impact
on conclusions (KRISHNAN et al. 2004). In our example,
recombination resulted in different predictions regard-
ing the structure/activity of the inferred ancestral
domains and epitopes. In any case, the impact of
recombination on ASR should be kept in mind when
making ancestral inferences from genes and proteins
with a potential history of recombination.
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FIGURE S1.—Codon ASR error as a function of the recombination rate for GMRCA inferred sequences. The
figure shows the percentage of codon differences between the inferred and the simulated ancestral GMRCA
sequences, for different levels of diversity () and recombination (p). Dotted, dashed and continuous lines correspond
to 8 = 50, 100 and 200, respectively. Error bars indicate 95% confidence intervals. In the example shown ancestral
codon sequences were inferred using joint ML in HYPHY.
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FIGURE S2.—Amino acid ASR error as a function of the recombination rate. The figure shows the percentage of
amino acid differences between the inferred and the simulated GMRCA ancestral sequences, ignoring recombination
(white), using the fragments and trees inferred by GARD (grey), or using the simulated (true) fragments and trees
(black), for different levels of diversity (0) and recombination (p). Error bars indicate 95% confidence intervals. In the
example shown ancestral amino acid sequences were inferred using joint ML in HYPHY.
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FIGURE S3.—Error in the reconstruction of the GMRCA as a function of the recombination rate. The panel shows
the percentage of nucleotide differences between the inferred and simulated GMRCA ancestral sequences for
different levels of divergence (8) and recombination (p), and for different ASR methods and software. Error bars
indicate 95% confidence intervals.
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FIGURE S4.—Error in the reconstruction of the fragment MRCAs as a function of the recombination rate. The
panel shows the percentage of nucleotide differences between the inferred and simulated fragment MR CAs sequences
for different levels of divergence (8) and recombination (p), and for different ASR methods and software. Error bars
indicate 95% confidence intervals.
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FIGURE S5.—Frror in the reconstruction of the fragment MRCAs as function of the recombination rate at the
codon level. The figure shows the percentage of codon differences between the inferred and the simulated fragment
MRCAs sequences, for different levels of divergence () and recombination (p). Dotted, dashed and continuous lines
correspond to 6 = 50, 100 and 200, respectively. Error bars indicate 95% confidence intervals. In this case ancestral
codon sequences were inferred using joint ML in HYPHY.
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FIGURE S6.—Error in the reconstruction of the fragment MRCAs as function of the recombination rate at the
protein level. The panel shows the percentage of amino acid differences between the inferred and the simulated
fragment MRCAs sequences, ignoring recombination (white), using the fragments and trees inferred by GARD (grey),
or using the simulated (true) fragments and trees (black), for different levels of divergence (8) and recombination (p).
Error bars indicate 95% confidence intervals. In this case ancestral amino acid sequences were inferred using joint
ML in HYPHY.
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TABLE S1

Inferred CTL epitopes from ancestral sequences

HIV-1 M HIV-1 B
HLA Allele  Ignoring Considering Ignoring Considering
recombination recombination recombination recombination
A0201 7 10 13 9
H2Db 7 4 2 2
H2Kb 110 104 107 110
H2Kk 42 43 63 66
A0101 5 4 4 3
A0202 23 29 20 18
A0203 230 217 235 230
A0206 48 44 37 34
A0301 36 41 30 31
A1101 372 356 391 387
A3101 3 2 2 3
A6801 30 29 23 24
A6802 17 14 26 27
B3501 0 0 0 0
DRBO101 333 336 309 317
DRB0401 6 4 3 3
DRB0701 12 13 15 16
T1Ab 0 0 0 0
IAk 59 50 65 65
IEg 0 0 0 0
IEk 0 0 0 0
1Ad 60 52 48 52
IAs 180 174 198 197
IEd 0 0 0 0
TAP 175 178 129 134
All 1755 1704 1720 1728

Numbers shown are the C'TL epitopes estimated by MHCPred (http://www jenner.ac.uk/MHCPred/) for all
available alleles in November of 2009. The cut-off value for the IC50 was 50, which only returns CTLs with high

affinity.



