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Abstract Selenium (Se) is a nutritional trace mineral

essential for various aspects of human health that exerts its

effects mainly through its incorporation into selenoproteins

as the amino acid, selenocysteine. Twenty-five selenopro-

tein genes have been identified in humans and several

selenoproteins are broadly classified as antioxidant

enzymes. As progress is made on characterizing the indi-

vidual members of this protein family, however, it is

becoming clear that their properties and functions are quite

diverse. This review summarizes recent insights into

properties of individual selenoproteins such as tissue

distribution, subcellular localization, and regulation of

expression. Also discussed are potential roles the different

selenoproteins play in human health and disease.

Keywords Selenium � Selenoprotein � Selenocysteine �
Antioxidant � Redox

Introduction

Selenium (Se) is an essential nutritional trace element that

is critical to the normal physiology of a wide range of

species, including humans [1]. A striking example of its

importance is the occurrence of Keshan disease, a cardio-

myopathy endemic in certain Se-deficient areas of China

that is completely preventable with Se supplementation

[2, 3]. While Se deficiency in humans is rare, there is

evidence that less overt changes in Se status may affect

aspects of human health such as immune responses, neu-

rodegeneration, cardiovascular disease, and cancer [1, 4–

6]. The benefits of Se supplementation pertaining to cancer

have been a focus of recent clinical studies, which have

yielded varying results. One study conducted by the

Nutritional Prevention of Cancer (NPC) study group indi-

cated that Se supplementation significantly decreased the

risk of lung, colorectal, and prostate cancers [7, 8]. This led

to the largest, most comprehensive study on the effects of

Se intake, alone and with vitamin E, on cancer: the Sele-

nium and Vitamin E Cancer Prevention Trial (SELECT).

This randomized, placebo-controlled trial included 35,533

men from 427 participating sites in the United States,

Canada, and Puerto Rico and was designed as a 12-year

study. However, trial supplements were discontinued early

(in year 7) predominantly based on a lack of evidence of

benefit against cancer for either study agent [9]. It is likely

that Se supplementation benefits certain populations only,

such as Se-deficient or genetically predisposed groups, or

that Se supplementation is particularly effective at lower-

ing the risk of some health disorders and not others.

Dissecting mechanisms by which dietary Se levels affect

different aspects of human health is essential for under-

standing how altering levels of Se intake through Se

supplementation may affect human health.
While small molecular weight selenocompounds influ-

ence human health, a crucial step in understanding the

biological effects of dietary Se is determining the functions

of the proteins into which Se is incorporated, i.e., seleno-

proteins. A total of 25 selenoproteins genes have been

identified in humans, 24 of which exist in rodents [10]. The

members of this family exhibit diverse patterns of tissue

distribution, ranging from ubiquitous to tissue-specific

expression. Subcellular localization is also varied with

some selenoproteins exclusively expressed in certain
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organelles or as transmembrane proteins, while others are

secreted to extracellular spaces or plasma. These and other

properties have provided important information regarding

physiological roles for selenoproteins.

The process of Sec incorporation into selenoproteins

exists in different forms in the bacteria, archaea, and euk-

arya kingdoms. However, not all species within these

kingdoms have the capacity for selenoprotein synthesis.

Sec differs from cysteine by a single atom (Se vs. S),

conferring a lower pKa (5.2 vs. 8.3) and higher reactivity.

Certain selenoproteins that have cysteine in place of Sec at

their active sites exhibit up to 100-fold lower in catalytic

efficiency [11], but evolutionary selection for this increased

efficiency has been counterbalanced by availability of Se,

which has produced a complex distribution of Sec- and

Cys-containing homologs throughout nature [12].

Selenoproteins are collectively essential for life, as

demonstrated by the transgenic mouse model involving

deletion of the gene encoding the tRNA dedicated to their

synthesis, which results in embryonic lethality [13]. Cer-

tain model systems have shown that reduced selenoprotein

activity is counterbalanced by a cytoprotective response

mediated by the transcription factor Nrf2, which may

represent a parallel, essential system involved in main-

taining cellular redox homeostasis and viability [14].

Several selenoproteins have been characterized as antiox-

idant enzymes, serving to mitigate damage caused by

reactive oxygen species (ROS). Three biological reactions

catalyzed by selenoproteins are shown to illustrate impor-

tant antioxidant or redox roles for these enzymes (Fig. 1).

However, the emerging concept of ROS as secondary

messengers of cell signaling has required closer examina-

tion of potential roles for selenoproteins as modulators of

redox-regulated signal transduction (Fig. 2). Not all sele-

noproteins are enzymes involved in regulating cellular

ROS, and the list of selenoprotein functions is expanding at

an exciting pace [15]. Functions for several selenoproteins

have yet to be determined, but much progress has been

made recently in this rapidly evolving field. While sele-

noproteins are found in a range of prokaryotic and

eukaryotic species, this review will focus on mammalian

selenoproteins with an emphasis on recent insights into

roles they play in various aspects of human health focusing

on information derived from mouse studies, cell culture

experiments, and some human studies.

Synthesis of selenoproteins

The mechanism by which selenoproteins are synthesized

has been thoroughly described elsewhere [16–18], but a

brief summary follows as this topic is essential for under-

standing the unique features and regulatory aspects of the

selenoprotein family. All selenoproteins contain seleno-

cysteine (Sec), the 21st amino acid, within their active

sites. Translation of selenoproteins is similar to generalized

protein translation in that it consists of three main steps:

initiation, elongation, and termination. The special feature

of selenoprotein translation lies in the recoding of the UGA

codon, which is located in the coding region of seleno-

protein mRNAs, from a stop codon to Sec-insertion

codon. Most selenoprotein mRNAs, with the exception of

Fig. 1 Three examples of antioxidant or redox reactions catalyzed

by selenoproteins. In the first reaction, different forms of peroxide

(R–O–O–H) such as hydrogen peroxide or lipid peroxide are reduced

by the GPx selenoenzymes using glutathione (GSH). In the second,

oxidized thioredoxin (Trx-S2) is converted to reduced thioredoxin

(Trx-(SH)2) by thioredoxin reductase (Trxrd) using nicotinamide

adenine dinucleotide phosphate (NADPH). The third reaction

involves reduction of the R-stereoisomer of methionine-sulfoxide

(Met-R-O) within peptides to methionine (Met) by selenoprotein R

(Sel R, also called MSRB1) using Trx

Fig. 2 Roles for selenoproteins in regulating oxidative stress and

redox status of signaling molecules. Through antioxidant selenoen-

zymes such as glutathione peroxidases, thioredoxin reductases, or

methionine sulfoxide reductase, cellular damage caused by reactive

oxygen species (ROS) is mitigated. In addition, selenoproteins may

directly or indirectly modulate redox-regulated signaling
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selenoprotein P (Sel P), contain a single Sec residue per

polypeptide chain. Another unusual selenoprotein in this

sense is selenoprotein L (Sel L), which uses a single

selenocysteine insertion (SECIS) element for insertion of

two Sec residues [19]. Sel L is absent in mammals,

although distantly related Cys-containing homologs of Sel

L are found in mammals. The translational machinery

within the cell typically reads the UGA codon as a termi-

nation signal, releasing the nascent polypeptide from the

ribosome. During translation of selenoproteins, cis- and

trans-acting factors work in concert to redirect translational

machinery to insert Sec at UGA codons instead of termi-

nating polypeptide synthesis. These factors include specific

secondary structure in the mRNA termed SECIS elements

[20, 21], a unique tRNA (tRNA[Ser]Sec) [22], the enzyme

that synthesizes this tRNA termed Sec synthase (SecS)

[22, 23], and the tRNA-modifying enzyme phosphoseryl-

tRNA[Ser]Sec kinase (Pstk) [24]. The translation process

also requires SecP43, which is required for methylation of

the 20-hydroxyl-ribosyl moiety in the wobble position of

the Sec-tRNA[Ser]Sec and may regulate shuttling of the

SecS-Sec-tRNA[Ser]Sec complex between the nucleus and

cytoplasm [25, 26], an RNA binding protein (SBP2) [27,

28], and a specialized elongation factor (EFsec) [29, 30].

Recently, other proteins have been shown to be involved in

the translation process including ribosomal protein L30,

SECIS-interacting nucleolin, and Sec-tRNA gene tran-

scription activating factor (STAF) [31–33]. A newly

described cis element in the mRNA adjacent to the UGA

codon has been implicated in Sec insertion efficiency [34],

and the clinical importance of mutations in this element

was recently demonstrated for selenoprotein N-related

myopathies [35].

Under circumstances of low selenium, mRNA is

degraded through nonsense-mediated decay (NMD) [36].

NMD is a pathway that targets mRNAs containing pre-

mature termination codons for degradation. The presence

of both a UGA codon and an intron downstream of the

UGA was shown to be required for selenium-dependent

regulation of mRNA turnover [36, 37]. Interestingly, deg-

radation of selenoprotein mRNAs under conditions of low

Se is not uniform, with some transcripts clearly more

sensitive to NMD than others [37, 38]. One factor that has

been proposed to play a role in determining the hierarchy

of sensitivity is the position of the UGA codon relative to

the actual stop codon [39], though a recent study offers

data inconsistent with this notion [38]. It is likely that

several different factors contribute to sensitivity of sele-

noprotein mRNAs to NMD [40] and their influence may be

exerted at different steps of the translation process [41].

The synthesis of individual selenoproteins, regulation of

their transcription and translation, and how that relates to

their function is addressed in more detail below.

Glutathione Peroxidases

The first identified selenoprotein was glutathione peroxi-

dase 1 (GPx1) [42–44], and the GPx family subsequently

became one of the more fully characterized groups of se-

lenoproteins. In humans, GPx1 through 4 and 6 are Sec-

containing enzymes, while in mice only GPx1 through 4

contain Sec in the active site [45]. In vitro activity assays

suggest that all members of this group use glutathione

(GSH) to catalyze the reduction of hydrogen peroxide and/

or phospholipid peroxides, but the physiological localiza-

tion and substrate specificity of each varies, collectively

providing a wide spectrum of antioxidant protection. While

GPx1 through 3 are 22- to 25-kDa proteins acting as ho-

motetrameric enzymes, GPx4 is a 20-kDa protein that acts

in a monomeric form. A more detailed description of each

GPx follows.

GPx1

Also referred to as cellular GPx, GPx1 is one of the most

abundant and ubiquitously expressed selenoproteins

[46, 47]. GPx1 is also one of the most highly sensitive to

changes in Se status, with levels of mRNA and protein

dramatically reduced under low Se conditions [38]. In

addition to Se status, other factors like oxidative stress

influence the expression of GPx1. Somewhat counter-

intuitively, oxidative stress has been shown to reduce levels

of GPx1 [48]. However, evidence suggests that global

protein synthesis is reduced under conditions of stress as a

means of reserving cellular resources [49] and that GPx1

recovers most rapidly compared to other selenoproteins

[17]. Taken together, this suggests GPx1 plays a role in the

overall recovery of the cells after oxidative stress. In vivo

conditions of oxidative stress like asthma have been stud-

ied for effects on GPx1 expression. As mentioned above,

GPx1 uses GSH to reduce ROS, producing GSSG in the

process, which is converted back to GSH by the enzyme

glutathione reductase. Under conditions of oxidative stress

that accompany asthma, intracellular GSH/GSSG homeo-

stasis is altered, resulting in impaired cellular signaling and

increased susceptibility to lung injury [50, 51]. Regarding

expression of GPx1 itself, some studies have shown that

GPx1 levels increase in lung during asthma [52], while

others failed to find significant changes in GPx1 [53]. The

relationship between GPx1 and lung inflammation most

likely is related not only to oxidative stress, but to Se status

of the host as well [54].

A role of GPx1 in protecting against certain cancers has

been supported by several lines of evidence. In a transgenic

model in which mice lack a highly specialized methyl

group in Sec-tRNA, GPx1 expression is strongly sup-

pressed [41]. When these mice were treated with the
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colonic genotoxic carcinogen, azoxymethane, significantly

more aberrant crypts developed in the colon as compared

with littermate controls. GPx1 expression has been found

to be decreased or repressed in various in vitro and in vivo

models of cancer [55, 56], and hypermethylation of the

GPx1 promoter in gastric cancer cell lines has recently

been demonstrated [57]. In contrast, GPx1 activity was

found to be increased in malignant human lung tissue

compared to non-malignant tissue [58], raising the question

of whether altered GPx1 levels directly contribute to

development or progression of these cancers. There have

been several studies demonstrating associations between

GPx1 genetic polymorphisms and cancer, though not

all have consistently supported significant associations

[47, 59]. In vitro, combining Se supplementation with

GPx1 overexpression reduced UV-induced DNA damage

[60]. More mechanistic studies are needed for better

determining a potential role for GPx1 in cancer prevention.

GPx1 also plays an important role in protecting against

neurodegenerative diseases. Studies in rodents have pro-

duced inconsistent results regarding the abundance and

distribution of GPx1 in the regions and cells of the brain

[61, 62]. In a recent study, the cellular distribution of GPx1

in human brain was mapped and found to be overall low in

abundance, with highest levels detected in microglia and

lower levels detected in neurons [63]. Comparing tissue

from normal subjects to those with Parkinson’s disease

(PD) and dementia with Lewy bodies (DLB), GPx1-posi-

tive microglia were implicated in neuroprotection in PD

and DLB.

Transgenic mouse models involving deletion or over-

expression of GPx1 have provided important insights into

functional significance of proper levels of GPx1 expres-

sion. In general, GPx1 knockout mice are healthy and

fertile with no apparent increased sensitivity to hyperoxia

[64]. When challenged with oxidative stress-inducing

agents such as paraquat and hydrogen peroxide, GPx1

knockout mice were found to be more susceptible to

morbidity and mortality [65, 66]. Also, GPx1 knockout

mice were similar to Se-deficient mice in their suscepti-

bility to coxsackievirus-induced cardiomyopathy similar to

human Keshan disease [67].

Recently, GPx1 overexpressing mice were described

showing spontaneous development of hyperglycemia, hy-

perinsulinaemia, insulin resistance, and obesity [68]. The

effect of GPx1 overexpression on diabetes involves

upregulated pancreatic duodenal homeobox 1 (PDX1) and

downregulated uncoupling protein 2 (UCP2) in pancreatic

islets [69], and emphasizes the requirement for some

degree of ROS for maintaining proper cell function. These

findings have particular relevance to human health given

the SELECT findings of slightly higher risk of type 2

diabetes in Se-supplemented humans as described above as

well as the strong correlation found between increased

erythrocyte GPx1 activity and insulin resistance in gesta-

tional diabetic women [70].

GPx2

GPx2 is mainly expressed in the whole gastrointestinal

tract including the squamous epithelium of the esophagus

of healthy organisms and, in humans, is also detectable in

liver [71]. It is not uniformly expressed in the intestine but

is highest in the crypt grounds and decreases gradually

toward the luminal surface, suggesting a role in prolifer-

ating cells [72]. The role of GPx2 is mainly to protect

intestinal epithelium from oxidative stress given that GPx

activity is retained in this location in GPx1 knockout mice

and this activity was reduced with anti-GPx2 immunopre-

cipitation [73, 74]. GPx2 exhibits substrate specificity

similar to that of GPx1, and they include hydrogen per-

oxide, tert-butyl hydroperoxide, cumene hydroperoxide,

and linoleic acid hydroperoxide, but not phosphatidylcho-

line hydroperoxide [75]. The location of GPx2 expression

suggests that this selenoprotein may serve as a first line of

defense in exposure to oxidative stress induced by ingested

prooxidants or gut microbiota. Expression of GPx2, along

with GPx4, is much more resistant than GPx1 to dietary Se

deficiency [37, 39, 76].

GPx2 is upregulated in cancers of gastrointestinal origin

as well as other types of cancers [72, 77–79]. Its role in

preventing tumorigenesis was supported by studies show-

ing that GPx1/GPx2 double knockout mice progressively

developed ileocolitis and subsequently intestinal cancer,

but one intact GPx2 allele was sufficient to prevent intes-

tinal inflammation [80, 81]. However, the relationship

between expression of GPx2, normal cell proliferation, and

tumor progression is complex, making its role as a poten-

tial target of cancer therapy a controversial issue. A recent

study used a siRNA approach to show that lower expres-

sion of GPx2 increased migration and invasion of cancer

cell clones, but decreased their growth [82]. These data

support the notion that manipulation of GPx2 might be

either detrimental or beneficial, depending on the stage of

tumor development.

GPx3

This GPx family member is the only secreted GPx

enzyme and it constitutes approximately 20% of Se found

in the plasma [83], though this number may change

depending on Se status of the individual [84]. The main

source of GPx3 in plasma is the kidney, produced by the

cells of the proximal tubular epithelium and in the parietal

cells of Bowman’s capsule and released into the blood

[85]. However, several different tissues appear to express
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mRNA and protein, and GPx3 in this context most likely

serves as a local source of extracellular antioxidant

capacity. An example of this is in the heart, where GPx3

is the third most abundant selenoprotein mRNA detected

[86], where levels of GPx3 in this tissue may reflect a

role in protecting against oxidative damage to extracel-

lular matrix under normal conditions or during stress.

Also, GPx3 protein levels in the heart are high in the

thyroid gland where it likely serves to reduce oxidative

stress [87]. The reductant of GPx3 in vivo has not been

clearly identified, though in vitro studies have shown that

GPx3 may use GSH to reduce hydrogen peroxide or tert-

butylhydroxide [88]. Results from other studies suggest

that, in addition to GSH, thioredoxin or glutaredoxin may

serve as reducing substrates [89], though others failed to

confirm this finding [88]. More work is necessary to

clearly characterize the in vivo reactions catalyzed by

GPx3.

An important role was identified for GPx3 in early

experiments showing a role in regulating the bioavailability

of nitric oxide (NO) produced from platelets and vascular

cells [90]. This was followed up with a study showing that

decreased GPx3 activity led to platelet hyper-reactivity and

an increased risk of thrombosis [91]. The clinical signifi-

cance of this was supported with a study showing that

impaired metabolism of ROS as a result of reduced GPx3

activity resulted in insufficient NO levels that affected

normal platelet inhibitory mechanisms and predisposed

study subjects to arterial thrombosis [92]. In vitro hypoxia

is a strong transcriptional regulator of GPx3 expression

[93]. This finding led to clinical studies demonstrating

associations between polymorphisms in the GPx3 promoter

and the risk of ischemic stroke [94, 95]. However, a recent

study was unable to confirm these findings [96]. The

presence of GPx3 as one of two major plasma selenopro-

teins (along with Sel P) suggests a role for this

selenoprotein in modulating NO concentration or other

aspects of the vascular environment. Whether GPx3 affects

susceptibility to stroke or other cardiovascular disorders

may require more mechanistic studies.

GPx3 has been shown to be upregulated by peroxisome

proliferator-activated receptor (PPAR)-induced antioxidant

responses in human skeletal muscles [97], suggesting a role

for this selenoenzyme in regulating extracellular oxidative

stress that affects insulin resistance. Oxidative stress

accompanies obesity and affects adipose tissue and, in

several obese animal models, GPx3 expression was selec-

tively reduced in this tissue accompanied by decreasing

GPx3 in plasma [98]. Another obesity-related hormone is

estrogen, which is linked to the maintenance and distri-

bution of body fat. A recent study has demonstrated that

GPx3 gene expression is a direct target of estrogen receptor

alpha stimulation in white adipose tissue [99]. GPx3 has

been demonstrated to be lower in obesity and higher after

weight loss, suggesting GPx3 is a mediator of effects of

estrogen in relation to fat mass in humans.

GPx4

GPx4 is ubiquitously expressed in a variety of tissues,

although the subcellular localization between cytosol,

nuclear, and mitochondria differs between tissues [100].

GPx4 differs from the other GPx enzymes in several ways,

including its requirement for life [101]. Its main substrate

is phospholipid hydroperoxides in membranes [100], and,

under conditions of low GSH, protein–thiol groups may be

used as reducing substrates [102]. Reversing oxidation of

lipid peroxides is a critical protective role for GPx4, but

this selenoenzyme is also involved in metabolism of lipids

such as arachidonic acid and linoleic acid [103]. Recent

work has provided insight into a role for GPx4 as a sensor

of oxidative stress and a transducer of cell death signals

[104]. Specifically, a loxp/cre system was used to generate

primary mouse embryonic fibroblasts with one or both

GPx4 alleles deleted, and disruption of GPx4 was found to

result in cell death signaling in a 12/15-lipoxygenase-

dependent manner. These data link oxidative stress, GPx4,

and lipid metabolism to pro-apoptotic signaling and most

likely occur in most developing tissues as well as different

adult tissues.

GPx4 knockout mice die in utero at midge station, and

developmental retardation of the brain appears to play an

important role in manifestation of this phenotype [101,

105, 106]. Similar to developing brain, adult brain is

dependent on proper GPx4 function. Mutations or altera-

tions of the antioxidant protein, DJ-1, have been suggested

to play a role in the pathogenesis of human PD, and in PD

tissue oxidative alterations to DJ-1 were associated with

increases in GPx4 protein, but no changes in mRNA levels

[107]. These data provide correlative evidence that DJ-1

participates in the cellular response to PD through oxida-

tion-dependent translational regulation of oxidation

responsive proteins like GPx4. This is consistent with the

notion that depletion of GPx4 in hippocampus has been

shown to result in neurodegeneration and GPx4 is directly

involved in pro-apoptotic signaling [104]. In addition to

PD, evidence for a role for GPx4 in protecting against

Alzheimer’s disease has recently been demonstrated.

Brains of GPx4?/- mice were shown to have increased

lipid peroxidation, which led to increased expression

of b-Site amyloid precursor protein cleavage enzyme 1

(BACE1), a key rate-limiting enzyme identified in the

production of b-Amyloid [108]. Altogether, whether low

Se intake or insufficient GPx4 levels in brain contribute to

the pathogenesis of PD or Alzheimer’s disease warrant

further investigation.
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Similar to GPx1 and 3, GPx4 has been shown to play a

protective role in cardiovascular disease. For example,

overexpression of GPx4 inhibits the development of ath-

erosclerosis in transgenic mice by decreasing lipid

peroxidation and inhibiting the sensitivity of vascular cells

to oxidized lipids [109]. The mitochondria of cardiomyo-

cytes are particularly sensitive to oxidative damage. A

novel transgenic mouse model was recently developed in

which GPx4 was overexpressed exclusively in the mito-

chondria and the Langendorff model of ischemia/

reperfusion (I/R) was used to demonstrate that increased

GPx4 in this organelle reduced mitochondrial lipid per-

oxidation during (I/R) compared to littermate controls

[110]. Higher levels of GPx4 in the mitochondria were

sufficient to improve cardiac contractile function and

preserve electron transport chain complex activities fol-

lowing I/R. In addition to protecting against I/R,

overexpression of GPx4 inhibits the development of ath-

erosclerosis in transgenic mice by decreasing lipid

peroxidation and inhibiting the sensitivity of vascular cells

to oxidized lipids.

Finally, a feature of GPx4 that separates it from other

GPx family members involves its dual roles as both an

enzyme and a structural protein. In particular, GPx4 is

transformed in the later stages of spermatogenesis

from an active Sec-containing glutathione peroxidase

into a structural protein that becomes a constituent of

the mitochondrial sheath of spermatozoa [111]. Similar to

protection in cardiomyocytes described above, the mitoc-

hondrially expressed form of the GPx4 is most relevant in

spermatogenesis, with the nuclear form being dispensable

for fertility and the role of cytosolic GPx4 remaining

unclear [112]. While Se deficiency does not appear to be a

major cause of male infertility, there is evidence that low

GPx4 content is associated with infertility. Early studies

showed correlations between GPx4 content of human

spermatozoa, measured as GPx activity, and parameters

such as sperm count, motility, and morphological integrity

[113]. Polymorphisms in the GPx4 gene may also con-

tribute to male infertility, although a cause and effect

relationship has not been clearly established [112].

GPx6

GPx6 is believed to be restricted in expression to the

developing embryo and olfactory epithelium in adults [10].

However, tissue distribution is based on one published

study and confirmation by others is needed. Since identi-

fication of GPx6, this protein has not been characterized in

terms of function or disease. While it is reasonable to

assume it plays an antioxidant role in physiological niches

where its expression is highest, more definitive evidence

this role is needed.

Thioredoxin reductases

Thioredoxin reductase (Txnrd) enzymes are oxidoreduc-

tases that use NADPH to catalyze the reduction of oxidized

thioredoxin (Trx) [114, 115]. Trx is in turn used by several

cellular enzymes as a cofactor in dithiol–disulfide

exchange reactions, and this is a major mechanism by

which a reduced environment is maintained within cells,

particularly serving to maintain reduced cysteine groups

[116]. Mammalian Txnrds contain a conserved N-terminal

disulfide motif Cys-Val-Asn-Val-Gly-Cys and a C-terminal

active site sequence Gly-Cys-Sec-Gly [117, 118]. The

presence of the -Cys-Sec- in the active site, instead of Cys-

Cys as is the case with Drosophila melanogaster and

Caenorhabditis elegans, confers mechanistic advantages to

the mammalian Txnrd enzymes including the ability to

function at acidic pH [119]. Although it has long been

believed that Txnrds are the only enzymes capable of

reducing oxidized Trx [120, 121], a recent study has sug-

gested that Txnrd1-indpendent mechanisms are important

in the reduction of Trx under conditions of stress [122]. Trx

is not the only substrate capable of being reduced by

Txnrds, with several different macromolecules and small

molecules identified as substrates for Txnrds including

NK-lysin (a disulfide-containing effector peptide of

T-lymphocytes) [123], alloxan [124], lipoic acid [125],

selenite [126], and others.

There are three mammalian Txnrds: cytoplasmic/nuclear

Txnrd1 (also called TR1 or TrxR1) that reduces Trx1,

mitochondrial Txnrd2 (also called TR3 or TxnR2) that

reduces Trx2, and testes-specific thioredoxin–glutathione

reductase (also called Txnrd3, TR2, TxnR3, or TGR).

Txnrd1 and 2 are both widely distributed throughout a

variety of tissues, and several alternatively spliced forms

have been described in humans and rodents, which may

reflect complex regulation of expression and/or organelle-

and cell type-specific location of animal Txnrds [127–130].

A splice variant of human Txnrd1 has recently been

implicated in actin polymerization related to cell mem-

brane restructuring [131]. Whether the different splice

variants of Txnrd1 and 2 have different functions, and if

they respond differently to stress or to Se intake, remains to

be determined.

Txnrd1 and 2 are both housekeeping proteins expressed

in cells under non-stressed conditions [132], and studies

using radioisotope labeled Se (75Se) have shown that

Txnrd1 is detected at higher levels than Txnrd2 in most

cases [133, 134]. Given the ubiquitous nature of the Trx/

Txnrd systems, it is not surprising that Txnrds are required

for numerous cellular processes. Their essential functions

are evident by studies in mice demonstrating that genetic

deletion of either results in embryonic lethality [135, 136].

When deletion is restricted to cardiomyocytes, only Txnrd2
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is indispensable for viability, which may reflect a stricter

requirement in developing heart tissue for Txnrd activity in

the mitochondria. Alternatively, the different results may

be related to the studies described above showing that at

least two splice variants of Txnrd2 are localized outside the

mitochondria and that deleting all three forms has a more

dramatic effect on the developing heart compared to

deletion of Txnrd1. In contrast to heart, Txnrd2 is not

required for proper development of lymphocytes as dem-

onstrated in transgenic mice with this selenoenzyme

knocked out in CD19? B cells or CD4? T helper cells,

neither of which exhibited detectable impairments [137].

Increasing Se intake results in increased expression of

both Txnrd1 and 2 proteins [15]. However, Txnrd2 mRNA

exhibits a higher resistance to degradation under Se-defi-

cient conditions compared to Txnrd1 [133]. These findings

were restricted to rat kidney and liver, and whether this

hierarchy in sensitivity to Se status is true for other tissues

is not clear. Levels of Se are not the only regulator of

expression of Txnrds, both may be induced under certain

conditions such as oxidative stress or response to growth

factors [137–140]. With the emergence of ROS as sec-

ondary messengers of cell signaling, there has also

emerged a role of the Trx/Txnrd system as modulators of

cell signaling. For example, the Trx/Txnrd system has been

shown to be involved in activation of the small G protein

Ras in myocardiocytes through oxidation of thiol groups on

Ras [141]. Undoubtedly, there is much more to be dis-

covered regarding the role of Txnrd1 in regenerating Trx

used in modulating redox-regulated signaling molecules.

There is increasing evidence that a variety of pathogens

are dependent on Txnrd activity for viability and modu-

lating levels or activity of Txnrds may prove effective

targets for limiting certain infections. One example is HIV-

1 infection, which is both affected by and affects Se status

in infected individuals [4]. Txnrd1 expression was found to

be lower in HIV-1-infected Jurkat T cells [142], and a

recent study demonstrated that Txnrd1 acts as a negative

regulator HIV-1-encoded transcriptional regulator, Tat

[143]. In addition to infectious diseases, Txnrd1 has

emerged as a potential target in cancer therapy, predomi-

nantly based on the notion that cancer cells exist in a

stressed environment and rely on the Trx/Txnrd system for

protection against stress-disregulated redox signaling

[144]. Aggressive tumors in melanomas, thyroid, breast,

and prostate and colorectal carcinomas significantly over-

express both Trx1 and Txnrd1 [145]. In vitro and in vivo

reduction of Txnrd1 levels led to slower growth of tumor

cells [146, 147]. Evidence is beginning to emerge regard-

ing specific mechanisms by which Txnrd1 may affect

tumor formation or progression. For example, Trx1/Txnrd1

has been implicated as a crucial electron donor system in

DNA replication that occurs during S-phase growth such as

that during tumor growth [148]. In addition, key cell sig-

naling pathways including NFj-B and MAPK’s in colon

cancer cells that are induced with anticancer drugs are

modulated by the Trx1/Txnrd1 system [149]. The recent

determination of the crystal structure of Txnrd1 [150]

should facilitate specific targeting of this selenoenzyme

with the goal of modulating its function.

Deiodinases

The iodothyronine deiodinase family of selenoproteins

consists of three enzymes: types 1, 2, and 3 (D1, 2, and 3;

or DIO1, 2, and 3), which are membrane-anchored

enzymes of 29–33 kDa that share substantial sequence

homology and catalytic properties [151]. Thyroid hormone

action is initiated by the activation of T4 prohormone to

T3. This conversion is carried out by D1 or D2, which

catalyze an outer ring monodeiodination reaction. T4 and

T3 are irreversibly inactivated via inner ring monodeio-

dination catalyzed by D3, and D1 also catalyzes the inner

ring deiodination of T3 to inactive T2. Thus, thyroid hor-

mone metabolism is dependent upon the combined actions

of the three deiodinases and is regulated mainly through D2

stability in response to changes in iodine supply, to cold

exposure, and to changes in thyroid gland function [152–

154]. All three deiodinases are expressed in a number of

fetal and adult tissues. Their tissue and developmental

expression patterns suggest that deiodinases may control

the concentration of active thyroid hormone available to

specific tissues or cell types at certain stages of develop-

ment [155]. It is also important to note that considerable

species- or sex-specific differences exist for deiodinases,

which represents an active area of research and appears

largely unresolved at present.

In general, D2 is believed to generate T3 from T4 for

local use in specific tissues including pituitary, brown fat,

and brain, whereas D1 generates T3 from T4 in the thyroid

and peripheral tissues primarily for export to plasma. D1

and D2 knockout mice have been generated, which have

facilitated in the functional characterization of these sele-

noenzymes. Given the importance of proper thyroid

hormone levels in most tissues, it is somewhat surprising

that D1 and D2 knockout mice were found to be relatively

normal in terms of serum T3 level and their general health,

growth, and reproductive capacity are seemingly unim-

paired [156, 157]. The D2 knockout mouse confirmed the

suspected role of this deidonase in regulating T3 to T4

hormone conversion in a local manner as these mice show

significant deficits in thyroid stimulating hormone regula-

tion [156], thermogenesis [158], and auditory function

[159], and brain T3 content is significantly reduced even

though the brain T4 content is elevated [160]. A recent

study has described the D1/D2 double knockout, which
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exhibits a phenotype that reflects the sum of the phenotypes

of the D1 and D2 single knockout mice [161]. D1 and D2

do not appear to be essential for the maintenance of the

serum T3 level, but they do serve important roles in thyroid

hormone homeostasis with D2 playing an important role in

local T3 production and D1 contributing to iodine con-

servation by serving as a scavenger enzyme in peripheral

tissues and the thyroid. Interestingly, the thyroid gland has

an exceptionally high number of selenoproteins expressed

(at least 11), several of which may be involved in the

protection of the gland against the high amounts of

hydrogen peroxide produced during thyroid hormone bio-

synthesis [87].

Dietary Se levels may affect human thyroid hormone

metabolism, but co-factors such as iodine deficiency and

thiocyanate overload appear to be required for manifesta-

tion of diseases such as Kashin-Beck disease or endemic

myxedematous cretinism [162]. A possible explanation is

that optimal function of the deiodinases requires very little

Se intake. However, mutations that result in defective

expression and/or function of the key selenoprotein syn-

thesis factor, SBP2, manifest in thyroid abnormalities

associated with decreased D2 activity [163], suggesting

that this selenoenzyme ranks high on the hierarchy of

stability of selenoprotein mRNAs under low Se conditions.

Selenoprotein H

Selenoprotein H (Sel H) is a 14-kDa, thioredoxin fold-like

protein that contains a conserved Cys-X-X-Sec motif (X is

any amino acid). Its expression is widely distributed

throughout a variety of tissues and relatively high in early

stages of embryonic development [164]. Levels of Sel H

mRNA are highly sensitive to adequate Se intake [38]. Sel

H in D. melanogaster was found to be essential for viability

and antioxidant defense [165]. Sel H is localized to the

nucleus, and overexpression studies suggest it is a redox-

responsive DNA-binding protein of the AT-hook family

and that it functions in regulating expression levels of

genes involved in de novo glutathione synthesis and phase

II detoxification in response to redox status [166].

Selenoprotein I

Selenoprotein I (Sel I, hEPT1) was among several seleno-

proteins with no assigned function until a recent study found

it to contain sequence homology to enzymes involved in

phospholipid synthesis. Specifically, CDP-ethanolamine:

diacylglycerol ethanolamine-phosphotransferase (EPT)

catalyzes the transfer of phosphoethanolamine from CDP-

ethanolamine to diacylglycerol to produce phosphatidyl-

ethanolamine, and Sel I was identified as possessing a

CDP-alcohol phosphatidyltransferase motif, a common

motif conserved in phospholipid synthases [167]. RT-PCR

and Northern blot analysis revealed that human Sel I was

ubiquitously expressed in multiple tissues, consistent with

the notion that it is involved in a phospholipid biosynthesis

pathway common to most tissues. The amino acid sequence

for Sel I contains seven transmembrane helices, but no

experimental data have yet verified that Sel I is a trans-

membrane protein or its subcellular localization. Further

research is needed to address questions regarding this sel-

enoenzyme in terms of its regulation during cell growth and

activation and potential essential role in development or

viability.

Selenoprotein K

Selenoprotein K (Sel K) is a small (16-kDa) protein and

localized to the endoplasmic reticulum (ER) membrane

[10, 168], and some evidence suggests it is associated with

the plasma membrane [10]. Based on Northern blot anal-

ysis, expression of Sel K has been suggested to be

relatively high in human heart [168]. However, a sub-

sequent study demonstrated that mRNA levels are widely

distributed throughout mouse tissues, with particularly high

levels detected in spleen and testes [86]. This discrepancy

may be due to differences in species, and tissue distribution

in terms of protein expression has not yet been described.

Like several other selenoproteins, the function of Sel K

remains unclear. Overexpression of Sel K in cardiomyo-

cytes was shown to decrease levels of ROS, although the

mechanism by which this occurred was not determined

[168]. The D. melanogaster ortholog of Sel K (dSel K) was

not found to contribute to antioxidant activity [169]. The

localization of Sel K to the ER may suggest a function

relevant to this organelle, but evidence suggests that, in

dSel K, the Sec-containing portion of the protein is located

in the cytoplasm, not the ER lumen [169].

Selenoprotein M and Sep15

Selenoprotein M (Sel M) and Sep15 are 15-kDa proteins

that share 31% sequence identity and localize to the ER

[170]. Sel M and Sep15 have Cys-X-X-Sec and Cys-X-Sec

motifs, respectively, and nuclear magnetic resonance

(NMR)-based structural studies revealed that both have a

two-layer a/b-fold with a central b-sheet surrounded by a-

helices, typical of thioredoxin-like proteins [171]. The

presence of thioredoxin-fold and conformational changes it

undergoes after thiol-sulfide exchange, as well as sequence

homology to protein disulfide isomerases [171], suggest

these two selenoproteins function as thiol-disulfide oxido-

reductases. Sep15 was shown to associate with UDP-

glucose:glycoprotein glucosyltransferase (UGTR) in the

ER, and this association was responsible for maintaining
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the selenoprotein in the ER [172]. UGTR is involved in the

quality control of protein folding, and both Sep15 and Sel

M have been suggested to play a role in protein-folding in

the ER [173], but direct evidence for this role in vivo is

lacking. Recently, a transgenic rat model was developed

involving overexpression of human Sel M, which produced

altered levels of hydrogen peroxide, SOD, and GPx, and

disrupted the relative levels of neutrophils to lymphocytes

[174]. However, this study provided little insight into roles

of endogenous Sel M.

A link between Sep15 and cancer has been made by

several in vitro studies. For example, Sep15 was found to

be downregulated in malignant mesotheliomas compared

to normal mesothelial cells, and malignant mesothelioma

cells with downregulated SEP15 or expressing a Sep15

polymorphic variant were less responsive to the growth

inhibitory and apoptotic effects of Se supplementation than

malignant mesothelioma cells expressing wild-type protein

[175]. Other studies involving expression patterns of Sep15

have been inconsistent in providing evidence for a role for

this selenoprotein in limiting the development of cancer

[53, 176]. The relationship between Sep15 and lung cancer

in humans may be particularly complicated by factors

including smoking and Se status [177], and larger studies in

humans may allow dissection of how these factors are

related.

Selenoprotein N

Similar to Sel K and Sel S, selenoprotein N (Sel N, SEPN1,

SepN) is a transmembrane protein localized to the ER

membrane, but much larger in size (70 kDa) [178]. There

are two known isoforms of the Sel N gene product, with

isoform 1 corresponding to the full-length transcript and

isoform 2 excluding exon 3 from splicing. Both transcripts

are detected in skeletal muscle, brain, lung and placenta,

with isoform 2 being the predominant transcript [179].

Several independent studies have linked mutations in the

Sel N gene to muscular disorders, including rigid spine

muscular dystrophy [180], the classical form of multi-

minicore disease [181], desmin-related myopathy with

Mallory body-like inclusions [182], and congenital fiber-

type disproportion [183]. All these disorders, collectively

termed SEPN1-related myopathies, are clinically charac-

terized by poor axial muscle strength, scoliosis, and neck

weakness, and a variable degree of spinal rigidity. Data

showing high expression of Sel N in fetal tissue and pro-

liferating cells are suggestive of a role in early muscle

formation, which is consistent with the clinical features of

Sel N-related mutations. Recently, it was shown that effi-

cient insertion of Sec into Sel N requires a Sec redefinition

element (SRE) located adjacent to the UGA codon, and

mutations in this region have been shown to have

negligible levels of Sel N protein in patients [35] and this

may explain associations between these point mutations

and SEPN1-related myopathies [184].

The location of Sel N in the ER membrane raises

questions regarding its biological role in muscle cells and

this was recently addressed in a study demonstrating pro-

tein–protein interactions between Sel N and the ryanodine

receptor (RyR), which is a major component of the RyR

intracellular calcium release pathway [185]. Interestingly,

RyR channels are exquisitely sensitive to redox regulation.

Sel N presumably associates and/or regulates this channel

through redox-based chemistry as suggested by the pres-

ence in Sel N of a Cys-X-X-Ser domain, which together

with a conserved alpha-helix structure corresponds to thiol-

dependent redox sites in proteins [186]. Using Sel N-

depletion in zebrafish embryos, neither expression patterns

nor the overall levels of RyR proteins altered by loss of Sel

N, but RyR-related calcium release was reduced. Overall,

evidence suggests that Sel N serves to regulate RyR-

mediated calcium mobilization required for normal muscle

development and differentiation. It remains to be seen

whether Sel N regulates calcium mobilization in other

tissues or under particular conditions, or if its role in the

ER membrane is different in muscle versus other tissues.

Selenoprotein O

Selenoprotein O (Sel O) is one of the selenoproteins that

has remained enigmatic since identification of its

sequence in the human genome several years ago [10].

While human Sel O is predicted to consist of 669 amino

acids with a calculated M.W. of 73.4 kDa (NCBI acces-

sion no. NP_113642), there is no information regarding its

tissue distribution, subcellular location, or physiological

role. The presence of a Cys-X-X-Sec motif is suggestive

of a redox function [10], though experimental data are

lacking.

Selenoprotein P

Selenoprotein P (Sel P) is a unique member of the sele-

noprotein family in that it contains multiple Sec residues

per protein molecule. Specifically, human and mouse Sel P

both contain 10 Sec residues. Although Sel P cDNA con-

tains 10 UGA codons in the reading frame, the translated

product appears to include less than 10 Sec residues per

peptide chain in the circulation in both rodents and humans

[84]. The high molar quantities of Se in Sel P suggests a

role in Se transport, and one of the first clues regarding this

role came with studies showing that culturing cells in Sel

P-depleted media was found to reduce activity of the glu-

tathione peroxidase (GPx) family of selenoproteins, and

activity was restored following reconstitution of the media
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with Sel P [187]. Indeed, Sel P contains 40–50% of the

total Se in plasma, suggesting this protein may act as a Se

transporter and knockout mouse models of Sel P defini-

tively characterized the essential role of Sel P of

transporting dietary Se [188, 189]. Hill et al. found that, in

terms of Se content, the tissues most affected by Sel P

deficiency were testes and brain, while kidney and heart

were less affected. The phenotype of the knockout mice

was consistent with these findings and included neurolog-

ical problems and male sterility. Sel P knockout mice

injected with 75Se had lower levels of isotope in brain and

testis, but higher accumulation in liver compared to con-

trols. These findings suggested that the liver is a tissue that

readily takes up Se and incorporates it into Sel P, which is

then secreted into the plasma for transport of Se to other

tissues. This was supported by studies of Schweitzer et al.

demonstrating that liver-specific inactivation of the gene

encoding Sec tRNA (trsp) resulted in decreased plasma and

kidney GPx activity [190]. Expression of nearly all sele-

noproteins at both mRNA and protein levels is reduced in

Sel P knockout mice, while expression in other tissues like

heart and lung is unaffected [86].

The role of Sel P in the transport of Se throughout an

organism has been further defined with results from

recent studies. In one study, 82Se was injected into mice

intravenously and amounts of isotope determined over

time for several different tissues [191]. While levels of

Se-albumin and GPx3 increased in the period shortly

after injection (1–6 h), Sel P was found to be the pre-

dominant form of Se in blood from 6 to 72 h after

injection. Although i.v. injection does not perfectly rep-

licate dietary intake, these results support the notion that

Sel P is the predominant means of Se transport between

tissues. The transport component of Sel P is contained

within the last nine Sec residues, as replacement of Sel P

with a shortened form containing only the first Sec res-

idue results in neurological disorders similar to the full

knockout [192]. The fact that Sel P is a Se-transport

protein suggests existence of receptors for its uptake, and

apolipoprotein E receptor-2 (ApoER2) was recently

demonstrated to be required for Sel P uptake by the testis

and that deletion of ApoER2 reduces testis and brain, but

not kidney, Se levels and produces neurodegeneration

[192, 193]. These data reflect utilization by kidney of a

Sel P receptor distinct from ApoER2, and a recent study

showed that megalin, a lipoprotein receptor localized to

the proximal tubule epithelium, was responsible for Sel P

uptake in kidney [194].

Se transport is not the only function carried out by Sel P

as is evident by the presence of several different domains

exhibiting interesting functions, including glutathione

peroxidase activity, heparin binding, and heavy metal

ion complexation [84]. The first Sec residue toward the

N-terminus has long been suggested as providing antioxi-

dant capacity to cells [195, 196]. A recent study provided

direct evidence of the importance of this Sec residue

in infection with the intracellular parasite, Trypanosoma

congolense, in experiments using transgenic mice

expressing a version of Sel P (SeppD240–361) including the

antioxidant motif but lacking the Se transporter domain

[197]. Expression of Sel P retaining the first Sec residue

was sufficient to protect the host cells from oxidative

damage, to confer parasite-clearing capabilities to liver

macrophages, and increase host survival after infection.

This function may have implications for the human disease

African trypanosomiasis or other parasitic diseases in

which production of high levels of oxidative stress in

phagocytes is crucial for effective clearance of the patho-

gen and viability of these phagocytes relies on host Se

status and Sel P expression [4].

Another human disease recently associated with Sel P

is Alzheimer’s disease. For example, analysis of post-

mortem tissue from patients with hallmark lesions of this

disease demonstrated colocalization of Sel P with amyloid

plaques [198]. This observation coupled with lower cir-

culating Sel P during inflammatory conditions like sepsis

and Crohn’s disease [198–202] may have important

implications for potential links between Se status,

inflammation, and neurological disorders. In addition to

neurological disease, single nucleotide polymorphism

(SNP) analysis has revealed a link between lowered Sel P

expression and prostate cancer risk [203]. Consistent with

these results, Sel P mRNA was found to be significantly

reduced in lung tissue samples from non-small cell lung

cancer (NSCLC) patients compared to healthy tissue [58]

as well as a number of different human and mouse tumor

tissues compared to controls [204]. This decreased Sel P

mRNA was also associated with lower GPx activity and

higher level of thiobarbituric acid-reactive species

(TBARS) in the malignant tissue, suggesting that local

sources of Sel P are important in mitigating oxidative

stress during cancer and may be related to the first Sec

residue implicated in lowering oxidative stress during

parasitic infection as described above. The relatively large

levels of Sel P in plasma and brain may also serve as an

important defense against heavy metals such as mercury

and others [205].

Selenoprotein R

Selenoprotein R (Sel R, MsrB1) is part of the methionine

sulfoxide reductase (Msr) family of proteins, which also

includes MsrA, MsrB2, and MsrB3 [206]. ROS can oxidize

methionine residues in proteins to produce a mixture of

S- and R-forms of methionine sulfoxide (Met-O), which

are reduced by MsrA and MsrB enzymes, respectively.
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While the other family members contain Cys at their active

sites, Sel R is the only member of the Msr family that is a

selenoprotein. The presence of Sec instead of Cys at the

active site of Sel R has been suggested to have certain

catalytic advantages and disadvantages [207, 208], though

Se bioavailability must also be considered when contem-

plating evolutionary pressure for the emergence of Sec-

containing enzymes. Sel R is widely distributed throughout

different tissues, though highest levels are found in liver

and kidney, and the Sel R knockout mouse model was

recently described demonstrating these tissues to be most

affected in knockouts in terms of susceptibility to oxidative

damage of proteins [209]. The phenotype of the Sel R

knockout appears to be milder than MsrA knockout in

terms of oxidative stress and aging, although the Sel R-

deficient mice have not yet been fully characterized. Sug-

gested roles for Sel R in humans include protection from

neurodegeneration [210], lens cell viability [206], and

oxidative damage during aging [211]. Closer scrutiny of

the Sel R knockout mice may shed light on these functions.

A recent study uncovered a cell signaling role for MsrA in

the modulation of calcium/calmodulin kinase II (CaMKII),

which contains two tandem Met residues that upon oxi-

dation to Met-O activate this important signaling molecule

[212]. Future studies involving Sel R may include its role

not only in the mitigation of oxidative damage to methio-

nine residues on proteins, but a role in regulating certain

cell signaling molecules through alteration of redox status

of specific methionine residues.

Selenoprotein S

Selenoprotein S (Sel S, SEPS1, SELENOS, Tanis, VIMP)

is a transmembrane protein located in the ER and plasma

membranes and is widely expressed in a variety of tissues

[213]. It has been suggested to participate in the removal of

misfolded proteins from the ER lumen for degradation

[214] and to protect cells from oxidative damage [215] and

ER stress-induced apoptosis [216]. SNPs in the Sel S

promoter have been shown to regulate levels of inflam-

matory cytokines IL-1, TNFa, and IL-6 [216], and

expression of Sel S has been shown to be modulated by

glucose metabolism and ER stress [214, 217]. Several

diseases have been associated with genetic variations in Sel

S, including cardiovascular disease and stroke [218, 219],

preeclampsia [220], rheumatoid arthritis [221], and gastric

cancer [222]. However, other case-control results failed to

confirm association between Sel S polymorphisms and type

1 diabetes, rheumatoid arthritis, or inflammatory bowel

disease [223]. Further investigation of Sel S should provide

important information regarding its role in the plasma

membrane and ER and how that relates to the disorders

attributed genetic variations of its gene.

Selenoprotein T

Selenoprotein T (Sel T) is ubiquitously expressed

throughout embryonic development and adulthood in rat,

and most likely localized to ER through a hydrophobic

domain [224]. Sel T is a member of a subfamily of sele-

noproteins (also including Sel W, Sel H, and Sel V) that

share sequence similarity containing a thioredoxin-like fold

and a conserved Cys-X-X-Sec motif [225]. Based on a

transgenic mouse model involving isoforms of Sec-tRNA

for selenoprotein synthesis, the expression of Sel T is

proposed to be similar to those selenoproteins involved

in stress-related phenomena [41]. However, increased

expression of Sel T under conditions of stress has yet to be

demonstrated. A recent study has shed some light on Sel T

expression and a biological role for Sel T in calcium

mobilization. Specifically, Sel T expression was increased

in a neuroendocrine cell line, PC12, during differentiation

stimulated by the neuropeptide pituitary adenylate cyclase-

activating polypeptide (PACAP) [224]. Overexpression of

Sel T increased calcium mobilization and this was depen-

dent on the Sec residue in Sel T. Conversely, Sel T shRNA

decreased PACAP-induced secretion of growth hormone,

suggesting that Sel T is involved in the signaling pathways

activated by PACAP, perhaps through calcium regulation.

However, data have yet to be presented for an in vivo role

for Sel T in calcium mobilization or any other biological

function.

Selenoprotein V

Selenoprotein V (Sel V) was originally identified with

other selenoproteins from analyses of the human genome

[10]. Expression of this selenoprotein appears to be

restricted to testes [10, 86], but its function in this tissue is

unknown. Sel V shares sequence homology with other

selenoproteins, including Sel H, Sel T, and Sel W, and

these selenoproteins all possess a thioredoxin-like fold and

a conserved Cys-X-X-Sec motif, suggesting redox func-

tions [225]. Given the importance of Se status on the testes,

investigation into potential roles of Sel V in male repro-

ductive biology is warranted.

Selenoprotein W

Selenoprotein W (Sel W, SEPW1) is a small selenoprotein

(9.5 kDa) that contains a Cys-X-X-Sec motif. Protein and

mRNA expression correlate in humans and are widely

distributed throughout a variety of tissues [226]. In mice,

Sel W is also expressed in several different tissues,

although the heart appears to exhibit high levels of mRNA

but lacks expressed protein [86, 227]. Levels of Sel W

mRNA are highly dependent on adequate dietary Se levels
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as well as levels of Sel P [38, 86, 228]. Sel W interacts with

glutathione and evidence suggests it plays an antioxidant

role in cells [229]. Due to high expression found in pro-

liferating myoblasts, it has been suggested that Sel W

functions in muscle growth and differentiation by pro-

tecting the developing myoblasts from oxidative stress

[230]. One target of Sel W recently identified in immu-

noprecipitation experiments was the protein 14-3-3 [225],

and high resolution NMR spectroscopy confirmed these

interactions depend on the thioredoxin-like fold of Sel W

[231]. However, the biological role for this interaction is

unknown and the role of Sel W in vivo remains unclear.

Selenophosphate-synthetase 2

Selenophosphate-synthetase 2 (SPS2) is an enzyme

involved in the biosynthesis of selenoproteins. Specifically,

selenocysteyl-tRNA[Ser]Sec is aminoacylated by seryl-tRNA

synthase and the seryl moiety is phosphorylated by Pstk as

mentioned above to form O-Phosphoseryl-tRNA[Ser]Sec.

The latter is a substrate for SecS, which replaces the

phosphoryl moiety of phosphoserine, derived from the

selenium donor, selenophosphate, to yield Sec [14]. Sele-

nophosphate is the active form of selenium, which is

transferred to the selenocysteyl-tRNA[Ser]Sec. In eukaryotes,

this reaction is carried out by SPS2 [232, 233], a homologue

of bacterial SelD. In this sense, SPS2 is a selenoprotein that

autoregulates its own production along with the production

of other selenoproteins [234]. SPS1 is a related protein that

contains a Cys residue in place of Sec, but its role in sele-

noprotein synthesis or any other biological process is

unknown [25, 235, 236]. SPS2, but not SPS1, is essential for

selenoprotein synthesis in the mouse fibroblast cell line

NIH3T3 [237], though whether this holds true in vivo has

not been determined. It is also interesting to note that bovine

SPS2 lacks Sec [238]. Mice in which Sel P was deleted have

reduced mRNA levels for all selenoproteins in brain and

testes, except for SPS2, which showed increased mRNA

levels in both tissues in the Sel P knockout mice [86].

This may reflect a compensatory mechanism during low Se

status in these tissues. A recent study showed that lipopo-

lysaccharide-injected mice had lower levels of SPS2

mRNA and protein in the liver, as well as lower levels of

other selenoprotein synthesis factors [199]. The authors

note that this decrease in selenoprotein synthesis factors

during sepsis may contribute decisively to the decline of

serum Se concentrations in critical illness and represents a

promising therapeutic target to improve health and reduce

morbidity of patients. The possibility remains that lowered

serum Se may represent a defense mechanism triggered to

deny host-derived Se to certain gram-negative bacteria to

slow growth, in which case the opposing effects of Se

supplementation and high doses of antibiotics must both beT
a
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considered. The relationship between Se, selenoprotein

synthesis, and host–pathogen interactions is an important

issue and warrants further investigation.

Conclusions

Many recent studies have provided insight into functional

roles and significance of individual selenoproteins

(Table 1). As this table indicates, however, there are many

functional and regulatory aspects of selenoproteins that

remain unknown. Another way to regard selenoproteins is

in terms of subcellular localization (Fig. 3), and this per-

spective gives rise to several questions. In several cases,

identifiable localization signals are not present, so how is

compartmentalization of selenoproteins in these cases

regulated? Also, do the secreted selenoproteins, GPx3 and

Sel P, serve as antioxidants in local extracellular spaces as

well as plasma? What is the significance of localization of

so many selenoproteins (at least six) to the endoplasmic

reticulum? Do they serve protein-folding/chaperone roles

for certain groups of proteins or do they add reducing

capacity to maintain redox balance in this organelle? Do

selenoproteins in the nucleus other than Sel H participate in

transcriptional regulation either directly or indirectly?

These and other questions will require further basic science

investigation, which will eventually provide crucial insight

into how dietary Se and selenoproteins affect human

health.

Overall, there has been substantial progress made in the

field of selenoprotein biology. A major step was the iden-

tification of the 25 selenoprotein genes in the human

genome [10], which opened up the field of selenoprotein

research, and new functions for many selenoproteins have

since been elucidated. In addition, identification and char-

acterization of splice variants or post-translationally

modified versions of the products of these genes have

expanded the number of functional selenoproteins as well as

the range of biological roles for individual selenoproteins.

Advances in proteomics, mouse models, and polymorphism

analyses are certain to assist in further characterization of

selenoproteins, and emerging new technologies and novel

approaches are certain to lead to a more complete under-

standing of the human selenoproteome.

Acknowledgments This work was supported by NIH/NCRR grants

G12RR003061 and P20RR016453.

References

1. Rayman MP (2000) The importance of selenium to human

health. Lancet 356:233–241

2. Yang GQ, Ge KY, Chen JS, Chen XS (1988) Selenium-related

endemic diseases and the daily selenium requirement of humans.

World Rev Nutr Diet 55:98–152

3. Zhou BF, Stamler J, Dennis B, Moag-Stahlberg A, Okuda N,

Robertson C, Zhao L, Chan Q, Elliott P (2003) Nutrient intakes

of middle-aged men and women in China, Japan, United

Kingdom, and United States in the late 1990s: the INTERMAP

study. J Hum Hypertens 17:623–630

Fig. 3 Selenoproteins exhibit

varied subcellular localization,

which may offer insights into

their functions and regulation.

Note that some selenoproteins

have been omitted due to

restricted tissue distribution or

unknown subcellular

localization

2470 M. A. Reeves, P. R. Hoffmann



4. Hoffmann PR, Berry MJ (2008) The influence of selenium on

immune responses. Mol Nutr Food Res 52:1273–1280

5. Gromadzinska J, Reszka E, Bruzelius K, Wasowicz W, Akesson

B (2008) Selenium and cancer: biomarkers of selenium status

and molecular action of selenium supplements. Eur J Nutr

47(Suppl. 2):29–50

6. Taylor PR, Albanes D (1998) Selenium, vitamin E, and prostate

cancer—ready for prime time? J Natl Cancer Inst 90:1184–1185

7. Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK,

Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Kron-

grad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor

JR (1996) Effects of selenium supplementation for cancer pre-

vention in patients with carcinoma of the skin. A randomized

controlled trial. Nutritional Prevention of Cancer Study Group.

JAMA 276:1957–1963

8. Duffield-Lillico AJ, Dalkin BL, Reid ME, Turnbull BW, Slate

EH, Jacobs ET, Marshall JR, Clark LC (2003) Selenium sup-

plementation, baseline plasma selenium status and incidence of

prostate cancer: an analysis of the complete treatment period of

the Nutritional Prevention of Cancer Trial. BJU Int 91:608–612

9. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson

IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline

JA, Parsons JK, Bearden JD 3rd, Crawford ED, Goodman GE,

Claudio J, Winquist E, Cook ED, Karp DD, Walther P, Lieber

MM, Kristal AR, Darke AK, Arnold KB, Ganz PA, Santella

RM, Albanes D, Taylor PR, Probstfield JL, Jagpal TJ, Crowley

JJ, Meyskens FL Jr, Baker LH, Coltman CA Jr (2009) Effect of

selenium and vitamin E on risk of prostate cancer and other

cancers: the selenium and vitamin E cancer prevention trial

(SELECT). JAMA 301:39–51

10. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV,

Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of

mammalian selenoproteomes. Science 300:1439–1443

11. Kim HY, Gladyshev VN (2005) Different catalytic mechanisms

in mammalian selenocysteine- and cysteine-containing methio-

nine-R-sulfoxide reductases. PLoS Biol 3:e375

12. Lobanov AV, Hatfield DL, Gladyshev VN (2008) Reduced

reliance on the trace element selenium during evolution of

mammals. Genome Biol 9:R62

13. Bosl MR, Takaku K, Oshima M, Nishimura S, Taketo MM

(1997) Early embryonic lethality caused by targeted disruption

of the mouse selenocysteine tRNA gene (Trsp). Proc Natl Acad

Sci USA 94:5531–5534

14. Suzuki T, Kelly VP, Motohashi H, Nakajima O, Takahashi S,

Nishimura S, Yamamoto M (2008) Deletion of the selenocys-

teine tRNA gene in macrophages and liver results in

compensatory gene induction of cytoprotective enzymes by

Nrf2. J Biol Chem 283:2021–2030

15. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–

727

16. Hoffmann PR, Berry MJ (2005) Selenoprotein synthesis: a

unique translational mechanism used by a diverse family of

proteins. Thyroid 15:769–775

17. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium

to selenoproteins: synthesis, identity, and their role in human

health. Antioxid Redox Signal 9:775–806

18. Squires JE, Berry MJ (2008) Eukaryotic selenoprotein synthesis:

mechanistic insight incorporating new factors and new functions

for old factors. IUBMB Life 60:232–235

19. Shchedrina VA, Novoselov SV, Malinouski MY, Gladyshev VN

(2007) Identification and characterization of a selenoprotein

family containing a diselenide bond in a redox motif. Proc Natl

Acad Sci USA 104:13919–13924

20. Hill KE, Lloyd RS, Burk RF (1993) Conserved nucleotide

sequences in the open reading frame and 3’ untranslated region

of selenoprotein P mRNA. Proc Natl Acad Sci USA 90:537–541

21. Berry MJ, Banu L, Harney JW, Larsen PR (1993) Functional

characterization of the eukaryotic SECIS elements which direct

selenocysteine insertion at UGA codons. EMBO J 12:3315–

3322

22. Lee BJ, Worland PJ, Davis JN, Stadtman TC, Hatfield DL

(1989) Identification of a selenocysteyl-tRNA(Ser) in mamma-

lian cells that recognizes the nonsense codon, UGA. J Biol

Chem 264:9724–9727

23. Xu XM, Carlson BA, Mix H, Zhang Y, Saira K, Glass RS, Berry

MJ, Gladyshev VN, Hatfield DL (2007) Biosynthesis of sele-

nocysteine on its tRNA in eukaryotes. PLoS Biol 5:e4

24. Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Glady-

shev VN, Hatfield DL (2004) Identification and characterization

of phosphoseryl-tRNA[Ser]Sec kinase. Proc Natl Acad Sci USA

101:12848–12853

25. Small-Howard A, Morozova N, Stoytcheva Z, Forry EP, Man-

sell JB, Harney JW, Carlson BA, Xu XM, Hatfield DL, Berry

MJ (2006) Supramolecular complexes mediate selenocysteine

incorporation in vivo. Mol Cell Biol 26:2337–2346

26. Xu XM, Mix H, Carlson BA, Grabowski PJ, Gladyshev VN,

Berry MJ, Hatfield DL (2005) Evidence for direct roles of two

additional factors, SECp43 and soluble liver antigen, in the

selenoprotein synthesis machinery. J Biol Chem 280:41568–

41575

27. Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll

DM (2000) A novel RNA binding protein, SBP2, is required for

the translation of mammalian selenoprotein mRNAs. EMBO J

19:306–314

28. de Jesus LA, Hoffmann PR, Michaud T, Forry EP, Small-

Howard A, Stillwell RJ, Morozova N, Harney JW, Berry MJ

(2006) Nuclear assembly of UGA decoding complexes on se-

lenoprotein mRNAs: a mechanism for eluding nonsense-

mediated decay? Mol Cell Biol 26:1795–1805

29. Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney

JW, Driscoll DM, Hatfield DL, Berry MJ (2000) Decoding

apparatus for eukaryotic selenocysteine insertion. EMBO Rep

1:158–163

30. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P,

Krol A (2000) Characterization of mSelB, a novel mammalian

elongation factor for selenoprotein translation. EMBO J

19:4796–4805

31. Chavatte L, Brown BA, Driscoll DM (2005) Ribosomal protein

L30 is a component of the UGA-selenocysteine recoding

machinery in eukaryotes. Nat Struct Mol Biol 12:408–416

32. Wu R, Shen Q, Newburger PE (2000) Recognition and binding

of the human selenocysteine insertion sequence by nucleolin.

J Cell Biochem 77:507–516

33. Carlson BA, Schweizer U, Perella C, Shrimali RK, Feigenbaum

L, Shen L, Speransky S, Floss T, Jeong SJ, Watts J, Hoffmann

V, Combs GF, Gladyshev VN, Hatfield DL (2009) The sele-

nocysteine tRNA STAF-binding region is essential for adequate

selenocysteine tRNA status, selenoprotein expression and early

age survival of mice. Biochem J 418:61–71

34. Howard MT, Moyle MW, Aggarwal G, Carlson BA, Anderson

CB (2007) A recoding element that stimulates decoding of UGA

codons by Sec tRNA[Ser]Sec. RNA 13:912–920

35. Maiti B, Arbogast S, Allamand V, Moyle MW, Anderson CB,

Richard P, Guicheney P, Ferreiro A, Flanigan KM, Howard MT

(2009) A mutation in the SEPN1 selenocysteine redefinition

element (SRE) reduces selenocysteine incorporation and leads to

SEPN1-related myopathy. Hum Mutat 3:411–416

36. Moriarty PM, Reddy CC, Maquat LE (1998) Selenium defi-

ciency reduces the abundance of mRNA for Se-dependent

glutathione peroxidase 1 by a UGA-dependent mechanism likely

to be nonsense codon-mediated decay of cytoplasmic mRNA.

Mol Cell Biol 18:2932–2939

The human selenoproteome 2471



37. Weiss Sachdev S, Sunde RA (2001) Selenium regulation of

transcript abundance and translational efficiency of glutathione

peroxidase-1 and -4 in rat liver. Biochem J 357:851–858

38. Sunde RA, Raines AM, Barnes KM, Evenson JK (2008) Sele-

nium status highly-regulates selenoprotein mRNA levels for

only a subset of the selenoproteins in the selenoproteome. Biosci

Rep doi:10.1042/BSR20080146

39. Muller C, Wingler K, Brigelius-Flohe R (2003) 30UTRs of

glutathione peroxidases differentially affect selenium-dependent

mRNA stability and selenocysteine incorporation efficiency.

Biol Chem 384:11–18

40. Squires JE, Stoytchev I, Forry EP, Berry MJ (2007) SBP2

binding affinity is a major determinant in differential seleno-

protein mRNA translation and sensitivity to nonsense-mediated

decay. Mol Cell Biol 27:7848–7855

41. Carlson BA, Xu XM, Gladyshev VN, Hatfield DL (2005)

Selective rescue of selenoprotein expression in mice lacking a

highly specialized methyl group in selenocysteine tRNA. J Biol

Chem 280:5542–5548

42. Flohe L, Gunzler WA, Schock HH (1973) Glutathione peroxi-

dase: a selenoenzyme. FEBS Lett 32:132–134

43. Forstrom JW, Zakowski JJ, Tappel AL (1978) Identification of

the catalytic site of rat liver glutathione peroxidase as seleno-

cysteine. Biochemistry 17:2639–2644

44. Chambers I, Frampton J, Goldfarb P, Affara N, McBain W,

Harrison PR (1986) The structure of the mouse glutathione

peroxidase gene: the selenocysteine in the active site is encoded

by the ‘termination’ codon, TGA. EMBO J 5:1221–1227

45. Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2008)

Glutathione peroxidase family: an evolutionary overview. FEBS

J 275:3959–3970

46. Cheng WH, Ho YS, Ross DA, Valentine BA, Combs GF, Lei

XG (1997) Cellular glutathione peroxidase knockout mice

express normal levels of selenium-dependent plasma and

phospholipid hydroperoxide glutathione peroxidases in various

tissues. J Nutr 127:1445–1450

47. Lei XG, Cheng WH, McClung JP (2007) Metabolic regulation

and function of glutathione peroxidase-1. Annu Rev Nutr 27:41–

61

48. Cheng W, Fu YX, Porres JM, Ross DA, Lei XG (1999) Sele-

nium-dependent cellular glutathione peroxidase protects mice

against a pro-oxidant-induced oxidation of NADPH, NADH,

lipids, and protein. FASEB J 13:1467–1475

49. Holcik M, Sonenberg N (2005) Translational control in stress

and apoptosis. Nat Rev Mol Cell Biol 6:318–327

50. Rahman I, MacNee W (2000) Oxidative stress and regulation of

glutathione in lung inflammation. Eur Respir J 16:534–554

51. Rahman I, Mulier B, Gilmour PS, Watchorn T, Donaldson K,

Jeffery PK, MacNee W (2001) Oxidant-mediated lung epithelial

cell tolerance: the role of intracellular glutathione and nuclear

factor-kappaB. Biochem Pharmacol 62:787–794

52. Hoffmann PR, Jourdan-Le Saux C, Hoffmann FW, Chang PS,

Bollt O, He Q, Tam EK, Berry MJ (2007) A role for dietary

selenium and selenoproteins in allergic airway inflammation.

J Immunol 179:3258–3267

53. Fitzpatrick AM, Teague WG, Holguin F, Yeh M, Brown LA

(2009) Airway glutathione homeostasis is altered in children

with severe asthma: evidence for oxidant stress. J Allergy Clin

Immunol 123:146–152 e8

54. Hoffmann PR (2008) Selenium and asthma: a complex rela-

tionship. Allergy 63:854–856

55. Esworthy RS, Baker MA, Chu FF (1995) Expression of sele-

nium-dependent glutathione peroxidase in human breast tumor

cell lines. Cancer Res 55:957–962

56. Gladyshev VN, Factor VM, Housseau F, Hatfield DL (1998)

Contrasting patterns of regulation of the antioxidant

selenoproteins, thioredoxin reductase, and glutathione peroxi-

dase, in cancer cells. Biochem Biophys Res Commun 251:488–

493

57. Jee CD, Kim MA, Jung EJ, Kim J, Kim WH (2009) Identifi-

cation of genes epigenetically silenced by CpG methylation in

human gastric carcinoma. Eur J Cancer doi:10.1016/j.ejca.

2008.12.027

58. Gresner P, Gromadzinska J, Jablonska E, Kaczmarski J,

Wasowicz W (2008) Expression of selenoprotein-coding genes

SEPP1, SEP15 and hGPX1 in non-small cell lung cancer. Lung

Cancer. doi:10.1016/j.lungcan.2008.10.023

59. Arsova-Sarafinovska Z, Matevska N, Eken A, Petrovski D,

Banev S, Dzikova S, Georgiev V, Sikole A, Erdem O, Sayal A,

Aydin A, Dimovski AJ (2008) Glutathione peroxidase 1 (GPX1)

genetic polymorphism, erythrocyte GPX activity, and prostate

cancer risk. Int Urol Nephrol 41:63–70

60. Baliga MS, Wang H, Zhuo P, Schwartz JL, Diamond AM (2007)

Selenium and GPx-1 overexpression protect mammalian cells

against UV-induced DNA damage. Biol Trace Elem Res

115:227–242

61. Trepanier G, Furling D, Puymirat J, Mirault ME (1996)

Immunocytochemical localization of seleno-glutathione peroxi-

dase in the adult mouse brain. Neuroscience 75:231–243

62. Lindenau J, Noack H, Asayama K, Wolf G (1998) Enhanced

cellular glutathione peroxidase immunoreactivity in activated

astrocytes and in microglia during excitotoxin induced neuro-

degeneration. Glia 24:252–256

63. Power JH, Blumbergs PC (2009) Cellular glutathione peroxidase

in human brain: cellular distribution, and its potential role in the

degradation of Lewy bodies in Parkinson’s disease and dementia

with Lewy bodies. Acta Neuropathol 117:63–73

64. Ho YS, Magnenat JL, Bronson RT, Cao J, Gargano M, Su-

gawara M, Funk CD (1997) Mice deficient in cellular

glutathione peroxidase develop normally and show no increased

sensitivity to hyperoxia. J Biol Chem 272:16644–16651

65. Cheng WH, Ho YS, Valentine BA, Ross DA, Combs GF Jr, Lei

XG (1998) Cellular glutathione peroxidase is the mediator of

body selenium to protect against paraquat lethality in transgenic

mice. J Nutr 128:1070–1076

66. de Haan JB, Bladier C, Griffiths P, Kelner M, O’Shea RD,

Cheung NS, Bronson RT, Silvestro MJ, Wild S, Zheng SS, Beart

PM, Hertzog PJ, Kola I (1998) Mice with a homozygous null

mutation for the most abundant glutathione peroxidase, GPx1,

show increased susceptibility to the oxidative stress-inducing

agents paraquat and hydrogen peroxide. J Biol Chem

273:22528–22536

67. Beck MA, Esworthy RS, Ho YS, Chu FF (1998) Glutathione

peroxidase protects mice from viral-induced myocarditis.

FASEB J 12:1143–1149

68. McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F,

Lei XG (2004) Development of insulin resistance and obesity in

mice overexpressing cellular glutathione peroxidase. Proc Natl

Acad Sci USA 101:8852–8857

69. Wang XD, Vatamaniuk MZ, Wang SK, Roneker CA, Simmons

RA, Lei XG (2008) Molecular mechanisms for hyperinsulina-

emia induced by overproduction of selenium-dependent

glutathione peroxidase-1 in mice. Diabetologia 51:1515–1524

70. Chen X, Scholl TO, Leskiw MJ, Donaldson MR, Stein TP

(2003) Association of glutathione peroxidase activity with

insulin resistance and dietary fat intake during normal preg-

nancy. J Clin Endocrinol Metab 88:5963–5968

71. Wingler K, Brigelius-Flohe R (1999) Gastrointestinal glutathi-

one peroxidase. Biofactors 10:245–249

72. Florian S, Wingler K, Schmehl K, Jacobasch G, Kreuzer OJ,

Meyerhof W, Brigelius-Flohe R (2001) Cellular and subcellular

localization of gastrointestinal glutathione peroxidase in normal

2472 M. A. Reeves, P. R. Hoffmann

http://dx.doi.org/10.1042/BSR20080146
http://dx.doi.org/10.1016/j.ejca.2008.12.027
http://dx.doi.org/10.1016/j.ejca.2008.12.027
http://dx.doi.org/10.1016/j.lungcan.2008.10.023


and malignant human intestinal tissue. Free Radic Res 35:655–

663

73. Chu FF, Esworthy RS, Ho YS, Bermeister M, Swiderek K,

Elliott RW (1997) Expression and chromosomal mapping of

mouse GPx2 gene encoding the gastrointestinal form of gluta-

thione peroxidase, GPX-GI. Biomed Environ Sci 10:156–162

74. Esworthy RS, Swiderek KM, Ho YS, Chu FF (1998) Selenium-

dependent glutathione peroxidase-GI is a major glutathione

peroxidase activity in the mucosal epithelium of rodent intes-

tine. Biochim Biophys Acta 1381:213–226

75. Chu FF, Doroshow JH, Esworthy RS (1993) Expression, char-

acterization, and tissue distribution of a new cellular selenium-

dependent glutathione peroxidase, GSHPx-GI. J Biol Chem

268:2571–2576

76. Wingler K, Bocher M, Flohe L, Kollmus H, Brigelius-Flohe R

(1999) mRNA stability and selenocysteine insertion sequence

efficiency rank gastrointestinal glutathione peroxidase high in

the hierarchy of selenoproteins. Eur J Biochem 259:149–157

77. Murawaki Y, Tsuchiya H, Kanbe T, Harada K, Yashima K,

Nozaka K, Tanida O, Kohno M, Mukoyama T, Nishimuki E,

Kojo H, Matsura T, Takahashi K, Osaki M, Ito H, Yodoi J,

Murawaki Y, Shiota G (2008) Aberrant expression of seleno-

proteins in the progression of colorectal cancer. Cancer Lett

259:218–230

78. Mork H, Scheurlen M, Al-Taie O, Zierer A, Kraus M, Schottker

K, Jakob F, Kohrle J (2003) Glutathione peroxidase isoforms as

part of the local antioxidative defense system in normal and

Barrett’s esophagus. Int J Cancer 105:300–304

79. Serewko MM, Popa C, Dahler AL, Smith L, Strutton GM,

Coman W, Dicker AJ, Saunders NA (2002) Alterations in gene

expression and activity during squamous cell carcinoma devel-

opment. Cancer Res 62:3759–3765

80. Chu FF, Esworthy RS, Chu PG, Longmate JA, Huycke MM,

Wilczynski S, Doroshow JH (2004) Bacteria-induced intestinal

cancer in mice with disrupted GPx1 and GPx2 genes. Cancer

Res 64:962–968

81. Esworthy RS, Yang L, Frankel PH, Chu FF (2005) Epithelium-

specific glutathione peroxidase, GPx2, is involved in the pre-

vention of intestinal inflammation in selenium-deficient mice.

J Nutr 135:740–745

82. Banning A, Kipp A, Schmitmeier S, Lowinger M, Florian S,

Krehl S, Thalmann S, Thierbach R, Steinberg P, Brigelius-Flohe

R (2008) Glutathione peroxidase 2 inhibits cyclooxygenase-2-

mediated migration and invasion of HT-29 adenocarcinoma

cells but supports their growth as tumors in nude mice. Cancer

Res 68:9746–9753

83. Koyama H, Omura K, Ejima A, Kasanuma Y, Watanabe C,

Satoh H (1999) Separation of selenium-containing proteins in

human and mouse plasma using tandem high-performance liquid

chromatography columns coupled with inductively coupled

plasma-mass spectrometry. Anal Biochem 267:84–91

84. Burk RF, Hill KE (2005) Selenoprotein P: an extracellular

protein with unique physical characteristics and a role in sele-

nium homeostasis. Annu Rev Nutr 25:215–235

85. Yoshimura S, Watanabe K, Suemizu H, Onozawa T, Mizoguchi

J, Tsuda K, Hatta H, Moriuchi T (1991) Tissue specific

expression of the plasma glutathione peroxidase gene in rat

kidney. J Biochem 109:918–923

86. Hoffmann PR, Hoge SC, Li PA, Hoffmann FW, Hashimoto AC,

Berry MJ (2007) The selenoproteome exhibits widely varying,

tissue-specific dependence on selenoprotein P for selenium

supply. Nucleic Acids Res 35:3963–3973

87. Schmutzler C, Mentrup B, Schomburg L, Hoang-Vu C, Herzog

V, Kohrle J (2007) Selenoproteins of the thyroid gland:

expression, localization and possible function of glutathione

peroxidase 3. Biol Chem 388:1053–1059

88. Ottaviano FG, Tang SS, Handy DE, Loscalzo J (2009) Regu-

lation of the extracellular antioxidant selenoprotein plasma

glutathione peroxidase (GPx-3) in mammalian cells. Mol Cell

Biochem doi: 10.1007/s11010-009-0049-x

89. Bjornstedt M, Xue J, Huang W, Akesson B, Holmgren A (1994)

The thioredoxin and glutaredoxin systems are efficient electron

donors to human plasma glutathione peroxidase. J Biol Chem

269:29382–29384

90. Freedman JE, Frei B, Welch GN, Loscalzo J (1995) Glutathione

peroxidase potentiates the inhibition of platelet function by

S-nitrosothiols. J Clin Invest 96:394–400

91. Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR,

Michelson AD (1996) Decreased platelet inhibition by nitric

oxide in two brothers with a history of arterial thrombosis. J Clin

Invest 97:979–987

92. Kenet G, Freedman J, Shenkman B, Regina E, Brok-Simoni F,

Holzman F, Vavva F, Brand N, Michelson A, Trolliet M, Los-

calzo J, Inbal A (1999) Plasma glutathione peroxidase deficiency

and platelet insensitivity to nitric oxide in children with familial

stroke. Arterioscler Thromb Vasc Biol 19:2017–2023

93. Bierl C, Voetsch B, Jin RC, Handy DE, Loscalzo J (2004)

Determinants of human plasma glutathione peroxidase (GPx-3)

expression. J Biol Chem 279:26839–26845

94. Voetsch B, Jin RC, Bierl C, Benke KS, Kenet G, Simioni P,

Ottaviano F, Damasceno BP, Annichino-Bizacchi JM, Handy

DE, Loscalzo J (2007) Promoter polymorphisms in the plasma

glutathione peroxidase (GPx-3) gene: a novel risk factor for

arterial ischemic stroke among young adults and children.

Stroke 38:41–49

95. Voetsch B, Jin RC, Bierl C, Deus-Silva L, Camargo EC,

Annichino-Bizacchi JM, Handy DE, Loscalzo J (2008) Role of

promoter polymorphisms in the plasma glutathione peroxidase

(GPx-3) gene as a risk factor for cerebral venous thrombosis.

Stroke 39:303–307

96. Grond-Ginsbach C, Arnold ML, Lichy C, Grau A, Reuner K

(2009) No association of the plasma glutathione peroxidase

(GPx-3) gene with cerebral venous thrombosis in the German

population. Stroke 40:e24 author reply e25

97. Chung SS, Kim M, Youn BS, Lee NS, Park JW, Lee IK, Lee

YS, Kim JB, Cho YM, Lee HK, Park KS (2009) Glutathione

peroxidase 3 mediates the antioxidant effect of peroxisome

proliferator-activated receptor gamma in human skeletal muscle

cells. Mol Cell Biol 29:20–30

98. Lee YS, Kim AY, Choi JW, Kim M, Yasue S, Son HJ, Masuzaki

H, Park KS, Kim JB (2008) Dysregulation of adipose glutathi-

one peroxidase 3 in obesity contributes to local and systemic

oxidative stress. Mol Endocrinol 22:2176–2189

99. Lundholm L, Putnik M, Otsuki M, Andersson S, Ohlsson C,

Gustafsson JA, Dahlman-Wright K (2008) Effects of estrogen

on gene expression profiles in mouse hypothalamus and white

adipose tissue: target genes include glutathione peroxidase 3 and

cell death-inducing DNA fragmentation factor, alpha-subunit-

like effector A. J Endocrinol 196:547–557

100. Conrad M, Schneider M, Seiler A, Bornkamm GW (2007)

Physiological role of phospholipid hydroperoxide glutathione

peroxidase in mammals. Biol Chem 388:1019–1025

101. Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG,

Motta L, Richardson A, Prolla TA (2003) The selenoprotein

GPX4 is essential for mouse development and protects from

radiation and oxidative damage insults. Free Radic Biol Med

34:496–502

102. Conrad M, Moreno SG, Sinowatz F, Ursini F, Kolle S, Roveri A,

Brielmeier M, Wurst W, Maiorino M, Bornkamm GW (2005)

The nuclear form of phospholipid hydroperoxide glutathione

peroxidase is a protein thiol peroxidase contributing to sperm

chromatin stability. Mol Cell Biol 25:7637–7644

The human selenoproteome 2473

http://dx.doi.org/10.1007/s11010-009-0049-x


103. Chen CJ, Huang HS, Chang WC (2003) Depletion of

phospholipid hydroperoxide glutathione peroxidase up-regulates

arachidonate metabolism by 12S-lipoxygenase and cyclooxy-

genase 1 in human epidermoid carcinoma A431 cells. FASEB J

17:1694–1696

104. Seiler A, Schneider M, Forster H, Roth S, Wirth EK, Culmsee C,

Plesnila N, Kremmer E, Radmark O, Wurst W, Bornkamm GW,

Schweizer U, Conrad M (2008) Glutathione peroxidase 4 senses

and translates oxidative stress into 12/15-lipoxygenase depen-

dent- and AIF-mediated cell death. Cell Metab 8:237–248

105. Imai H, Hirao F, Sakamoto T, Sekine K, Mizukura Y, Saito M,

Kitamoto T, Hayasaka M, Hanaoka K, Nakagawa Y (2003)

Early embryonic lethality caused by targeted disruption of the

mouse PHGPx gene. Biochem Biophys Res Commun 305:278–

286

106. Ufer C, Wang CC, Fahling M, Schiebel H, Thiele BJ, Billett EE,

Kuhn H, Borchert A (2008) Translational regulation of gluta-

thione peroxidase 4 expression through guanine-rich sequence-

binding factor 1 is essential for embryonic brain development.

Genes Dev 22:1838–1850

107. Blackinton J, Kumaran R, van der Brug MP, Ahmad R, Olson L,

Galter D, Lees A, Bandopadhyay R, Cookson MR (2009) Post-

transcriptional regulation of mRNA associated with DJ-1 in

sporadic Parkinson disease. Neurosci Lett doi:10.1016/j.neulet.

2008.12.053

108. Chen L, Na R, Gu M, Richardson A, Ran Q (2008) Lipid per-

oxidation up-regulates BACE1 expression in vivo: a possible

early event of amyloidogenesis in Alzheimer’s disease. J Neu-

rochem 107:197–207

109. Guo Z, Ran Q, Roberts LJ 2nd, Zhou L, Richardson A, Sharan

C, Wu D, Yang H (2008) Suppression of atherogenesis by

overexpression of glutathione peroxidase-4 in apolipoprotein

E-deficient mice. Free Radic Biol Med 44:343–352

110. Dabkowski ER, Williamson CL, Hollander JM (2008) Mito-

chondria-specific transgenic overexpression of phospholipid

hydroperoxide glutathione peroxidase (GPx4) attenuates ische-

mia/reperfusion-associated cardiac dysfunction. Free Radic Biol

Med 45:855–865

111. Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J,

Flohe L (1999) Dual function of the selenoprotein PHGPx

during sperm maturation. Science 285:1393–1396

112. Flohe L (2007) Selenium in mammalian spermiogenesis. Biol

Chem 388:987–995

113. Foresta C, Flohe L, Garolla A, Roveri A, Ursini F, Maiorino M

(2002) Male fertility is linked to the selenoprotein phospholipid

hydroperoxide glutathione peroxidase. Biol Reprod 67:967–971

114. Holmgren A (1989) Thioredoxin and glutaredoxin systems.

J Biol Chem 264:13963–13966

115. Arner ES, Holmgren A (2000) Physiological functions of thio-

redoxin and thioredoxin reductase. Eur J Biochem 267:6102–

6109

116. Gilbert HF (1990) Molecular and cellular aspects of thiol-

disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63:69–

172

117. Zhong L, Arner ES, Holmgren A (2000) Structure and mecha-

nism of mammalian thioredoxin reductase: the active site is a

redox-active selenolthiol/selenenylsulfide formed from the

conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci

USA 97:5854–5859

118. Gladyshev VN, Jeang KT, Stadtman TC (1996) Selenocysteine,

identified as the penultimate C-terminal residue in human T-cell

thioredoxin reductase, corresponds to TGA in the human

placental gene. Proc Natl Acad Sci USA 93:6146–6151

119. Lacey BM, Eckenroth BE, Flemer S, Hondal RJ (2008) Sele-

nium in thioredoxin reductase: a mechanistic perspective.

Biochemistry 47:12810–12821

120. Miranda-Vizuete A, Damdimopoulos AE, Spyrou G (1999)

cDNA cloning, expression and chromosomal localization of the

mouse mitochondrial thioredoxin reductase gene(1). Biochim

Biophys Acta 1447:113–118

121. Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J

346(Pt 1):1–8

122. Watson WH, Heilman JM, Hughes LL, Spielberger JC (2008)

Thioredoxin reductase-1 knock down does not result in thiore-

doxin-1 oxidation. Biochem Biophys Res Commun 368:832–

836

123. Andersson M, Holmgren A, Spyrou G (1996) NK-lysin, a

disulfide-containing effector peptide of T-lymphocytes, is

reduced and inactivated by human thioredoxin reductase.

Implication for a protective mechanism against NK-lysin cyto-

toxicity. J Biol Chem 271:10116–10120

124. Holmgren A, Lyckeborg C (1980) Enzymatic reduction of

alloxan by thioredoxin and NADPH-thioredoxin reductase. Proc

Natl Acad Sci USA 77:5149–5152

125. Arner ES, Nordberg J, Holmgren A (1996) Efficient reduction of

lipoamide and lipoic acid by mammalian thioredoxin reductase.

Biochem Biophys Res Commun 225:268–274

126. Kumar S, Bjornstedt M, Holmgren A (1992) Selenite is a sub-

strate for calf thymus thioredoxin reductase and thioredoxin and

elicits a large non-stoichiometric oxidation of NADPH in the

presence of oxygen. Eur J Biochem 207:435–439

127. Osborne SA, Tonissen KF (2001) Genomic organisation and

alternative splicing of mouse and human thioredoxin reductase 1

genes. BMC Genomics 2:10

128. Sun QA, Zappacosta F, Factor VM, Wirth PJ, Hatfield DL,

Gladyshev VN (2001) Heterogeneity within animal thioredoxin

reductases. Evidence for alternative first exon splicing. J Biol

Chem 276:3106–3114

129. Rundlof AK, Janard M, Miranda-Vizuete A, Arner ES (2004)

Evidence for intriguingly complex transcription of human thi-

oredoxin reductase 1. Free Radic Biol Med 36:641–656

130. Turanov AA, Su D, Gladyshev VN (2006) Characterization of

alternative cytosolic forms and cellular targets of mouse mito-

chondrial thioredoxin reductase. J Biol Chem 281:22953–22963

131. Dammeyer P, Damdimopoulos AE, Nordman T, Jimenez A,

Miranda-Vizuete A, Arner ES (2008) Induction of cell mem-

brane protrusions by the N-terminal glutaredoxin domain of a

rare splice variant of human thioredoxin reductase 1. J Biol

Chem 283:2814–2821

132. Rundlof AK, Carlsten M, Arner ES (2001) The core promoter of

human thioredoxin reductase 1: cloning, transcriptional activity,

and Oct-1, Sp1, and Sp3 binding reveal a housekeeping-type

promoter for the AU-rich element-regulated gene. J Biol Chem

276:30542–30551

133. Crosley LK, Meplan C, Nicol F, Rundlof AK, Arner ES,

Hesketh JE, Arthur JR (2007) Differential regulation of

expression of cytosolic and mitochondrial thioredoxin reductase

in rat liver and kidney. Arch Biochem Biophys 459:178–188

134. Carlson BA, Moustafa ME, Sengupta A, Schweizer U, Shrimali

R, Rao M, Zhong N, Wang S, Feigenbaum L, Lee BJ, Gladyshev

VN, Hatfield DL (2007) Selective restoration of the selenopro-

tein population in a mouse hepatocyte selenoproteinless

background with different mutant selenocysteine tRNAs lacking

Um34. J Biol Chem 282:32591–32602

135. Jakupoglu C, Przemeck GK, Schneider M, Moreno SG, Mayr N,

Hatzopoulos AK, de Angelis MH, Wurst W, Bornkamm GW,

Brielmeier M, Conrad M (2005) Cytoplasmic thioredoxin

reductase is essential for embryogenesis but dispensable for

cardiac development. Mol Cell Biol 25:1980–1988

136. Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A,

Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F,

Schmahl W, Chien KR, Wurst W, Bornkamm GW, Brielmeier

2474 M. A. Reeves, P. R. Hoffmann

http://dx.doi.org/10.1016/j.neulet.2008.12.053
http://dx.doi.org/10.1016/j.neulet.2008.12.053


M (2004) Essential role for mitochondrial thioredoxin reductase

in hematopoiesis, heart development, and heart function. Mol

Cell Biol 24:9414–9423

137. Geisberger R, Kiermayer C, Homig C, Conrad M, Schmidt J,

Zimber-Strobl U, Brielmeier M (2007) B- and T-cell-specific

inactivation of thioredoxin reductase 2 does not impair lym-

phocyte development and maintenance. Biol Chem 388:1083–

1090

138. Gandin V, Nystrom C, Rundlof AK, Jonsson-Videsater K,

Schonlau F, Horkko J, Bjornstedt M, Fernandes AP (2009)

Effects of the antioxidant Pycnogenol on cellular redox systems

in U1285 human lung carcinoma cells. FEBS J 276:532–540

139. Sakurai A, Nishimoto M, Himeno S, Imura N, Tsujimoto M,

Kunimoto M, Hara S (2005) Transcriptional regulation of

thioredoxin reductase 1 expression by cadmium in vascular

endothelial cells: role of NF-E2-related factor-2. J Cell Physiol

203:529–537

140. Rundlof AK, Arner ES (2004) Regulation of the mammalian

selenoprotein thioredoxin reductase 1 in relation to cellular

phenotype, growth, and signaling events. Antioxid Redox Signal

6:41–52

141. Kuster GM, Siwik DA, Pimentel DR, Colucci WS (2006) Role

of reversible, thioredoxin-sensitive oxidative protein modifica-

tions in cardiac myocytes. Antioxid Redox Signal 8:2153–2159

142. Gladyshev VN, Stadtman TC, Hatfield DL, Jeang KT (1999)

Levels of major selenoproteins in T cells decrease during HIV

infection and low molecular mass selenium compounds

increase. Proc Natl Acad Sci USA 96:835–839

143. Kalantari P, Narayan V, Natarajan SK, Muralidhar K, Gandhi

UH, Vunta H, Henderson AJ, Prabhu KS (2008) Thioredoxin

reductase-1 negatively regulates HIV-1 transactivating protein

Tat-dependent transcription in human macrophages. J Biol

Chem 283:33183–33190

144. Powis G, Kirkpatrick DL (2007) Thioredoxin signaling as a

target for cancer therapy. Curr Opin Pharmacol 7:392–397

145. Lincoln DT, Ali Emadi EM, Tonissen KF, Clarke FM (2003)

The thioredoxin–thioredoxin reductase system: over-expression

in human cancer. Anticancer Res 23:2425–2433

146. Yoo MH, Xu XM, Carlson BA, Gladyshev VN, Hatfield DL

(2006) Thioredoxin reductase 1 deficiency reverses tumor phe-

notype and tumorigenicity of lung carcinoma cells. J Biol Chem

281:13005–13008

147. Yoo MH, Xu XM, Carlson BA, Patterson AD, Gladyshev VN,

Hatfield DL (2007) Targeting thioredoxin reductase 1 reduction

in cancer cells inhibits self-sufficient growth and DNA repli-

cation. PLoS ONE 2:e1112

148. Zahedi Avval F, Holmgren A (2009) Molecular mechanisms of

thioredoxin and glutaredoxin as hydrogen donors for mamma-

lian S-phase ribonucleotide reductase. J Biol Chem doi:

10.1074/jbc.M809338200

149. Sun Y, Rigas B (2008) The thioredoxin system mediates redox-

induced cell death in human colon cancer cells: implications for

the mechanism of action of anticancer agents. Cancer Res

68:8269–8277

150. Cheng Q, Sandalova T, Lindqvist Y, Arner ES (2009) Crystal

structure and catalysis of the selenoprotein thioredoxin reductase

1. J Biol Chem 284:3998–4008

151. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR

(2002) Biochemistry, cellular and molecular biology, and

physiological roles of the iodothyronine selenodeiodinases.

Endocr Rev 23:38–89

152. Gereben B, Goncalves C, Harney JW, Larsen PR, Bianco AC

(2000) Selective proteolysis of human type 2 deiodinase: a novel

ubiquitin-proteasomal mediated mechanism for regulation of

hormone activation. Mol Endocrinol 14:1697–1708

153. Steinsapir J, Harney J, Larsen PR (1998) Type 2 iodothyronine

deiodinase in rat pituitary tumor cells is inactivated in protea-

somes. J Clin Invest 102:1895–1899

154. Steinsapir J, Bianco AC, Buettner C, Harney J, Larsen PR

(2000) Substrate-induced down-regulation of human type 2 de-

iodinase (hD2) is mediated through proteasomal degradation and

requires interaction with the enzyme’s active center. Endocri-

nology 141:1127–1135

155. Hernandez A, St Germain DL (2003) Thyroid hormone deio-

dinases: physiology and clinical disorders. Curr Opin Pediatr

15:416–420

156. Schneider MJ, Fiering SN, Pallud SE, Parlow AF, St Germain

DL, Galton VA (2001) Targeted disruption of the type 2 sel-

enodeiodinase gene (DIO2) results in a phenotype of pituitary

resistance to T4. Mol Endocrinol 15:2137–2148

157. Schneider MJ, Fiering SN, Thai B, Wu SY, St Germain E,

Parlow AF, St Germain DL, Galton VA (2006) Targeted dis-

ruption of the type 1 selenodeiodinase gene (Dio1) results in

marked changes in thyroid hormone economy in mice. Endo-

crinology 147:580–589

158. de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim SW,

Harney JW, Larsen PR, Bianco AC (2001) The type 2 iodo-

thyronine deiodinase is essential for adaptive thermogenesis in

brown adipose tissue. J Clin Invest 108:1379–1385

159. Ng L, Goodyear RJ, Woods CA, Schneider MJ, Diamond E,

Richardson GP, Kelley MW, Germain DL, Galton VA, Forrest

D (2004) Hearing loss and retarded cochlear development in

mice lacking type 2 iodothyronine deiodinase. Proc Natl Acad

Sci USA 101:3474–3479

160. Galton VA, Wood ET, St Germain EA, Withrow CA, Aldrich G,

St Germain GM, Clark AS, St Germain DL (2007) Thyroid

hormone homeostasis and action in the type 2 deiodinase-defi-

cient rodent brain during development. Endocrinology

148:3080–3088

161. Galton VA, Schneider MJ, Clark AS, St Germain DL (2009)

Life without T4 to T3 conversion: Studies in mice devoid of the

5’-deiodinases. Endocrinology doi:10.1210/en.2008-1572

162. Vanderpas J (2006) Nutritional epidemiology and thyroid

hormone metabolism. Annu Rev Nutr 26:293–322

163. Dumitrescu AM, Liao XH, Abdullah MS, Lado-Abeal J, Majed

FA, Moeller LC, Boran G, Schomburg L, Weiss RE, Refetoff S

(2005) Mutations in SECISBP2 result in abnormal thyroid

hormone metabolism. Nat Genet 37:1247–1252

164. Novoselov SV, Kryukov GV, Xu XM, Carlson BA, Hatfield DL,

Gladyshev VN (2007) Selenoprotein H is a nucleolar thiore-

doxin-like protein with a unique expression pattern. J Biol Chem

282:11960–11968

165. Morozova N, Forry EP, Shahid E, Zavacki AM, Harney JW,

Kraytsberg Y, Berry MJ (2003) Antioxidant function of a novel

selenoprotein in Drosophila melanogaster. Genes Cells 8:963–

971

166. Panee J, Stoytcheva ZR, Liu W, Berry MJ (2007) Selenoprotein

H is a redox-sensing high mobility group family DNA-binding

protein that up-regulates genes involved in glutathione synthesis

and phase II detoxification. J Biol Chem 282:23759–23765

167. Horibata Y, Hirabayashi Y (2007) Identification and character-

ization of human ethanolaminephosphotransferase1. J Lipid Res

48:503–508

168. Lu C, Qiu F, Zhou H, Peng Y, Hao W, Xu J, Yuan J, Wang S,

Qiang B, Xu C, Peng X (2006) Identification and characteriza-

tion of selenoprotein K: an antioxidant in cardiomyocytes. FEBS

Lett 580:5189–5197

169. Chen CL, Shim MS, Chung J, Yoo HS, Ha JM, Kim JY, Choi J,

Zang SL, Hou X, Carlson BA, Hatfield DL, Lee BJ (2006)

G-rich, a Drosophila selenoprotein, is a Golgi-resident type III

The human selenoproteome 2475

http://dx.doi.org/10.1074/jbc.M809338200
http://dx.doi.org/10.1210/en.2008-1572


membrane protein. Biochem Biophys Res Commun 348:1296–

1301

170. Labunskyy VM, Hatfield DL, Gladyshev VN (2007) The Sep15

protein family: roles in disulfide bond formation and quality

control in the endoplasmic reticulum. IUBMB Life 59:1–5

171. Ferguson AD, Labunskyy VM, Fomenko DE, Arac D, Chelliah

Y, Amezcua CA, Rizo J, Gladyshev VN, Deisenhofer J (2006)

NMR structures of the selenoproteins Sep15 and SelM reveal

redox activity of a new thioredoxin-like family. J Biol Chem

281:3536–3543

172. Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL, Glady-

shev VN (2001) Association between the 15-kDa selenoprotein

and UDP-glucose: glycoprotein glucosyltransferase in the

endoplasmic reticulum of mammalian cells. J Biol Chem

276:15330–15336

173. Labunskyy VM, Ferguson AD, Fomenko DE, Chelliah Y, Hat-

field DL, Gladyshev VN (2005) A novel cysteine-rich domain of

Sep15 mediates the interaction with UDP-glucose: glycoprotein

glucosyltransferase. J Biol Chem 280:37839–37845

174. Hwang DY, Sin JS, Kim MS, Yim SY, Kim YK, Kim CK, Kim

BG, Shim SB, Jee SW, Lee SH, Bae CJ, Lee BC, Jang MK, Cho

JS, Chae KR (2008) Overexpression of human selenoprotein M

differentially regulates the concentrations of antioxidants and

H2O2, the activity of antioxidant enzymes, and the composition

of white blood cells in a transgenic rat. Int J Mol Med 21:169–

179

175. Apostolou S, Klein JO, Mitsuuchi Y, Shetler JN, Poulikakos PI,

Jhanwar SC, Kruger WD, Testa JR (2004) Growth inhibition

and induction of apoptosis in mesothelioma cells by selenium

and dependence on selenoprotein SEP15 genotype. Oncogene

23:5032–5040

176. Kumaraswamy E, Malykh A, Korotkov KV, Kozyavkin S, Hu

Y, Kwon SY, Moustafa ME, Carlson BA, Berry MJ, Lee BJ,

Hatfield DL, Diamond AM, Gladyshev VN (2000) Structure-

expression relationships of the 15-kDa selenoprotein gene.

Possible role of the protein in cancer etiology. J Biol Chem

275:35540–35547

177. Jablonska E, Gromadzinska J, Sobala W, Reszka E, Wasowicz

W (2008) Lung cancer risk associated with selenium status is

modified in smoking individuals by Sep15 polymorphism. Eur J

Nutr 47:47–54

178. Petit N, Lescure A, Rederstorff M, Krol A, Moghadaszadeh B,

Wewer UM, Guicheney P (2003) Selenoprotein N: an endo-

plasmic reticulum glycoprotein with an early developmental

expression pattern. Hum Mol Genet 12:1045–1053

179. Moghadaszadeh B, Petit N, Jaillard C, Brockington M, Roy SQ,

Merlini L, Romero N, Estournet B, Desguerre I, Chaigne D,

Muntoni F, Topaloglu H, Guicheney P (2001) Mutations in

SEPN1 cause congenital muscular dystrophy with spinal rigidity

and restrictive respiratory syndrome. Nat Genet 29:17–18

180. Flanigan KM, Kerr L, Bromberg MB, Leonard C, Tsuruda J,

Zhang P, Gonzalez-Gomez I, Cohn R, Campbell KP, Leppert M

(2000) Congenital muscular dystrophy with rigid spine syn-

drome: a clinical, pathological, radiological, and genetic study.

Ann Neurol 47:152–161

181. Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B,

Goemans N, Bonnemann C, Jungbluth H, Straub V, Villanova

M, Leroy JP, Romero NB, Martin JJ, Muntoni F, Voit T, Es-

tournet B, Richard P, Fardeau M, Guicheney P (2002) Mutations

of the selenoprotein N gene, which is implicated in rigid spine

muscular dystrophy, cause the classical phenotype of multi-

minicore disease: reassessing the nosology of early-onset

myopathies. Am J Hum Genet 71:739–749

182. Ferreiro A, Ceuterick-de Groote C, Marks JJ, Goemans N,

Schreiber G, Hanefeld F, Fardeau M, Martin JJ, Goebel HH,

Richard P, Guicheney P, Bonnemann CG (2004) Desmin-related

myopathy with Mallory body-like inclusions is caused by

mutations of the selenoprotein N gene. Ann Neurol 55:676–686

183. Clarke NF, Kidson W, Quijano-Roy S, Estournet B, Ferreiro A,

Guicheney P, Manson JI, Kornberg AJ, Shield LK, North KN

(2006) SEPN1: associated with congenital fiber-type dispro-

portion and insulin resistance. Ann Neurol 59:546–552

184. Allamand V, Richard P, Lescure A, Ledeuil C, Desjardin D,

Petit N, Gartioux C, Ferreiro A, Krol A, Pellegrini N, Urtizberea

JA, Guicheney P (2006) A single homozygous point mutation in

a 30untranslated region motif of selenoprotein N mRNA causes

SEPN1-related myopathy. EMBO Rep 7:450–454

185. Jurynec MJ, Xia R, Mackrill JJ, Gunther D, Crawford T, Flan-

igan KM, Abramson JJ, Howard MT, Grunwald DJ (2008)

Selenoprotein N is required for ryanodine receptor calcium

release channel activity in human and zebrafish muscle. Proc

Natl Acad Sci USA 105:12485–12490

186. Fomenko DE, Gladyshev VN (2002) CxxS: fold-independent

redox motif revealed by genome-wide searches for thiol/disul-

fide oxidoreductase function. Protein Sci 11:2285–2296

187. Saito Y, Takahashi K (2002) Characterization of selenoprotein P

as a selenium supply protein. Eur J Biochem 269:5746–5751

188. Hill KE, Zhou J, McMahan WJ, Motley AK, Atkins JF,

Gesteland RF, Burk RF (2003) Deletion of selenoprotein P alters

distribution of selenium in the mouse. J Biol Chem 278:13640–

13646

189. Schomburg L, Schweizer U, Holtmann B, Flohe L, Sendtner M,

Kohrle J (2003) Gene disruption discloses role of selenoprotein

P in selenium delivery to target tissues. Biochem J 370:397–402

190. Schweizer U, Streckfuss F, Pelt P, Carlson BA, Hatfield DL,

Kohrle J, Schomburg L (2005) Hepatically derived selenopro-

tein P is a key factor for kidney but not for brain selenium

supply. Biochem J 386:221–226

191. Shigeta K, Matsumura K, Suzuki Y, Shinohara A, Furuta N

(2008) Distribution and dynamic pathway of selenium species in

selenium-deficient mice injected with (82) Se-enriched selenite.

Anal Sci 24:1117–1122

192. Valentine WM, Abel TW, Hill KE, Austin LM, Burk RF (2008)

Neurodegeneration in mice resulting from loss of functional

selenoprotein P or its receptor apolipoprotein E receptor 2.

J Neuropathol Exp Neurol 67:68–77

193. Olson GE, Winfrey VP, Nagdas SK, Hill KE, Burk RF (2007)

Apolipoprotein E receptor-2 (ApoER2) mediates selenium

uptake from selenoprotein P by the mouse testis. J Biol Chem

282:12290–12297

194. Olson GE, Winfrey VP, Hill KE, Burk RF (2008) Megalin

mediates selenoprotein P uptake by kidney proximal tubule

epithelial cells. J Biol Chem 283:6854–6860

195. Saito Y, Hayashi T, Tanaka A, Watanabe Y, Suzuki M, Saito E,

Takahashi K (1999) Selenoprotein P in human plasma as an

extracellular phospholipid hydroperoxide glutathione peroxi-

dase. Isolation and enzymatic characterization of human

selenoprotein P. J Biol Chem 274:2866–2871

196. Arteel GE, Mostert V, Oubrahim H, Briviba K, Abel J, Sies H

(1998) Protection by selenoprotein P in human plasma against

peroxynitrite-mediated oxidation and nitration. Biol Chem

379:1201–1205

197. Bosschaerts T, Guilliams M, Noel W, Herin M, Burk RF, Hill

KE, Brys L, Raes G, Ghassabeh GH, De Baetselier P, Beschin A

(2008) Alternatively activated myeloid cells limit pathogenicity

associated with African trypanosomiasis through the IL-10

inducible gene selenoprotein P. J Immunol 180:6168–6175

198. Bellinger FP, He QP, Bellinger MT, Lin Y, Raman AV, White LR,

Berry MJ (2008) Association of selenoprotein p with Alzheimer’s

pathology in human cortex. J Alzheimers Dis 15:465–472

199. Renko K, Hofmann PJ, Stoedter M, Hollenbach B, Behrends T,

Kohrle J, Schweizer U, Schomburg L (2009) Down-regulation

2476 M. A. Reeves, P. R. Hoffmann



of the hepatic selenoprotein biosynthesis machinery impairs

selenium metabolism during the acute phase response in mice.

FASEB J 10.1096/fj.08-119370

200. Hollenbach B, Morgenthaler NG, Struck J, Alonso C, Bergmann

A, Kohrle J, Schomburg L (2008) New assay for the measure-

ment of selenoprotein P as a sepsis biomarker from serum.

J Trace Elem Med Biol 22:24–32

201. Johtatsu T, Andoh A, Kurihara M, Iwakawa H, Tsujikawa T,

Kashiwagi A, Fujiyama Y, Sasaki M (2007) Serum concentra-

tions of trace elements in patients with Crohn’s disease

receiving enteral nutrition. J Clin Biochem Nutr 41:197–201

202. Renko K, Werner M, Renner-Muller I, Cooper TG, Yeung CH,

Hollenbach B, Scharpf M, Kohrle J, Schomburg L, Schweizer U

(2008) Hepatic selenoprotein P (SePP) expression restores

selenium transport and prevents infertility and motor-incoordi-

nation in Sepp-knockout mice. Biochem J 409:741–749

203. Cooper ML, Adami HO, Gronberg H, Wiklund F, Green FR,

Rayman MP (2008) Interaction between single nucleotide

polymorphisms in selenoprotein P and mitochondrial superoxide

dismutase determines prostate cancer risk. Cancer Res

68:10171–10177

204. Calvo A, Xiao N, Kang J, Best CJ, Leiva I, Emmert-Buck MR,

Jorcyk C, Green JE (2002) Alterations in gene expression pro-

files during prostate cancer progression: functional correlations

to tumorigenicity and down-regulation of selenoprotein-P in

mouse and human tumors. Cancer Res 62:5325–5335

205. Falnoga I, Tusek-Znidaric M (2007) Selenium–mercury inter-

actions in man and animals. Biol Trace Elem Res 119:212–220

206. Kim HY, Gladyshev VN (2007) Methionine sulfoxide reduc-

tases: selenoprotein forms and roles in antioxidant protein repair

in mammals. Biochem J 407:321–329

207. Kim HY, Fomenko DE, Yoon YE, Gladyshev VN (2006) Cat-

alytic advantages provided by selenocysteine in methionine-S-

sulfoxide reductases. Biochemistry 45:13697–13704

208. Lee TH, Kim HY (2008) An anaerobic bacterial MsrB model

reveals catalytic mechanisms, advantages, and disadvantages

provided by selenocysteine and cysteine in reduction of methi-

onine-R-sulfoxide. Arch Biochem Biophys 478:175–180

209. Fomenko DE, Novoselov SV, Natarajan SK, Lee BC, Koc A,

Carlson BA, Lee TH, Kim HY, Hatfield DL, Gladyshev VN

(2008) Methionine-R-sulfoxide reductase 1 (MsrB1) knockout

Mmice: roles of MsrB1 in redox regulation and identification of

a novel selenoprotein form. J Biol Chem 284:5986–5993

210. Hansel A, Heinemann SH, Hoshi T (2005) Heterogeneity and

function of mammalian MSRs: enzymes for repair, protection

and regulation. Biochim Biophys Acta 1703:239–247

211. Stadtman ER (2006) Protein oxidation and aging. Free Radic

Res 40:1250–1258

212. Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis

CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N,

Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz

DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A

dynamic pathway for calcium-independent activation of CaM-

KII by methionine oxidation. Cell 133:462–474

213. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A

membrane protein complex mediates retro-translocation from

the ER lumen into the cytosol. Nature 429:841–847

214. Gao Y, Feng HC, Walder K, Bolton K, Sunderland T, Bishara N,

Quick M, Kantham L, Collier GR (2004) Regulation of the

selenoprotein SelS by glucose deprivation and endoplasmic

reticulum stress: SelS is a novel glucose-regulated protein.

FEBS Lett 563:185–190

215. Gao Y, Pagnon J, Feng HC, Konstantopolous N, Jowett JB,

Walder K, Collier GR (2007) Secretion of the glucose-regulated

selenoprotein SEPS1 from hepatoma cells. Biochem Biophys

Res Commun 356:636–641

216. Curran JE, Jowett JB, Elliott KS, Gao Y, Gluschenko K, Wang

J, Abel Azim DM, Cai G, Mahaney MC, Comuzzie AG,

Dyer TD, Walder KR, Zimmet P, MacCluer JW, Collier GR,

Kissebah AH, Blangero J (2005) Genetic variation in seleno-

protein S influences inflammatory response. Nat Genet 37:1234–

1241

217. Kim KH, Gao Y, Walder K, Collier GR, Skelton J, Kissebah AH

(2007) SEPS1 protects RAW264.7 cells from pharmacological

ER stress agent-induced apoptosis. Biochem Biophys Res

Commun 354:127–132

218. Alanne M, Kristiansson K, Auro K, Silander K, Kuulasmaa K,

Peltonen L, Salomaa V, Perola M (2007) Variation in the se-

lenoprotein S gene locus is associated with coronary heart

disease and ischemic stroke in two independent Finnish cohorts.

Hum Genet 122:355–365

219. Silander K, Alanne M, Kristiansson K, Saarela O, Ripatti S,

Auro K, Karvanen J, Kulathinal S, Niemela M, Ellonen P,

Vartiainen E, Jousilahti P, Saarela J, Kuulasmaa K, Evans A,

Perola M, Salomaa V, Peltonen L (2008) Gender differences in

genetic risk profiles for cardiovascular disease. PLoS ONE

3:e3615

220. Moses EK, Johnson MP, Tommerdal L, Forsmo S, Curran JE,

Abraham LJ, Charlesworth JC, Brennecke SP, Blangero J,

Austgulen R (2008) Genetic association of preeclampsia to the

inflammatory response gene SEPS1. Am J Obstet Gynecol

198(336):e331–e335

221. Marinou I, Walters K, Dickson MC, Binks MH, Bax DE, Wilson

AG (2008) Evidence of epistasis between Interleukin-1 and

Selenoprotein-S with susceptibility to RA. Ann Rheum Dis doi:

10.1136/ard.2008.090001

222. Shibata T, Arisawa T, Tahara T, Ohkubo M, Yoshioka D,

Maruyama N, Fujita H, Kamiya Y, Nakamura M, Nagasaka M,

Iwata M, Takahama K, Watanabe M, Hirata I (2009) Seleno-

protein S (SEPS1) gene-105G[A promoter polymorphism

influences the susceptibility to gastric cancer in the Japanese

population. BMC Gastroenterol 9:2

223. Martinez A, Santiago JL, Varade J, Marquez A, Lamas JR,

Mendoza JL, de la Calle H, Diaz-Rubio M, de la Concha EG,

Fernandez-Gutierrez B, Urcelay E (2008) Polymorphisms in the

selenoprotein S gene: lack of association with autoimmune

inflammatory diseases. BMC Genomics 9:329

224. Grumolato L, Ghzili H, Montero-Hadjadje M, Gasman S,

Lesage J, Tanguy Y, Galas L, Ait-Ali D, Leprince J, Guerineau

NC, Elkahloun AG, Fournier A, Vieau D, Vaudry H, Anouar Y

(2008) Selenoprotein T is a PACAP-regulated gene involved in

intracellular Ca2?mobilization and neuroendocrine secretion.

FASEB J 22:1756–1768

225. Dikiy A, Novoselov SV, Fomenko DE, Sengupta A, Carlson

BA, Cerny RL, Ginalski K, Grishin NV, Hatfield DL, Gladyshev

VN (2007) SelT, SelW, SelH, and Rdx12: genomics and

molecular insights into the functions of selenoproteins of a novel

thioredoxin-like family. Biochemistry 46:6871–6882

226. Gu QP, Sun Y, Ream LW, Whanger PD (2000) Selenoprotein W

accumulates primarily in primate skeletal muscle, heart, brain

and tongue. Mol Cell Biochem 204:49–56

227. Yeh JY, Beilstein MA, Andrews JS, Whanger PD (1995) Tissue

distribution and influence of selenium status on levels of sele-

noprotein W. FASEB J 9:392–396

228. Pagmantidis V, Bermano G, Villette S, Broom I, Arthur J,

Hesketh J (2005) Effects of Se-depletion on glutathione perox-

idase and selenoprotein W gene expression in the colon. FEBS

Lett 579:792–796

229. Beilstein MA, Vendeland SC, Barofsky E, Jensen ON, Whanger

PD (1996) Selenoprotein W of rat muscle binds glutathione and

an unknown small molecular weight moiety. J Inorg Biochem

61:117–124

The human selenoproteome 2477

http://dx.doi.org/10.1096/fj.08-119370
http://dx.doi.org/10.1136/ard.2008.090001


230. Loflin J, Lopez N, Whanger PD, Kioussi C (2006) Selenoprotein

W during development and oxidative stress. J Inorg Biochem

100:1679–1684

231. Aachmann FL, Fomenko DE, Soragni A, Gladyshev VN, Dikiy

A (2007) Solution structure of selenoprotein W and NMR

analysis of its interaction with 14-3-3 proteins. J Biol Chem

282:37036–37044

232. Kim IY, Stadtman TC (1995) Selenophosphate synthetase:

detection in extracts of rat tissues by immunoblot assay and

partial purification of the enzyme from the Archaean Methan-
ococcus vannielii. Proc Natl Acad Sci USA 92:7710–7713

233. Low SC, Harney JW, Berry MJ (1995) Cloning and functional

characterization of human selenophosphate synthetase, an

essential component of selenoprotein synthesis. J Biol Chem

270:21659–21664

234. Guimaraes MJ, Peterson D, Vicari A, Cocks BG, Copeland NG,

Gilbert DJ, Jenkins NA, Ferrick DA, Kastelein RA, Bazan JF,

Zlotnik A (1996) Identification of a novel selD homolog from

eukaryotes, bacteria, and archaea: is there an autoregulatory

mechanism in selenocysteine metabolism? Proc Natl Acad Sci

USA 93:15086–15091

235. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H,

Stadtman TC, Inagaki K (2004) Selenophosphate synthetase

genes from lung adenocarcinoma cells: Sps1 for recycling

L-selenocysteine and Sps2 for selenite assimilation. Proc Natl

Acad Sci USA 101:16162–16167

236. Lobanov AV, Hatfield DL, Gladyshev VN (2008) Selenopro-

teinless animals: selenophosphate synthetase SPS1 functions in

a pathway unrelated to selenocysteine biosynthesis. Protein Sci

17:176–182

237. Xu XM, Carlson BA, Irons R, Mix H, Zhong N, Gladyshev VN,

Hatfield DL (2007) Selenophosphate synthetase 2 is essential for

selenoprotein biosynthesis. Biochem J 404:115–120

238. Furumiya K, Kanaya K, Tanabe K, Tanaka Y, Mizutani T

(2008) Active bovine selenophosphate synthetase 2, not having

selenocysteine. Mol Biol Rep 35:541–549

2478 M. A. Reeves, P. R. Hoffmann


	The human selenoproteome: recent insights into functions �and regulation
	Abstract
	Introduction
	Synthesis of selenoproteins
	Glutathione Peroxidases
	GPx1
	GPx2
	GPx3
	GPx4
	GPx6

	Thioredoxin reductases
	Deiodinases
	Selenoprotein H
	Selenoprotein I
	Selenoprotein K
	Selenoprotein M and Sep15
	Selenoprotein N
	Selenoprotein O
	Selenoprotein P
	Selenoprotein R
	Selenoprotein S
	Selenoprotein T
	Selenoprotein V
	Selenoprotein W
	Selenophosphate-synthetase 2

	Conclusions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


