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The first example of lipid bilayer membrane transport of a salt by a calix[4]pyrrole is
reported.

The development of ditopic ion-pair receptors has recently attracted much interest.1 Ditopic
receptors that simultaneously bind anion and cation pairs have advantages in terms of substrate
affinity and selectivity over monotopic hosts. Moreover, in systems where the bound cation
and anion carry the same charge, the supramolecular host–salt complex formed will be neutral.
This gives the complex optimal solubility in organic solvents, an important advantage when
applying these systems in extraction processes or as transmembrane carriers for charged
species. On the other hand, to the best of our knowledge there is only one example of a synthetic
molecule capable of simultaneous transmembrane ion-pair transport across a lipid bilayer,2
and no examples of natural products capable of salt binding and transport, although related
formal H+/Cl− co-transport is a common mechanism in both natural (prodigiosins)3 and
synthetic chloride carriers.4

Calix[4]pyrrole derivatives have been extensively studied as anion receptors over the past few
years.5 These compounds can be made in high yield in one step and are easy to functionalise,
making them attractive binding motifs for an-ionic guests. More recently their potential as ion-
pair receptors has been recognised.6 Preorganisation of the macrocycle into a cone
conformation upon anion binding allows the inclusion of large, charge diffuse cations such as
caesium or organic cations such as imidazolium or pyridinium into the aromatic “cup”, as
demonstrated both in solution and solid state studies.7 These findings led to the application of
meso-octamethylcalix[4]pyrrole as an extractant for halide salts from aqueous to organic
solutions.8,9 Herein we report the first example of transmembrane transport in 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine (POPC) and POPC–cholesterol vesicles of a salt by
meso-octamethylcalix[4]pyrrole.
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Calix[4]pyrrole derivatives 1–5 (Fig. 1) were synthesised by condensation of pyrrole and the
appropriate ketone according to literature procedures.10‡ In order to study the transport
properties of these macrocycles we prepared unilamellar POPC vesicles11 loaded with CsCl
and suspended them in an external NaNO3 solution. A sample of the respective calix[4]pyrrole
1–5 (2% molar carrier to lipid) was added as a DMSO solution and the resultant Cl− efflux
monitored using a chloride selective electrode.12 After five minutes the vesicles were lysed by
addition of detergent and the final reading of the electrode used to calibrate 100% release of
chloride. The results are shown in Fig. 2.

Under these conditions meso-octamethylcalix[4]pyrrole 1 showed excellent transport activity
inducing the release of virtually all of the encapsulated chloride within 5 min. Different
substitution at the meso-position of the macrocycle resulted in a dramatic loss of transport
activity with only the tetraspirocyclohexyl derivative 5 showing detectable activity as a carrier.
There is no immediate explanation for the lack of activity of compounds 2–4, although the
possibility that poor solubilities of these derivatives under the conditions of the assay hamper
the incorporation of the macrocycles into the phospholipid bilayer cannot be ruled out. We
then explored the cation selectivity of the transport process and similar assays using NaCl, KCl
and RbCl loaded vesicles were carried out (Fig. 3). Lack of chloride efflux in these experiments
is evidence that supports the hypothesis that chloride is transported selectively as a
calixpyrrole-bound ion-pair with caesium. These assays also rule out the possibility of Cl−
efflux being promoted by simple disruption of the vesicles by the macrocycle. We also wished
to investigate the influence of the composition of the external medium on the transport activity
shown by 1. For this purpose CsCl loaded vesicles were suspended in buffered Na2SO4 solution
(Fig. 3). The result shows that carrier activity is essentially maintained and is independent of
the external anion, further supporting a CsCl co-transport mechanism for this process (Scheme
1).

We screened the transport activity of 1 through a range of carrier concentrations (20–0.1 μM,
2–0.01 mol% carrier to lipid) repeating the transport assays using different amounts of
macrocycle (Fig. 4). Almost complete chloride efflux is obtained with loadings of 2–0.1%
molar carrier to lipid within the first five minutes of the experiment; meanwhile the transport
activity clearly decreases with lower carrier concentrations, although detectable activity is
observed even at 0.01% molar carrier to lipid (0.1 μM) concentrations.

Finally, in order to shed light into the transport mechanism of the process we performed
transport assays using vesicles composed of phospholipid and cholesterol. The results, shown
in Fig. 5, clearly indicate a significant reduction in the transport activity of 1 when the vesicle
bilayer composition includes cholesterol. Incorporation of the steroid to the bilayer membrane
significantly reduces its fluidity and this result indicates that a carrier mechanism is likely for
this process.13

In conclusion, we have demonstrated that meso-octamethylcalix[ 4]pyrrole mediates the
selective transport of an ion pair (CsCl) through model phospholipid bilayers. Efforts aimed
towards producing efficient ion-pair carriers with different selectivities are currently underway
in our laboratories.
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Fig. 1.
Structures of calix[4]pyrroles 1–5.
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Fig. 2.
Chloride efflux promoted upon addition of 1 (■), 2 (○), 3 (▲), 4 (□), and 5 (●) (2% molar
carrier to lipid) to unilamellar POPC vesicles loaded with 488 mM CsCl, 5 mM phosphate
buffer, pH 7.2, dispersed in 488 mM NaNO3, 5 mM phosphate buffer, pH 7.2.
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Fig. 3.
Chloride efflux promoted upon addition of 1 (2% molar carrier to lipid) to unilamellar POPC
vesicles loaded with 488 mM CsCl (■), or RbCl (○), or KCl (▲), or NaCl (□), 5 mM phosphate
buffer, pH 7.2, dispersed in 488 mM NaNO3, 5 mM phosphate buffer, pH 7.2, and unilamellar
POPC vesicles loaded with 488mMCsCl (●), 5 mM phosphate buffer, pH 7.2, dispersed in 162
mM Na2SO4.
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Fig. 4.
Chloride efflux promoted upon addition of 1 (20–0.1 μM; 2–0.01% molar carrier to lipid) to
unilamellar POPC vesicles loaded with 488 mM CsCl, 5 mM phosphate buffer, pH 7.2,
dispersed in 488 mM NaNO3, 5 mM phosphate buffer, pH 7.2.
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Fig. 5.
Chloride efflux promoted upon addition of 1 (2% molar carrier to lipid) to unilamellar POPC
vesicles (■), or POPC–cholesterol (70: 30 molar ratio) (●) vesicles loaded with 488 mM CsCl,
5 mM phosphate buffer, pH 7.2, dispersed in 488 mM NaNO3, 5 mM phosphate buffer, pH
7.2.
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Scheme 1.
Proposed mechanism for chloride efflux promoted by calix[4]pyrrole 1.
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