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Abstract
Background—The recent availability of genetic analyses has demonstrated the shortcomings of
the current phenotypic method of corneal dystrophy classification. Abnormalities in different genes
can cause a single phenotype, whereas different defects in a single gene can cause different
phenotypes. Some disorders termed corneal dystrophies do not appear to have a genetic basis.

Purpose—The purpose of this study was to develop a new classification system for corneal
dystrophies, integrating up-to-date information on phenotypic description, pathologic examination,
and genetic analysis.

Methods—The International Committee for Classification of Corneal Dystrophies (IC3D) was
created to devise a current and accurate nomenclature.

Results—This anatomic classification continues to organize dystrophies according to the level
chiefly affected. Each dystrophy has a template summarizing genetic, clinical, and pathologic
information. A category number from 1 through 4 is assigned, reflecting the level of evidence
supporting the existence of a given dystrophy. The most defined dystrophies belong to category 1 (a
well-defined corneal dystrophy in which a gene has been mapped and identified and specific
mutations are known) and the least defined belong to category 4 (a suspected dystrophy where the
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clinical and genetic evidence is not yet convincing). The nomenclature may be updated over time as
new information regarding the dystrophies becomes available.

Conclusions—The IC3D Classification of Corneal Dystrophies is a new classification system that
incorporates many aspects of the traditional definitions of corneal dystrophies with new genetic,
clinical, and pathologic information. Standardized templates provide key information that includes
a level of evidence for there being a corneal dystrophy. The system is user-friendly and upgradeable
and can be retrieved on the website www.corneasociety.org/ic3d.
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HISTORY
The word dystrophy is derived from the Greek (dys = wrong, difficult; trophe = nourishment)
1 and was introduced into the medical literature by Wilhelm Erb (1840–1921) in 1884, in
describing a disease of the musculature.2 In 1890, Arthur Groenouw (1862–1945) published
his classic paper describing 2 patients with “noduli corneae,” with 1 patient having granular
corneal dystrophy and the other, macular corneal dystrophy.3 At the same time, Biber was also
publishing his thesis on lattice corneal dystrophy.4

In that pre-slit lamp era, the extent of corneal examination was limited. But although Groenouw
did not initially appreciate the differences between granular and macular dystrophy or
recognize the familial predisposition, the 2 diseases subsequently became known as corneal
dystrophies.5 Fuchs6 used the word dystrophy to refer to ophthalmologic disease and postulated
that dystrophic tissues resulted from lack of nourishment, hormones, blood, and nerve supply.
Uhthoff7 and later Yoshida8 continued to use the term in their publications.

CORNEAL DYSTROPHY DEFINITION
Although many definitions of the word “dystrophy” have appeared in the medical literature,1
the term is most commonly used to describe an inherited disorder affecting cells, tissues, or
organs, alone or in combination. In ophthalmology, the term “corneal dystrophy” has been
used to refer to a group of inherited corneal diseases that are typically bilateral, symmetric,
slowly progressive, and without relationship to environmental or systemic factors.9 As
knowledge has increased, exceptions to each of these definitions have been noted. Thus, most
patients with epithelial basement membrane dystrophy do not have a hereditary pattern. Some
patients with posterior polymorphous corneal dystrophy only manifest unilateral changes. In
macular dystrophy, the level of antigenic serum keratan sulfate correlates with the
immunophenotypes of the disease, indicating that systemic abnormalities are integral to the
development of the characteristic corneal changes. Like-wise, there are a number of hereditary,
bilateral diseases of the cornea, such as cornea plana, which have not been traditionally
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classified as corneal dystrophies and may be alternatively accommodated among the congenital
anomalies affecting the cornea.

Consequently, experience has demonstrated that the separation of entities into the category
called corneal dystrophies may have more historical than practical meaning. There remains no
consensus as to the precise definition of corneal dystrophy, but, according to custom, we have
chosen to primarily deal with entities formerly called corneal dystrophies.

CORNEAL DYSTROPHY LITERATURE
Bücklers,10 whose name was later attached to Reis–Bücklers corneal dystrophy (RBCD),
published the first classification of the corneal dystrophies when he described the differences
between granular, lattice, and macular corneal dystrophies. Although the dystrophies can be
classified according to genetic pattern, severity, histopathologic features, or biochemical
characteristics, the most commonly used classification system has been anatomically based.9
The dystrophies are typically classified by level of the cornea that is involved, which separates
these entities into epithelial and subepithelial, Bowman layer, stromal, Descemet membrane,
and endothelial dystrophies.11-14

SHORTCOMINGS OF CORNEAL DYSTROPHY CLASSIFICATION
Critical review of the corneal dystrophy literature reveals numerous apparent misconceptions
and errors. For example, many publications emphasize the necessity of demonstrating corneal
crystals to make the diagnosis of Schnyder crystalline corneal dystrophy (SCD).15,16 However,
examination of large pedigrees of patients with SCD demonstrates that only 50% of affected
patients actually have corneal crystals.17 Nevertheless, publications over the past decades
erroneously emphasize that crystals are necessary for the diagnosis of SCD.18

The direct consequence is that in some patients with SCD who lack stromal crystals, the
diagnosis may be delayed for decades.17 Once established in textbooks, it is exceedingly
difficult to purge incorrect information about rare diseases. Many myths are perpetuated
because very few ophthalmologists have seen a substantial number of the unusual corneal
dystrophies.

Another difficulty in the literature is the tendency to place too much emphasis on a new or rare
observation rather than wait for a full analysis of a new disorder. For example, some of the
early papers describing the ultrastructure of RBCD had actually analyzed tissue from patients
with Thiel–Behnke corneal dystrophy (TBCD).19 In a publication, the known entity of RBCD
was renamed as an unusual variant of granular dystrophy.20,21 These inconsistencies in the
literature have confounded our understanding of precise findings in specific corneal
dystrophies.

DOES EVERY SINGLE DYSTROPHY ACTUALLY EXIST?
Before the 1970s, new corneal dystrophies were identified and characterized almost
exclusively by their clinical appearance aided, in some cases, by light microscopic
histopathology. In some cases, the description of a dystrophy was based on a report of a single
family.22,23

In other cases, a new dystrophy could be misclassified as a variant of a previously described
dystrophy. For years, the dystrophy of Waardenburg and Jonkers24 appeared in references and
textbooks. In actuality, these patients had Thiel–Behnke corneal dystrophy.25,26
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Often, it is impossible to either confirm or exclude every corneal dystrophy that has made its
way into textbooks as an independent entity. Moreover, misunderstandings that became
prevalent have often persisted long after they could be resolved. For example, what did Reis
and Bücklers actually see when they described what is now called Reis–Bücklers corneal
dystrophy?22,23 The original pedigree is lost to follow up, and their clinical description is
sketchy concerning the specific signs and symptoms. Nevertheless, we still presume that the
entity they described is probably what is now established as Reis–Bücklers dystrophy (RBCD),
but the original patients could have had what is now called TBCD.

Before honeycomb-shaped corneal dystrophy was described by Thiel and Behnke in
1967,25 and even afterwards, patients affected with this dystrophy were instead reported as
examples of RBCD.19 It took more than 30 years before the literature had separated these 2
dystrophies. On the other hand, Grayson and Wilbrandt 27 described a family with a Bowman
layer dystrophy they initially reported as RBCD but actually provided insufficient evidence to
determine definitively whether the unique findings, subsequently called Grayson–Wilbrandt
corneal dystrophy (GWCD), indicated a distinct entity or a variant of a different Bowman layer
dystrophy.

Although the original publication on central cloudy dystrophy of François28 described a
hereditary corneal opacification, there have been only a few other publications that have
described an entire family with this disease.29,30 Both articles were written before the advent
of genotyping so no genetic information is available. Central cloudy dystrophy of François
appears clinically indistinguishable from the degenerative condition, posterior crocodile
shagreen.31 It is not possible to determine whether previous publications describing an
individual patient with central cloudy dystrophy of François were actually describing patients
with posterior crocodile shagreen.32 In the absence of additional affected pedigrees or genetic
studies confirming inheritance, it is possible that central cloudy dystrophy of François and
posterior crocodile shagreen are the same entity. Without genotypic information, it may be
impossible to determine whether rare or newly described dystrophies are actually unique
diseases or represent phenotypic variations of previously described entities.

GENETICS
The development of genotypic analyses has revolutionized our knowledge of the corneal
dystrophies and further elucidated additional inaccuracies in the dystrophy nomenclature. The
genetic characterization of corneal dystrophies revealed both genetic heterogeneity, that is,
different genes (KRT3 and KRT12) causing a single dystrophy phenotype (Meesmann
dystrophy), and phenotypic heterogeneity with a single gene (TGFBI) causing different allelic
dystrophy phenotypes (RBCD, TBCD, granular type 1, granular type 2, and lattice type 1).
Consequently, by enhancing our understanding of the dystrophies, newer genetic information
has made the phenotypic classification system archaic.

CURRENT CLASSIFICATION OF THE CORNEAL DYSTROPHIES
The knowledge base has exploded since the first descriptions of granular, macular, and lattice
dystrophies over a century ago. Not only has the word dystrophy lost importance but also the
distinctive name of many of the individual dystrophies has become less meaningful. The basis
of the nomenclature system seems to be more historic than scientific.

As the classification system of these disorders has taken on historic implications, it has been
proposed that these conditions be classified “under the rubric of inherited corneal diseases,”
although acknowledging that “the popular designation of corneal dystrophy will probably keep
its place.33”
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RECLASSIFICATION OF THE NOMENCLATURE IN OTHER MEDICAL
SPECIALTIES

Ophthalmology is not the only medical field that has discovered that the nomenclature of certain
diseases has become archaic. Rapid advances in genotyping have challenged the nomenclature
of other diseases in other specialties. Some of these specialties have met the challenge by
devising new nomenclature systems. In 2001, the European Academy of Allergy and Clinical
Immunology published a position paper proposing a new nomenclature in allergy after
discussion with “many pediatricians in Europe for several years.34” One of the authors wrote
that he “set up a reference panel of pediatricians within different areas of pediatrics and at
intervals I asked them for their opinion on the proposal.” Subsequent articles in this field have
underscored the importance on nomenclature of atopy, atopic disease, and allergy on
classifying the individual patient diseases and directing future therapy.35

The disconnect between the language of basic scientists and the language of clinicians has also
presented challenges in the muscular dystrophy nomenclature. Dubovitz36 wrote about his
concern regarding a “major problem, within the field of therapy for muscular dystrophy, that
has arisen from inappropriate nomenclature,” namely that it “… has had a negative impact on
the whole field.” Klein wrote that “From a historical perspective, 2 golden ages have shaped
the current and evolving classification schemes: 1. the definition of clinical pathological
entities in the early twentieth century; and 2. the application of molecular neurogenetics in the
past 10–15 years.” He concluded that the shortcoming of the current classification systems
resulted not only because of the complex nature of the disorders but also that “modern
classification schemes was based on clinical, pathologic and genetic/molecular criteria …
attempt to integrate all three levels” and although “genetic classifications are now widely used
… expert clinical diagnosis remains an important step in correct diagnosis and
classification.”37 The author proposed classification schemes based on clinical features,
genetic features, and molecular mechanisms or protein functions.

THE FORMATION OF THE INTERNATIONAL COMMITTEE FOR
CLASSIFICATION OF CORNEAL DYSTROPHIES (IC3D)

In April 2005 at the World Cornea Congress meeting, the session on corneal dystrophies clearly
elucidated that nomenclature problems vexed not only SCD but also many other dystrophies.
That evening, J.S.W. approached the other members of the board of directors of the Cornea
Society to request their support for the creation of an international committee to revise the
corneal dystrophy nomenclature. The goal was the recruitment of an international panel of
interested world experts possessing firsthand experience with the clinical, genetic, and
histopathologic findings of all the corneal dystrophies. In this way, the literature could be
critically evaluated to distill the facts and recognize and then remove outdated inaccurate
information. With the support of the Cornea Society President (M.W.B.), international
ophthalmologic societies were contacted representing 5 continents to recruit representation of
corneal specialists, ophthalmic pathologists, and geneticists for this collaborative effort.

The International Committee for Classification of Corneal Dystrophies (IC3D) held its first
meeting in Chicago in October 2005 at the American Academy of Ophthalmology, followed
by meetings in San Paulo in February 2006 at the World Ophthalmology Congress, in Ft.
Lauderdale in May 2006 at the Association for Research in Vision and Ophthalmology, in Las
Vegas in October 2006 at the American Academy of Ophthalmology, and in San Diego in April
2007 at the Association of Cataract and Refractive Surgeons. In between, thousands of e-mails
provided online discussion to move the project forward.
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CHARACTERISTICS OF THE NEW NOMENCLATURE
At the initial meeting, the group discussed the necessary characteristics of a new nomenclature
that definitely would improve accuracy, would be more informative, and could be easy to use,
so that it truly could replace the nomenclature that had been used for over a century—a
gargantuan task, the successfulness of which only time will tell. The new nomenclature had to
reflect current clinical, pathologic, and genetic knowledge, be easily adaptable to advances in
understanding from the continued discovery of new genes and mutations and be linked to the
old nomenclature for ease of use.

THE IC3D TEMPLATES
The development of a series of templates, which would assemble accurate and up-to-date
information about each dystrophy and facilitate the development and maintenance of a revised
nomenclature, was undertaken. Each dystrophy template was a brief summary of the current
genetic, clinical, and pathologic information about the disease and included representative
clinical images. This approach also offered the opportunity to correct errors in the literature
and “set the record straight.” Published information was reviewed by all members of the
committee, particularly those who had experience with a particular dystrophy. Although there
were some dystrophies with which no member of the committee had personal experience, such
dystrophies were exceedingly rare and sometimes had only 1 case report in the literature. The
process, therefore, was found to be very effective.

CLASSIFICATION AND THE EVOLUTION OF A CORNEAL DYSTROPHY
The largest challenge to the committee was how to devise a classification that would be flexible
enough to facilitate the expansion of knowledge from other sources, including genotyping.
Evidence for the existence of a corneal dystrophy starts with the identification of a clinical
phenotype and may proceed to the characterization of the causative gene mutation. When a
corneal dystrophy is first described, there is usually a predictable chain of events. Initially, an
entity is identified and characterized clinically. With corneal disorders that impair vision
severely enough to warrant keratoplasty, tissue evaluations of the diseased cornea lead to the
establishment of distinct clinicopathologic entities. Even in the absence of tissue evaluations,
the next phase involves genetic linkage studies that lead to the mapping of the chromosomal
locus of the disorder, especially if the condition has a simple Mendelian inheritance pattern.
This task is much more tedious and time consuming when more than 1 gene is involved or if
there is an interaction between genetic and environmental factors. Gene mapping is followed
in due course by the identification of the relevant gene and particular mutations that are
responsible for different phenotypical forms of the disorder. Eventually, identification of the
gene product provides a better understanding of the mechanism of the disorder and may present
some therapeutic possibilities.

To indicate the level of evidence supporting the existence of a given dystrophy, the IC3D
committee developed a series of descriptive, evidential categories as follows:

Categories
Category 1: A well-defined corneal dystrophy in which the gene has been mapped and
identified and specific mutations are known.

Category 2: A well-defined corneal dystrophy that has been mapped to 1 or more specific
chromosomal loci, but the gene(s) remains to be identified.

Category 3: A well-defined corneal dystrophy in which the disorder has not yet been
mapped to a chromosomal locus.
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Category 4: This category is reserved for a suspected new, or previously documented,
corneal dystrophy, although the evidence for it, being a distinct entity, is not yet
convincing.

The category assigned to a specific corneal dystrophy can be expected to change over time as
knowledge progressively advances. Eventually, all valid corneal dystrophies should attain the
classification of category 1; macular corneal dystrophy is an example of a category 1 dystrophy.
Conversely, over time and with further information, some entities that are category 4 may be
shown not to be distinct entities and may be removed. For example, “Central Discoid Corneal
Dystrophy”38 (CDCD), a category 4 dystrophy was found to be indistinguishable
phenotypically from SCD sine crystals. Consequently, the IC3D committee further reviewed
a case report of CDCD to determine whether this was a unique dystrophy or a variant of SCD.
When the causative gene for SCD was found to be UBIAD1, 39,40 genetic testing of the proband
with CDCD could be performed. Interestingly, the CDCD proband did demonstrate a unique
mutation in the UBIAD1 gene (personal correspondence J.S.W.), which was not found in 100
control individuals. With a mutation in the UBIAD1 gene and corneal histopathology, which
demonstrated stromal vacuoles consistent with dissolved lipid, it seemed that CDCD was
actually SCD. Consequently, this category 4 dystrophy was removed and CDCD was re-
classified as SCD. This case clearly illustrates the importance and utility of the IC3D
classification system. If an entity is initially categorized as a level 4 dystrophy, new information
can be used to determine whether the entity is indeed new or unique or is perhaps a variant of
a previously described disease.

THE NEW CLASSIFICATION SYSTEM
Our proposed corneal dystrophy classification system is anatomically based, with dystrophies
classified according to the layer chiefly affected (www.corneasociety.org/ic3d). Thus, they are
epithelial and subepithelial, Bowman layer, stromal and those affecting Descemet membrane
and the endothelium. The majority of the dystrophy names are identical or similar to those in
the current nomenclature. However, dystrophies with a known common genetic basis, that is,
TGFBI dystrophies, have been grouped together.

Each template provides the key genetic, clinical and histopathologic features that are
characteristic for that dystrophy. Each is assigned a level of evidence category of 1, 2, 3, or 4,
depending on the amount of clinical and genetic information available. A more detailed
description of genetic mutations is included in the Appendix.
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Appendix

THE IC3D CLASSIFICATION (C = CATEGORY)
Epithelial and Subepithelial Dystrophies

1. Epithelial basement membrane dystrophy (EBMD)—majority degenerative, some C1

2. Epithelial recurrent erosion dystrophy (ERED) C4, (Smolandiensis variant) C3
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3. Subepithelial mucinous corneal dystrophy (SMCD) C4

4. Mutation in keratin genes: Meesmann corneal dystrophy (MECD) C1

5. Lisch epithelial corneal dystrophy (LECD) C2

6. Gelatinous drop-like corneal dystrophy (GDLD) C1

Bowman Layer Dystrophies
1. Reis–Bücklers corneal dystrophy (RBCD)—Granular corneal dystrophy type 3 C1

2. Thiel–Behnke corneal dystrophy (TBCD) C1, potential variant C2

3. Grayson –Wilbrandt corneal dystrophy (GWCD) C4

Stromal Dystrophies
1. TGFBI corneal dystrophies

A. Lattice corneal dystrophy

a. Lattice corneal dystrophy, TGFBI type (LCD): Classic lattice
corneal dystrophy (LCD1) C1, variants (III, IIIA, I/IIIA, and
IV) are C1

b. Lattice corneal dystrophy, gelsolin type (LCD2) C1 (This is
not a true corneal dystrophy but is included here for ease of
differential diagnosis)

B. Granular corneal dystrophy C1

a. Granular corneal dystrophy, type 1 (classic) (GCD1) C1

b. Granular corneal dystrophy, type 2 (granular-lattice) (GCD2)
C1

c. Granular corneal dystrophy, type 3 (RBCD) = Reis–Bücklers
C1

2. Macular corneal dystrophy (MCD) C1

3. Schnyder corneal dystrophy (SCD) C1

4. Congenital stromal corneal dystrophy (CSCD) C1

5. Fleck corneal dystrophy (FCD) C1

6. Posterior amorphous corneal dystrophy (PACD) C3

7. Central cloudy dystrophy of François (CCDF) C4

8. Pre-Descemet corneal dystrophy (PDCD) C4

Descemet Membrane and Endothelial Dystrophies
1. Fuchs endothelial corneal dystrophy (FECD) C1, C2, or C3

2. Posterior polymorphous corneal dystrophy (PPCD) C1 or C2

3. Congenital hereditary endothelial dystrophy 1 (CHED1) C2

4. Congenital hereditary endothelial dystrophy 2 (CHED2) C1

5. X-linked endothelial corneal dystrophy (XECD) C2
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Appendix

EPITHELIAL AND SUBEPITHELIAL DYSTROPHIES
Epithelial Basement Membrane Dystrophy (EBMD)

MIM #121820

Alternative Names, Eponyms—Map-dot-fingerprint dystrophy.

Cogan microcystic epithelial dystrophy.

Anterior basement membrane dystrophy.

Inheritance—Most cases have no inheritance documented. Many are considered to be
degenerative or secondary to trauma. Familial cases have been reported.

Genetic Locus—5q31.

Gene—TGFBI in the minority of cases.

Onset—Present in adult life. Rarely seen in children.

Signs (Fig. 1)
Maps: Irregular islands of thickened, gray, hazy epithelium with scalloped, circumscribed
borders, particularly affecting the central or paracentral cornea. Isolated or combined with other
signs.

Dots (Cogan): Irregular round, oval or comma-shaped, non-staining, putty-gray opacities.
Clustered like an archipelago in the central cornea. Typically combined with other signs,
especially with maps.

Fingerprint lines: Parallel, curvilinear lines, usually paracentral. Best seen in retro
illumination. Isolated or combined with other signs, especially maps.

Bleb pattern (Bron): A subepithelial pattern like pebbled glass, best seen by retro-
illumination. Isolated or combined with other signs.

Poor adhesion of basal epithelial cells to abnormal basal laminar material is thought
predisposition to recurrent erosions.

Symptoms—Asymptomatic or recurrent erosions with pain, lacrimation, and blurred vision.
Except for the bleb pattern, on-axis lesions may also cause blurred vision due to irregular
astigmatism.

Course—Location and degree of pathology can fluctuate with time.

Light Microscopy
Maps: Sheets of intraepithelial, multilamellar, basal laminar material.

Fingerprint lines: Rib-like intraepithelial extensions of basal laminar material.

Dots: Intraepithelial pseudocyst containing cytoplasmic debris.
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Bleb pattern: Irregular, subepithelial accumulation of a fibrillogranular material.

FIGURE 1.
Epithelial basement membrane dystrophy. A, Map-like changes. B, Intraepithelial dot opacities
underlying map-like figures. C, Fingerprint lines viewed in retroillumination.

Transmission Electron Microscopy
Map: Thick epithelial basement membrane that extends into the epithelium as multilamellar,
2- to 6-nm-thick sheets.

Fingerprint line: Fine fibrillogranular substance in addition to basement membrane. The
fibrils are about 17 nm in diameter and the granular material about 8 nm.

Dot: Intraepithelial pseudocyst contains degenerating cells with pyknotic nuclei and
cytoplasmic debris.

Bleb pattern: The anterior surface of this material forms discrete mounds, which dent the
overlying basal epithelial cells. May mimic cysts clinically but no cysts present histologically.

Confocal Microscopy
Map-fingerprint-dot: Intraepithelial basement membrane, which appears separated from
normal basal epithelial cells. Droplet-shaped configuration in the epithelium. Ring-like
structure in the basal epithelium.

Category—Most cases are sporadic and may be degenerative. Category 1 in a minority of
cases.
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Appendix

Epithelial Recurrent Erosion Dystrophy (ERED)
MIM #122400

Alternative Names, Eponyms
Corneal erosions, recurring hereditary (Franceschetti).

Variants
Dystrophia Smolandiensis.

Inheritance
Autosomal dominant.

Genetic Locus
Unknown.

Gene
Unknown; COL8A2, TGFBI, GSN, KRT3 and KRT12 excluded in Smolandiensis variant.

Onset
First decade of life.

Signs (Fig. 2)
Recurrent corneal erosions appear typically at 4 –6 years of age but occasionally as early as 8
months of age. They are precipitated by minimal trauma or are spontaneous. The cornea may
show subepithelial haze or blebs between attacks. In the Smolandiensis variant, half of the
patients develop single to a few permanent central subepithelial corneal opacities, which appear
at as early as 7 years of age. These vary from subepithelial fibrosis to protruding keloid-like
nodules.
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FIGURE 2.
Epithelial recurrent erosion corneal dystrophy (Smolandiensis variant). The right eye of a 41
-year -old female with a central keloid-like opacification found in half of the affected family
members.

Symptoms
Most patients have attacks of redness, photophobia, epiphora, and ocular pain. Some
experience a burning sensation and report sensitive eyes for years. Exposure to sunlight or
draught, dust and smoke and lack of sleep can precipitate attacks. In the Smolandiensis variant,
a quarter of patients eventually need corneal grafts at mean age of 44 years. The opacities recur
within 15 months in the graft periphery, but the central graft can remain clear for many years.

Course
Attacks generally decline in frequency and intensity and cease by the age of 50 years. In the
Smolandiensis variant, central subepithelial opacities will progress.

Light Microscopy
No changes consistent with either EBMD or known dystrophy of Bowman layer are reported
for the Smolandiensis variant.

Transmission Electron Microscopy
Not reported.

Confocal Microscopy
Not reported.

Category
4, 3 (Smolandiensis variant).
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Appendix

Subepithelial Mucinous Corneal Dystrophy (SMCD)
MIM: None.

Alternative Names, Eponyms
None.

Inheritance
Autosomal dominant.

Genetic Locus
Unknown.

Gene
Unknown.

Onset
First decade of life.

Signs (Fig. 3)
Bilateral subepithelial opacities and haze, most dense centrally, involving the entire cornea.

Symptoms
Painful episodes of recurrent corneal erosions, which decrease during adolescence (only 1
publication of a single family).

Course
Progressive loss of vision in adolescence.

Light Microscopy
Subepithelial band of eosinophilic, periodic acid–Schiff–positive, Alcian blue–positive,
hyaluronidase-sensitive material is present anterior to Bowman layer.

Transmission Electron Microscopy
Subepithelial deposits of fine fibrillar material.

Immunohistochemistry
Combination of chondroitin-4-sulfate and dermatan sulfate.

Confocal Microscopy
Not reported.
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Category
4.

FIGURE 3.
Subepithelial mucinous corneal dystrophy. Subepithelial opacities and haze involving the
entire cornea; these are most dense toward the center (broad oblique and slit views).

REFERENCES
1. Feder RS, Jay M, Yue BY, et al. Subepithelial mucinous corneal dystrophy. Clinical and pathological

correlations. Arch Ophthalmol 1993;111:1106–1114. [PubMed: 8352693]

Appendix

Mutations in Keratin Genes: Meesmann Corneal Dystrophy (MECD)
MIM #122100

Alternative Names, Eponyms
Juvenile hereditary epithelial dystrophy.

Variant
Stocker–Holt variant.

Inheritance
Autosomal dominant.

Genetic Loci
Locus 12q13 (KRT3).

Locus 17q12 (KRT12) Stocker–Holt variant.

Genes
Keratin K3 (KRT3).

Keratin K12 (KRT12) Stocker–Holt variant.

Weiss et al. Page 14

Cornea. Author manuscript; available in PMC 2010 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Onset
Early childhood.

Signs (Fig. 4)
Multiple, tiny epithelial vesicles extend to the limbus and are most numerous in the
interpalpebral area with clear surrounding epithelium. Whorled and wedge-shaped epithelial
patterns have been reported. The cornea may be slightly thinned and corneal sensation may be
reduced.

Indirect illumination shows varying diffuse gray opacities in different patterns, which may
have a distinct border. Areas of the central or peripheral cornea may be unaffected. The gray
opacities appear as transparent cysts on indirect illumination. Coalescence of several cysts may
result in refractile linear opacities with intervening clear cornea.

Stocker–Holt Variant—The entire cornea demonstrates fine, grayish punctate epithelial
opacities that stain with fluorescein and fine linear opacities that may appear in a whorl pattern.

Course
Slowly progressive.

Symptoms
Patients are typically asymptomatic or may have mild visual reduction, although some patients
complain of glare and light sensitivity. Recurrent painful punctiform epithelial erosions may
occur. Rarely, blurred vision results from corneal irregularity and scarring.

FIGURE 4.
Meesmann corneal dystrophy. A, Multiple solitary microcysts that are most prominent in the
interpalpebral region are seen in retroillumination. B, Diffuse gray opacity with broad oblique
illumination, and multiple solitary microcysts in retroillumination.

Stocker–Holt Variant—Patients demonstrate more severe signs and symptoms with earlier
onset compared with classic Meesmann corneal dystrophy.

Light Microscopy
The epithelium always demonstrates intraepithelial cysts. Cysts are filled with periodic acid–
Schiff–positive cellular debris, which fluoresces. The epithelium may be thickened and
disorganized. Thickened multilaminar basement membrane with projections into the basal
epithelium.
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Stocker–Holt Variant—Variably thickened epithelium with vacuolated cells and evidence
of degeneration. Variably thickened basement membrane extending into the epithelium.
Normal Bowman layer and stroma.

Transmission Electron Microscopy
Intracytoplasmic “peculiar substance” represents a focal collection of fibrogranular material
surrounded by tangles of cytoplasmic filaments. Cystic round and well-delineated lesions (10–
50 μm across). Some lesions with reflective points in the cytoplasm probably correspond to
cell nuclei.

Stocker–Holt Variant—Not reported.

Confocal Microscopy
Hyporeflective areas in the basal epithelium ranging from 40 to 150 mm in diameter, with
potential reflective spots inside.

Stocker–Holt Variant—Not reported.

Category
1, including Stocker–Holt Variant
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6. Thiel HJ, Behnke H. On the extent of variation of hereditary epithelial corneal dystrophy (Meesmann-
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Appendix

Lisch Epithelial Corneal Dystrophy (LECD)
MIM: None.

Genetic locus
Xp 22.3.

Gene
Unknown.
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Alternative Names, Eponyms
Band-shaped and whorled microcystic dystrophy of the corneal epithelium.

Inheritance
X-chromosomal dominant.

Onset
Childhood.

Signs (Fig. 5)
Direct illumination shows localized gray opacities in different patterns: whorl-like, radial, band
shaped, flame/feathery shaped, and club shaped. Indirect illumination demonstrates multiple,
densely crowded clear cysts. The surrounding epithelium is clear. Similar degree of opacities
observed in men and women.

FIGURE 5.
Lisch epithelial corneal dystrophy. A, Localized, whorl-like gray opacity on direct
illumination. B, Sclerotic scatter demonstrating localized whorl-like gray opacity. C,
Retroillumination demonstrating crowded microcysts.

Symptoms
Asymptomatic or blurred vision if the pupillary zone is involved.

Course
Slow progression of opacities with possible deterioration in vision.

Light Microscopy
Diffuse cytoplasmic vacuolization of all cells in the affected area.

Transmission Electron Microscopy
Extensive vacuolization of the cytoplasm of the affected corneal epithelium. The vacuoles are
either optically empty or contain weakly osmiophilic, partly homogenous, and partly lamellar
material eventually due to collapsing and coalescing of vacuoles.

Immunohistochemistry
Scattered staining on Ki67 immunohistochemistry indicates no evidence of increased mitotic
activity.
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Confocal Microscopy
Many solitary dark and well-demarcated lesions (50–100 μm) with round and oval
configuration. Some lesions demonstrate central reflective points, which probably correspond
to the cell nuclei.

Category
2.
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Appendix

Gelatinous Drop-Like Corneal Dystrophy (GDLD)
MIM #204870.

Alternative Names, Eponyms
Subepithelial amyloidosis.

Primary familial amyloidosis (Grayson).

Genetic Locus
1p32.

Gene
Tumor-associated calcium signal transducer 2 (TACSTD2, previously M1S1).

Inheritance
Autosomal recessive.

Onset
First to second decade.

Signs (Fig. 6)
Initially, the subepithelial lesions may appear similar to band-shaped keratopathy or there may
be groups of small multiple nodules, that is, mulberry configuration. These lesions demonstrate
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late staining with fluorescein, indicating extremely hyperpermeable corneal epithelium.
Superficial vascularization is frequently seen. In later life, patients may also develop stromal
opacification or develop larger nodular lesions, that is, kumquat-like lesions.

Symptoms
Significant decrease in vision, photophobia, irritation, redness, and tearing.

Course
Progression of protruding subepithelial deposits and stromal opacity. Almost all patients
develop recurrence after superficial keratectomy, lamellar keratoplasty, or penetrating
keratoplasty, typically within a few years.

Light Microscopy
Subepithelial and stromal amyloid deposits.

Transmission Electron Microscopy
Disruption of epithelial tight junctions in the superficial epithelium. Amyloid is noted in the
basal epithelial layer.

Confocal Microscopy
Not reported.

FIGURE 6.
Gelatinous drop-like corneal dystrophy. A, Mulberry type. B, Band keratopathy type. C,
Kumquat-like type.

Category
1.
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Appendix

BOWMAN LAYER DYSTROPHIES
Reis–Bücklers Corneal Dystrophy (RBCD)

MIM #608470

Alternative Names, Eponyms—Corneal Dystrophy of Bowman layer, type I (CDB I).

Geographic corneal dystrophy (Weidle).

Superficial granular corneal dystrophy.

Atypical granular corneal dystrophy.

Granular corneal dystrophy, type 3.

Anterior limiting membrane dystrophy, type I (ALMD I).

Genetic Locus—5q31.

Gene—TGFBI.

Inheritance—Autosomal dominant.

Onset—Childhood.

Signs (Fig. 7)—Confluent irregular and coarse geographic-like opacities with varying
densities develop at the level of Bowman layer and superficial stroma, initially separated from
one another. Opacities may extend to the limbus and deeper stroma with time. Can be confused
with TBCD.

Symptoms—Vision is impaired from childhood. Recurrent corneal erosions cause ocular
discomfort and pain in the first decade but may become less severe from the end of the second
decade. Erosions are typically more frequent and severe than in TBCD.

Course—Slowly progressive deterioration of vision. Recurrent corneal erosions may resolve
with time. Similar but frequently more aggressive course than TBCD but may not be able to
distinguish in an individual case.

Light Microscopy—Bowman layer is replaced by a sheet-like connective tissue layer with
granular Masson trichrome–red deposits, which in advanced cases can extend to subepithelial
stroma.

Transmission Electron Microscopy—Subepithelial electron-dense, rod-shaped bodies
identical to those in GCD1, but not the curly fibers of TBCD, are observed on electron
microscopy. Electron microscopy is necessary for definitive histopathologic diagnosis to
distinguish from TBCD.
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Confocal Microscopy—Distinct deposits are found in the epithelium and Bowman layer.
The deposits in the basal epithelial cell layer show extremely high reflectivity from small
granular material without any shadows. Bowman layer is replaced by highly reflective irregular
material, even more reflective than in TBCD (5q31). Fine diffuse deposits may be noted in the
anterior stroma.

Immunohistochemistry—Rod-shaped bodies are immunopositive for transforming growth
factor beta–induced protein (keratoepithelin).

Category—1.

FIGURE 7.
Reis–Bücklers corneal dystrophy. A, Coarse geographic opacity of the superficial cornea. B,
Broad oblique illumination demonstrating dense, reticular, superficial opacity. C, Slit lamp
view demonstrating irregularities in Bowman layer.
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Appendix

Thiel–Behnke Corneal Dystrophy (TBCD)
MIM #602082

Alternative Names, Eponyms
Corneal dystrophy of Bowman layer, type II (CDB2).

Honeycomb-shaped corneal dystrophy.

Anterior limiting membrane dystrophy, type II.

Curly fibers corneal dystrophy.

Waardenburg–Jonkers corneal dystrophy.

Genetic Loci
5q31.

10q24.

Gene
5q31: TGFBI.

10q24: Unknown.

Inheritance
Autosomal dominant.

Onset
Childhood.

Signs (Fig. 8)
Symmetrical subepithelial reticular (honeycomb) opacities with peripheral cornea typically
uninvolved. Variety of opacification patterns may make it impossible to distinguish from
RBCD in early or individual cases. Opacities can progress to deep stromal layers and corneal
periphery.

Symptoms
Recurrent corneal erosions cause ocular discomfort and pain in the first and second decade.
Gradual visual impairment develops later. Erosions are less frequent, and the onset of visual
impairment is later than in RBCD.

Course
Slowly progressive deterioration of vision from increasing corneal opacification. Recurrent
corneal erosions may resolve with time. Similar but frequently less aggressive course than
RBCD but may not be able to distinguish in an individual case.
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Light Microscopy
Irregular thickening of the epithelial layer to allow for ridges and furrows of underlying stroma,
with focal absences of epithelial basement membrane. Bowman layer is replaced by a
fibrocellular layer between epithelium and stroma with a pathognomonic wavy saw-toothed
pattern.

Transmission Electron Microscopy
Presence of curly collagen fibers with a diameter of 9–15 nm is pathognomonic and
distinguishes this dystrophy from RBCD.

Confocal Microscopy
Distinct deposits are found in the epithelium and Bowman layer. The deposits in the basal
epithelial cell layer show homogeneous reflectivity with round edges accompanying dark
shadows. Bowman layer is replaced with reflective irregular material that is less reflective than
in RBCD.

Immunohistochemistry
Curly fibers are immunopositive for transforming growth factor beta–induced protein
(keratoepithelin) in TBCD (5q31).

FIGURE 8.
Thiel–Behnke corneal dystrophy. A, Reticular honeycomb pattern of Thiel–Behnke with
genetic confirmation of Arg555Gin in TGFBI. B, Superficial opacification in advanced
disease.

Category
1. (TGFBI).

2. (10q24).
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Appendix

Grayson–Wilbrandt Corneal Dystrophy (GWCD)
MIM: None.

Alternative Names, Eponyms
None.

Genetic Locus
Unknown.

Gene
Unknown.

Inheritance
Autosomal dominant.

Onset
First to second decade.

Signs (Fig. 9)
Bowman layer demonstrates variable patterns of opacification from diffuse mottling to diffuse
gray-white opacities, which extend anteriorly into the epithelium. The cornea between the
deposits is clear. Refractile bodies are described in corneal stroma.

Symptoms
Decreased to normal visual acuity. Recurrent corneal erosions are less severe than in RBCD
and TBCD.
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Course
Progressive.

Light Microscopy
Homogeneous eosin-staining material between Bowman layer and the epithelium, which does
not stain with Alcian blue or Masson trichrome stains but is positive for Periodic acid – Schiff.

Transmission Electron Microscopy
Not reported.

Confocal Microscopy
Not reported.

Category
4.

Note: There is only 1 publication describing a single family. The report does not allow
definitive diagnosis or exclusion of the theory that this dystrophy may have been a dystrophy
of Bowman layer or a variant of EBMD.

FIGURE 9.
Grayson–Wilbrandt corneal dystrophy. A, Irregularly shaped opacities scattered throughout
the entire corneal surface best seen in diffuse illumination. B, Irregular opacities from Bowman
layer extending into and involving the epithelium with prominent corneal nerves (images
reprinted with permission from the American Journal of Ophthalmology 1966;61:345–349).
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Appendix

STROMAL DYSTROPHIES
TGFBI Dystrophies

Lattice Corneal Dystrophy, TGFBI Type (LCD): Classic Lattice Corneal
Dystrophy (LCD1) and Variants—MIM #122200.

Alternative Names, Eponyms—Classic LCD.

LCD, type 1.

Biber-Haab-Dimmer.

Genetic Locus—5q31.

Gene—TGFBI

Inheritance—Autosomal dominant.

Onset—First decade.

Signs (Fig. 10)—Thin branching refractile lines and/or subepithelial, whitish, ovoid dots
usually appear by the end of the first decade. The lines start centrally and more superficially,
spreading centrifugally and deeply, but leaving the peripheral 1 mm, and Descemet membrane
and endothelium clear. A diffuse stromal, ground-glass haze usually develops later,
accompanied by recurrent erosions. The number of lattice lines may differ between the 2 eyes
(unilateral cases are described), and the dystrophy may be difficult to diagnose in some younger
patients.

Symptoms—Ocular discomfort, pain, and visual impairment, sometimes starting as early as
in the first decade of life. Recurrent erosions are frequent. Visual impairment within the fourth
decade.

Course—Progressive, often leading to keratoplasty within the fourth decade of life.

Light Microscopy—Epithelial atrophy and disruption with degeneration of basal epithelial
cells; focal thinning or absence of Bowman layer, progressively increasing with age;
eosinophilic layer between epithelial basement membrane and Bowman layer; and stromal
deposition of amyloid substance distorts the architecture of corneal lamellae. Amyloid deposits
have characteristic staining. Deposits stain positive with Congo red. Green birefringence is
visible with a polarizing filter and red-green dichroism when a green filter is added with this
stain. Metachromasia is noted with crystal violet and fluorescence is noted with use of
thioflavin T staining.
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FIGURE 10.
Lattice corneal dystrophy, TGFBI type (classic lattice). A, Early lattice corneal dystrophy
(LCD1) with dots and lattice lines in retroillumination with genetic confirmation of Arg124Cys
in TGFBI. B, Magnified view of lattice lines and dots in LCD1. C, Central opacification in
advanced LCD1.

Transmission Electron Microscopy—Extracellular masses of fine, electron-dense,
randomly aligned fibrils with a diameter of 8–10 nm. There are fewer keratocytes in the areas
of amyloid deposition: Some are degenerated with cytoplasmic vacuolization, whereas others
appear metabolically active. Descemet membrane and endothelium are normal.

Confocal Microscopy—Linear and branching structures in the stroma with changing
reflectivity and poorly demarcated margins. Lines must be differentiated from other similar
images (ie, fungi).

Category—1.

Note: Historically, multiple subtypes of lattice were created on the basis of phenotypic and
genotypic variations. The LCD variants are caused by more than 2 dozen distinct heterozygous
amyloidogenic mutations, nearly all of which are located in the fourth FAS1 domain of
TGFBI. LCD variants (type IIIA, I/IIIA, IV, and polymorphic amyloidosis) have a delayed
onset compared with classic LCD (LCD, type 1). The lattice lines may be larger, with a limbus
to limbus ropy appearance (type IIIA), thinner (type I/IIIA), or even absent (polymorphic
amyloidosis), although one has to keep in mind that the lattice pattern is very much dependent
on age. Corneal erosions are a typical presenting sign of LCD, type IIIA and I/IIIA, but are
virtually absent in LCD, type IV and polymorphic corneal amyloidosis. This erosive semiology
likely reflects the anterior to posterior (type IIIA and I/IIIA) or posterior to anterior (type IV)
progression of the dystrophy.
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Appendix

Lattice Corneal Dystrophy, Gelsolin Type (LCD2) (see note below)
MIM #105120

Genetic Locus
9q34.

Gene
Gelsolin GSN (See note below).

Alternative Names, Eponyms
Part of

Familial amyloidosis, Finnish (FAF).

Meretoja syndrome.

Amyloidosis V.

Familial amyloidotic polyneuropathy IV (FAP-IV).

Inheritance
Autosomal dominant.

Onset
Third to fourth decade.

Signs (Fig. 11)
Lattice lines, more peripheral and less numerous than those of lattice dystrophy, type I, appear
in the corneal stroma, spreading centripetally from the limbus. The central cornea is relatively
spared. Pronounced dermatochalasis is typical and lagophthalmos common later in life. Risk
of open angle glaucoma may be increased.

FIGURE 11.
Lattice corneal dystrophy, gelsolin type (Meretoja). A, Diffuse lattice lines of the stroma. B,
Typical facies of the Meretoja syndrome.
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Systemic signs
Cranial neuropathy, manifesting as facial paresis, bulbar palsy, and laxity of the facial skin.
Gradual onset of facial drooping, causing eyebrows to fall over eyes, lagophthalmos, drooping
of lower lip with drooling. Peripheral polyneuropathy affects mainly senses of vibration and
touch. Carpal tunnel syndrome. Autonomic disturbance includes orthostatic hypotension,
cardiac conduction abnormalities, and dysfunction of perspiration.

Symptoms
Ocular: Corneal sensitivity is reduced or absent. Visual acuity is usually normal until the sixth
decade because the dystrophy progresses from the peripheral to central cornea. Dry eye
symptoms are frequent, and corneal erosions may occur late in life.

Course
Slowly progressive, the majority are in good health still in the seventh decade.

Variant
In rare homozygotes, the systemic component is severe, manifesting with nephrotic syndrome
and renal failure from heavy glomerular amyloid deposits.

Light Microscopy
Amyloid is deposited in the cornea in lattice lines, as a discontinuous band under Bowman
layer and within the sclera. Streak-like deposits are seen between corneal lamellae, especially
in the limbal cornea.

Immunohistochemistry
Deposition of mutated gelsolin is detected in the conjunctiva, in the sclera, in the stroma of the
ciliary body, along the choriocapillaris, in the perineurium of ciliary nerves, in the walls of
ciliary vessels, and in the optic nerve. Extraocularly, amyloid is found in arterial walls,
peripheral nerves and glomeruli.

Confocal Microscopy
Prominent deposits, presumably amyloid, are seen contiguous to basal epithelial cells and
stromal nerves. In severely affected corneas, sub-basal and stromal nerves are reduced or
absent. Anterior stroma shows fibrosis and abnormal extracellular matrix. Thick anterior and
midstromal filaments corresponding to lattice lines and thin undulating structures are visible.

Category
1.

Note: This is not a true corneal dystrophy but is listed here because it can be confused with
true lattice dystrophies, which in turn may delay diagnosis of the underlying systemic
amyloidosis for many years, especially in populations in which this type of familial amyloidosis
is rare.
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Appendix

Granular Corneal Dystrophy, Type 1 (Classic) (GCD1)
MIM #121900.

Alternative Names, Eponyms
Corneal dystrophy Groenouw type I.

Genetic Locus
5q31.

Gene
TGFBI

FIGURE 12.
Granular corneal dystrophy, type 1. A, Discrete and confluent, axially distributed anterior
stromal deposits. B, Diffuse granular opacities in an adult. C, Early subepithelial verticillate
opacity in a 6-year old.

Inheritance
Autosomal dominant.

Onset
Childhood, may be seen as early as 2 years of age.

Signs (Fig. 12)
Slit lamp examination reveals well-defined granules that appear white on direct illumination.
On retroillumination, these granules are composed of extremely small, translucent dots with
the appearance of vacuoles, glassy splinters, or crushed bread crumbs. Opacities do not extend
to the limbus. In children, there may be a vortex pattern of brownish granules superficial to
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Bowman layer. In later life, granules may extend into the deeper stroma down to Descemet
membrane. Homozygotes have more severe manifestations.

Symptoms
Glare and photophobia are early symptoms. Visual acuity decreases as opacification progresses
with age. Recurrent erosions are seen frequently. Homozygote has more severe symptoms.

Course
As the condition progresses, the opacities become more confluent in the superficial cornea,
resulting in a significant reduction of visual acuity.

Light Microscopy
Multiple stromal deposits may extend from deep epithelium to Descemet membrane. The
hyaline opacities stain with Masson trichrome.

Transmission Electron Microscopy
Rod-shaped bodies are found, which are similar in appearance to those in RBCD.

Immunohistochemistry
Abnormal deposits react with antibodies to transforming growth factor beta–induced protein
(keratoepithelin).

Confocal Microscopy
Hyper-reflective opacities.

Category
1.
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Appendix

Granular Corneal Dystrophy, Type 2 (Granular-Lattice) (GCD2)
MIM #607541.

Alternative Names, Eponyms
Combined granular–lattice corneal dystrophy.

Avellino corneal dystrophy.

FIGURE 13.
Granular corneal dystrophy, type 2 (granular–lattice). A, Icicle and star-shaped stromal
opacities among disk-shaped opacities in a heterozygote with histopathologic confirmation of
granular corneal dystrophy, type 2 (GCD2), and genetic confirmation of R124H mutation. B,
Finger-like stars and disks in diffuse and retroillumination. C, Seventeen-year old with few
white dots and a family history of GCD2. D, Homozygote with denser and confluent opacities.

For close to 100 years, this entity was considered a mild variety of granular corneal dystrophy
(Groenouw type I). Bücklers, as early as 1938, described a large family with illustrative pictures
of this phenotype. Fifty years later, Weidle published the same patients and subdivided granular
dystrophy according to subtle differences of clinical appearance. In 1988, Folberg et al
described the histopathology of deposition of both amyloid and hyaline deposits in these
patients. In 1992, the clinical findings of these patients were published. The combined granular
corneal dystrophy–LCD was now called Avellino dystrophy. Avellino, which is the Italian
district of the progenitor of the pedigree, became the popular name that appears in most modern
textbooks to describe the granular-lattice findings.

Genetic Locus
5q31.
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Gene
TGFBI

Inheritance
Autosomal dominant.

Onset
Homozygous patients have earlier onset with dystrophy diagnosed, as early as 3 years of age,
compared with heterozygote patients, who may be diagnosed as early as the age of 8 years.
Most often, GCD2 is diagnosed during teens or during early adulthood.

Signs (Fig. 13)
Initial slit lamp signs are subtle superficial stromal tiny whitish dots. In the next stage, rings
or stellate-shaped snowflake stromal opacities appear between the superficial stroma and the
mid stroma. Some patients may also demonstrate lattice lines in deeper cornea. Typically, these
lines are located deeper than the snowflake stromal opacity. In the final stage, there is a more
superficial, translucent flattened breadcrumb opacity, which may coalesce in the anterior
stroma. Some patients only manifest multiple white dots. Patients with GCD2 have fewer
opacities than those with GCD1. Homozygote patients initially demonstrate numerous small
dots in the superficial cornea in early childhood. By adulthood, there are larger, very dense
subepithelial irregularly shaped opacities, which may become deeper with time.

Symptoms
Vision decreases with age as the central visual axis becomes affected. Pain may accompany
mild corneal erosions.

Course
Slowly progressive. Homozygotes demonstrate more rapid progression.

Light Microscopy
Corneal opacities extend from the basal epithelium to the deep stroma. Although there is
deposition of both typical GCD1 deposits and amyloid; individual opacities stain with either
Masson trichrome or Congo red. Homozygotes demonstrate more severe findings.

Transmission Electron Microscopy
Anterior stromal rod-shaped, very electron-dense deposits are similar to the deposits noted in
GCD1. On higher magnification, the rod-shaped deposit is composed of extracellular masses
of fine, electron-dense, highly aligned fibrils.

An extremely common ultrastructural finding is the presence of randomly aligned fibrils of
amyloid (see LCD1 template).

Homozygotes demonstrate more severe findings.

Confocal Microscopy
Findings are a combination of GCD1 and LCD. Reflective, breadcrumb-like round deposits
with well-delineated borders or highly reflective, irregular trapezoidal deposits are present in
the anterior stroma (similar to GCD1). Linear and branching deposits with changing reflectivity
are observed (similar to LCD).
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Category
1.

Note: Injury to the central cornea results in exacerbation of the corneal dystrophy with increased
opacification. LASIK is contraindicated in this dystrophy.
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Appendix

Macular Corneal Dystrophy (MCD)
MIM #217800.

Alternative Names, Eponyms
Groenouw corneal dystrophy type II.

Fehr spotted dystrophy.

Genetic Locus
16q22.

Gene
Carbohydrate sulfotransferase 6 gene—CHST6.
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Inheritance
Autosomal recessive.

Onset
Childhood.

Signs (Fig. 14)
Initially, diffuse stromal haze extending to the limbus; later, superficial, central, elevated,
irregular whitish opacities (macules) develop and give the condition its name. Unlike granular
dystrophy, there are no clear areas between corneal opacities. There are also more posterior
peripheral white lesions. The cornea is thinner than normal in early disease. In the advanced
stage, the corneal endothelium is affected and Descemet membrane develops guttate
excrescenses. In addition, the stroma thickens from the inbibition of water from endothelial
decompensation.

Symptoms
Severe visual impairment occurs between 10 and 30 years of age. Reduction of corneal
sensitivity. Photophobia. Painful attacks can sometimes occur due to recurrent erosions.

Course
Slowly progressive.

Light Microscopy
Glycosaminoglycans (GAGs) accumulate intracellularly and extracellularly in the corneal
stroma, corneal endothelium, and Descemet membrane (stain positively with Hale colloidal
iron or Alcian blue). Guttae are commonly present on Descemet membrane.

FIGURE 14.
Macular corneal dystrophy. A, Early macular corneal dystrophy with few central opacities. B,
Slit-lamp photograph of advanced macular dystrophy with stromal opacities at multiple levels
and diffuse stromal haze. C, More advanced macular dystrophy at higher magnification
revealing more numerous and diffuse corneal opacities and stromal haze.

Transmission Electron Microscopy
Keratocytes and endothelial cells stain positively for GAGs and contain vacuoles and lamellar
bodies. The extracellular matrix contains clumps of fibrillogranular material that stain
positively for GAGs.
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Confocal Microscopy
Blurred limited accumulations of light reflective material are located in the anterior part of the
corneal stroma.

Additional Findings
There are 3 variants of macular corneal dystrophy, which are based on the immunoreactivity
of the macular deposits. These variants are indistinguishable from each other clinically.

The immunophenotype of macular corneal dystrophy determines the reactivity of the abnormal
deposits with an antibody that is specific for the sulfated epitopes on antigenic keratan sulfate
(AgKS).

The serum AgKS correlates with the immunophenotypes in the corneal tissue.

Macular corneal dystrophy type I: No AgKS reactivity in the cornea or in the serum.

Macular corneal dystrophy type IA: Keratocytes manifest AgKS reactivity but the extracellular
material does not. Serum lacks AgKS.

Macular corneal dystrophy type II: All the abnormal accumulations react positively with AgKS
and the serum has normal or lower levels of AgKS.

Category
1.
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Appendix

Schnyder Corneal Dystrophy (SCD)
MIM #21800.

Alternative Names, Eponyms
Schnyder crystalline corneal dystrophy (SCCD).

Schnyder crystalline dystrophy sine crystals.
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Hereditary crystalline stromal dystrophy of Schnyder.

Crystalline stromal dystrophy.

Central stromal crystalline corneal dystrophy.

Corneal crystalline dystrophy of Schnyder.

Schnyder corneal crystalline dystrophy.

Genetic Locus
1p36.

Gene
UbiA prenyltransferase domain containing 1—UBIAD1.

Inheritance
Autosomal dominant.

Onset
Maybe as early as childhood, but diagnosis usually made by the second or third decade.
Diagnosis may be further delayed in patients who have the acrystalline form of the disease.

Signs (Fig. 15)
Corneal changes are predictable on the basis of age. Patients aged 23 years or younger have
central corneal haze and/or subepithelial crystals. Between 23 and 38 years of age, arcus
lipoides is noted. After age 38, mid-peripheral panstromal haze develops causing the entire
cornea to appear hazy. Despite the name, only 50% of patients demonstrate corneal crystals.
Crystals may be unilateral, may rarely regress, and can occur late in the disease.

FIGURE 15.
Schnyder corneal dystrophy (SCD). A, Central stromal opacity in early SCD without crystals.
B, Central subepithelial crystals in early SCD with crystals. C, Central ring-like opacity,
prominent peripheral arcus lipoides, and moderate mid-peripheral haze in a middle-aged
individual with non crystalline Schnyder. D, Central dense opacity, peripheral arcus lipoides,
and prominent mid-peripheral haze. E, Advanced SCD with dense corneal opacification,
subepithelial crystals, and peripheral arcus lipoides.
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Symptoms
Visual acuity decreases with age. Complaints of glare increase with age. Although scotopic
vision may be remarkably good (considering the slit lamp appearance), photopic vision may
be disproportionately decreased. Corneal sensation decreases with age. Both affected and
unaffected members of the pedigrees may have hyperlipoproteinemia (type IIa, III, or IV).

Course
Slowly progressive, although majority of patients older than 50 years may require keratoplasty
for decreased photopic vision.

Light Microscopy
Abnormal deposition of intra- and extracellular esterified and unesterified phospholipids and
cholesterol in basal epithelial cells, Bowman layer, and stroma. Organic solvents and resins
can dissolve lipids. Consequently, to process the corneal specimen to allow special lipid stains
such as oil red O or Sudan black to be performed, the ophthalmologist should inform the
pathologist before placing corneal specimen in fixative that lipid stains are requested.

Transmission Electron Microscopy
Abnormal accumulation of intracellular and extracellular esterified and unesterified
phospholipids and cholesterol are deposited in epithelium, in Bowman layer, and throughout
the stroma. Endothelial lipid has rarely been reported.

Confocal Microscopy
Intracellular and extracellular highly reflective deposits may lead to eventual disruption of the
basal epithelial/subepithelial nerve plexus.

Category
1.

Note: Although Schnyder crystalline corneal dystrophy has been the more commonly used
name for this entity, this name has led to confusion in diagnosis because only 50% of the
patients have crystals. Consequently, the name Schnyder corneal dystrophy should be the
preferred name. If the ophthalmologist does not suspect Schnyder corneal dystrophy when
performing penetrating keratoplasty, the opportunity to perform lipid stains may be lost if the
corneal specimen is not preserved correctly and lipid is dissolved. In addition, there has been
1 published report of positive Congo red staining, suggesting amyloid deposition in a corneal
specimen from a patient with Schnyder corneal dystrophy. More recently, a patient with an
entity previously called central discoid corneal dystrophy was found to have a mutation in the
UBIAD1 gene, which causes Schnyder corneal dystrophy. Although the corneal pathology
demonstrated GAGs, the phenotype was identical to Schnyder corneal dystrophy sine crystals
and the genotype demonstrated the UBIAD1 mutation, and there was autosomal dominant
inheritance. The entity called central discoid corneal dystrophy is actually Schnyder corneal
dystrophy, although GAGs were found on histopathology.
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Appendix

Congenital Stromal Corneal Dystrophy (CSCD)
MIM #610048.

Alternative Names, Eponyms
Congenital hereditary stromal dystrophy.

Congenital stromal dystrophy of the cornea.

Genetic Locus
12q21.33.

Gene
Decorin—DCN.

Inheritance
Autosomal dominant.
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Onset
Congenital.

Signs (Fig. 16)
Diffuse, bilateral, corneal clouding with flake-like, whitish stromal opacities throughout the
stroma. The changes are equally pronounced in all areas of the cornea. There are no signs of
vascularization or staining with fluorescein. Pachymetry demonstrates increased thickness.

FIGURE 16.
Congenital stromal corneal dystrophy: diffuse bilateral clouding with flake-like opacities
throughout the stroma.

Symptoms
Moderate to severe visual loss.
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Course
Nonprogressive or slowly progressive.

Light Microscopy
The stromal lamellae are separated from each other in a regular manner, may have areas of
deposition of amorphous material.

Transmission Electron Microscopy
Abnormal lamellar layers consisting of thin filaments randomly arranged in an electron-lucent
ground substance separate lamellae of normal appearance. The changes can be seen at all levels
of the stroma. The collagen fibril diameter in all lamellae is roughly half that of normal collagen
fibrils. The abnormal layers are broader in the posterior stroma. The keratocytes and
endothelium are normal, although absence of the anterior banded zone of Descemet membrane
has been reported.

Confocal Microscopy
Epithelial cells appear normal. Increased reflectivity from the anterior stroma prevents further
studies.

Category
1.
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Appendix

Fleck Corneal Dystrophy (FCD)
MIM #121850.

Alternative Names, Eponyms
François-Neetens speckled corneal dystrophy.

Gene Locus
2q35.
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Gene
Phosphatidylinositol-3-phosphate/phosphatidylinositol 5-Kinase type III—PIP5K3.

Inheritance
Autosomal dominant.

FIGURE 17.
Fleck corneal dystrophy: Dandruff-like opacities seen in 2 different patients throughout the
stroma using (A) broad oblique illumination and indirect illumination, and (B) at varying depths
in the slit-lamp photograph.

Onset
Congenital.

Signs (Fig. 17)
Distinctive appearance, with “small, translucent, discoid opacities” or “discrete, flat, gray-
white, dandruff-like (sometimes ring-shaped)” opacities scattered sparsely throughout any
level of the otherwise clear stroma. Flecks may be present up to the limbus. Epithelium,
Bowman layer, Descemet membrane, and the endothelium are not involved. There may be
asymmetric or unilateral corneal involvement.

Symptoms
Asymptomatic.

Course
Nonprogressive.
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Light Microscopy
Swollen, vacuolated keratocytes, which contain GAG and complex lipids (excess GAG stains
with Alcian blue and colloidal iron; lipids are demonstrated by Sudan black and oil red O).

Transmission Electron Microscopy
Some keratocytes show membrane-based inclusions with delicate granular material.

Confocal Microscopy
Accumulation of pathologic material in stromal cells and inclusions in the basal nerves.

Category
1.
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Appendix

Posterior Amorphous Corneal Dystrophy (PACD)
MIM: None.

Alternative Names, Eponyms
Posterior amorphous stromal dystrophy.

Gene
Unknown.

Inheritance
Autosomal dominant.

Onset
Often occurs in the first decade of life; it has been noted as early as 16 weeks, suggesting a
congenital nature.

Weiss et al. Page 44

Cornea. Author manuscript; available in PMC 2010 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Signs (Fig. 18)
PACD presents as diffuse gray-white, sheet-like opacities that can involve any layer of the
stroma but are most prominent posteriorly. The lesions can be centroperipheral, extending to
the limbus, or peripheral, the latter with less pronounced findings and symptoms. There are
often transparent stromal breaks in the opacification. Corneal thinning to as low as 380 μm, a
flattened corneal topography (<41.00 D) and hyperopia are present particularly in the
centroperipheral form. Descemet membrane and endothelium may be indented by the opacities
and focal endothelial abnormalities have been observed. Prominent Schwalbe line, fine iris
processes, pupillary remnants, iridocorneal adhesions, corectopia, pseudopolycoria, and
anterior stromal tags have been reported, particularly in patients with a centroperipheral pattern.
No association with glaucoma is noted.

Symptoms
The visual acuity is mildly affected, usually better than 20/40.
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FIGURE 18.
Posterior amorphous corneal dystrophy: central deep stromal/pre-Descemet opacity with some
degree of peripheral extension interrupted by a clear ring in the mid-peripheral cornea.

Course
None or slowly progressive. Usually no treatment is needed, although sometimes penetrating
keratoplasty is required.

Light Microscopy
Irregular stromal architecture just anterior to a thin Descemet membrane and focal attenuation
of endothelial cells.

Transmission Electron Microscopy
There are abnormally oriented collagen fibers and abnormal keratocytes with disorganization
of the posterior stromal lamellae. A fibrillar layer resembling stromal collagen fibers interrupts
Descemet membrane. These findings are not pathognomonic of this dystrophy and may be
found in other abnormalities. In a patient with more pronounced changes, additional
subepithelial deposits and a thick collagenous layer posterior to Descemet membrane were
present.

Confocal Microscopy
Microfolds and a hyper-reflective layer in the posterior stroma are present.

Category
3.

Note: The possible congenital onset, lack of progression, and association with iris abnormalities
have raised the question whether this may in fact be a mesodermal dysgenesis rather than a
corneal dystrophy.

REFERENCES
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Ophthalmology 1990;97:104–109. [PubMed: 2314832]
5. Moshegov CN, Hoe WK, Wiffen SJ, et al. Posterior amorphous corneal dystrophy. A new pedigree

with phenotypic variation. Ophthalmology 1996;103:474–478. [PubMed: 8600425]

Appendix

Central Cloudy Dystrophy of François (CCDF)
MIM #217600.

Alternative Names, Eponyms
None.
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Gene/Genetic Locus
None.

Inheritance
Unknown. Autosomal dominant inheritance is reported in a few articles describing the entity.
This entity may be phenotypically indistinguishable from posterior crocodile shagreen, which
is a corneal degeneration.

Onset
First decade (youngest affected patient was 8 years old).

Signs (Fig. 19)
Fortuitous finding of cloudy central polygonal or rounded stromal opacities that fade anteriorly
and peripherally and are surrounded by clear tissue. The changes are very similar to Vogt
posterior crocodile shagreen.

Symptoms
Mostly asymptomatic.

Course
Nonprogressive.

Light Microscopy
No description in familial cases. Faint undulating appearance of the deep stroma and positive
staining for GAGs.

Transmission Electron Microscopy
No description in familial cases. One publication described an elderly patient with no familial
history. Corneal pathology revealed extracellular vacuoles, some of which contained
fibrillogranular material and electron-dense deposits. Endothelial vacuoles with
fibrillogranular material. A saw-toothed lamellar pattern has been reported.

FIGURE 19.
Central cloudy dystrophy of Francois. A, Axially distributed, polygonal gray-white stromal
opacities separated by linear areas of clear cornea. B, Broad beam slit lamp photograph
demonstrating central stromal opacities with linear clear areas and “cracked ice” appearance.

Confocal Microscopy
No description in familial cases. In 2 unrelated patients, there were small highly refractile
granules and deposits in the anterior stroma. Multiple dark striae in the extracellular matrix
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with increased intensity in the posterior stroma, which is adjacent to the corneal endothelial
layer.

Category
4.

Note: Many of the publications referenced did not provide documentation that the corneal
disease was familial. Consequently, it is entirely possible that these cases of CCDF were
actually posterior crocodile shagreen.
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Appendix

Pre-Descemet Corneal Dystrophy (PDCD)
MIM: None.

Alternative Names, Eponyms
None.

Gene
Unknown.

Inheritance
Pre-Descemet dystrophy is not a well-defined entity. Although there is no definite pattern of
inheritance, it has been described in families over 2–4 generations. The subtype punctiform
and polychromatic pre-Descemet dystrophy reported to be autosomal dominant in 1 pedigree
may represent a specific dystrophy.

Onset
Usually after 30 years of age but has been found in children as young as 3 years (punctiform
and polychromatic pre-Descemet dystrophy).
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Signs (Fig. 20)
Pre-Descemet dystrophy has several subgroups; many of these may represent sporadic, age-
related degenerative, and secondary changes. There are focal, fine, gray opacities in the deep
stroma immediately anterior to Descemet membrane with a variety of shapes. Larger lesions
occur. The opacities may be central, annular, or diffuse. In the subtype, punctiform and
polychromatic pre-Descemet dystrophy, the changes are more uniform and polychromatic. The
rest of the cornea is normal. Similar opacities have been noted in association with other ocular
and systemic diseases, such as pseudoxanthoma elasticum, X-linked and recessive ichthyosis,
keratoconus, PPCD, EBMD, and CCDF.

Symptoms
The vision is usually unaffected and the patients are asymptomatic.

Course
Punctiform and polychromatic pre-Descemet dystrophy is nonprogressive. Other forms show
progression.

Light Microscopy
Histopathologic studies are not consistent. Normal cornea except enlarged keratocytes in the
posterior stroma with vacuoles and intracytoplasmic inclusions containing lipid-like material
has been described.

Transmission Electron Microscopy
Membrane-bound intracellular vacuoles containing electron-dense material suggestive of
secondary lysosomes and inclusions consistent with lipofuscin-like lipoprotein suggesting a
degenerative process. No extracellular deposits noted.

FIGURE 20.
Pre-Descemet corneal dystrophy: punctate opacities anterior to Descemet membrane
demonstrated with indirect illumination and slit lamp beam.
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Confocal Microscopy
Hyper-reflective dots located anterior to Descemet membrane; in 1 case reported to be present
throughout the stroma.

Category
4.

Note: Similar deep corneal opacities are frequently seen in patients with ichthyosis and in
carriers of X-linked ichthyosis (MIM #308100). It is unclear whether pre-Descemet dystrophy
is a hereditary or a degenerative disorder.
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Appendix

DESCEMET MEMBRANE AND ENDOTHELIAL DYSTROPHIES
Fuchs Endothelial Corneal Dystrophy (FECD)

MIM #136800.

Alternative Names, Eponyms—Endoepithelial corneal dystrophy.

Inheritance—Cases without known inheritance are most common.

Some cases with autosomal dominant inheritance reported.

Genetic Locus—Fuchs endothelial corneal dystrophy 13pTel –13q12.13, 15q, 18q21.2 –
q21.32.

Early-onset variant Fuchs endothelial corneal dystrophy 1p34.3 – p32

Gene—None.

Early-onset variant collagen type VIII, Alpha 2—COL8A2.

Onset—Cases without known heredity as early as fifth decade. Fuchs endothelial corneal
dystrophy fourth decade and later.
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Early-onset variant FECD first decade. Most cases begin in the fourth decade or later but the
early variant starts in the first decade.

Signs (Fig. 21)—Cornea guttata accompanied by stromal edema: central beaten metal-like
endothelial changes with or without pigment dusting. Corneal guttae in adult-onset Fuchs
endothelial corneal dystrophy are larger than those seen in early-onset Fuchs endothelial
corneal dystrophy. Stromal edema due to endothelial decompensation. Intra- and interepithelial
edema (epithelial bullae); bullous keratopathy. Subepithelial fibrous scarring and peripheral
superficial vascularization may occur in longstanding cases from chronic edema.

Symptoms—Intermittent reduced vision from epithelial/stromal edema. Visual acuity worse
in the morning due to increased epithelial/stromal edema. Pain, photophobia, and epiphora due
to epithelial erosions resulting from burst epithelial bullae. Progressive visual loss.

Course—Progressive.

FIGURE 21.
Fuchs endothelial corneal dystrophy. A, Central guttae viewed in retroillumination and in the
slit beam. B, Cornea guttae as seen in specular reflection. C, Advanced stromal edema. D,
Advanced endothelial decompensation with epithelial microcystic and bullous edema.

Light Microscopy—Diffuse thickening and lamination of Descemet membrane. Sparse and
atrophic endothelial cells, hyaline excrescences on thickened Descemet membrane (guttae).
Guttae become buried or confluent or may be absent. Degeneration, thinning, and reduction
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of endothelial cells. Increasing waviness of the stromal collagen lamellae. Thickening of
Descemet membrane is noted.

Transmission Electron Microscopy—Multiple layers of basement membrane–like
material on the posterior part of Descemet membrane. Degeneration of endothelial cells.
Stromal thickening with severe disorganization and disruption of the lamellar pattern.

Confocal Microscopy—Polymegathism and pleomorphism of the endothelial cells. Early-
onset variant Fuchs endothelial corneal dystrophy has smaller guttae than typical Fuchs
endothelial corneal dystrophy.

Category—3 Fuchs endothelial corneal dystrophy in patients with no known inheritance.

2 Fuchs endothelial corneal dystrophy with known genetic loci but gene not yet localized.

1 Early-onset Fuchs endothelial corneal dystrophy.
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Appendix

Posterior Polymorphous Corneal Dystrophy (PPCD)
MIM PPCD1 #122000, PPCD2 #609140, PPCD3 #609141.

Alternative Names, Eponyms
Posterior polymorphous dystrophy (PPMD).

Schlichting dystrophy.

Inheritance
Autosomal dominant.
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Isolated unilateral cases, with similar phenotype but no heredity.

Genetic Locus
PPCD 1—20p11.2–q11.2.

PPCD 2—1p34.3–p32.3.

PPCD 3—10p11.2.

Gene
PPCD 1—unknown.

PPCD 2—collagen type VIII alpha 2, COL8A2

PPCD 3—two-handed zinc-finger homeodomain transcription factor 8—ZEB1.

Onset
Early childhood.

FIGURE 22.
Posterior polymorphous corneal dystrophy. A, Endothelial plaque-like lesions. B, Irregular
crater-like figures on Descemet membrane viewed with specular reflection. C, Railroad track
opacities as seen in broad oblique illumination and retroillumination.
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Signs (Fig. 22)
Often asymmetric. Deep corneal lesions of various shapes including nodular, vesicular
(isolated, in clusters, or confluent) and blister-like lesions. “Railroad tracks” appearance
(multiple and isolated). Varying gray tissue at the level of Descemet membrane. Rarely stromal
and epithelial edema ranging to ground-glass, milky appearance due to endothelial
decompensation. Peripheral iridocorneal adhesions in about 25% of cases. In about 15% of
cases, intraocular pressure (IOP) was elevated. Rarely, secondary subepithelial band
keratopathy.

Symptoms
Endothelial alterations often asymptomatic. Rarely extensive and progressive visual
impairment due to stromal clouding.

Course
Rarely congenital corneal clouding. Endothelial changes often unchanged over years. Possible
slow progression of polymorphic vesicles and greater thickness of Descemet membrane over
years occasionally causing endothelial decompensation.

Light Microscopy
Descemet membrane with multiple layers of collagen on its posterior surface manifesting focal
fusiform or nodular excrescences.

Transmission Electron Microscopy
Extreme thinning or absence of the posterior nonbanded layer of Descemet membrane. Two
types of collagenous tissue posterior to Descemet membrane form layers up to 25 nm thick.
Multilayered epithelial-like cells with microcilia and desmosomes.

Confocal Microscopy
Vesicular lesions: Rounded dark areas with some cell detail apparent in the middle giving a
doughnut-like appearance. Multilayered nests of cells. Railroad track: band-like dark area with
irregular edges enclosing some smaller lighter cells resembling epithelium-like cells.
Polymegathism of the endothelium.

Immunohistochemistry
PPCD 1: Positive with anti-CK7 antibodies.

Category
PPCD 1—2.

PPCD 2—1.

PPCD 3—1.
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Congenital Hereditary Endothelial Dystrophy 1 (CHED1)
MIM #121700.

Alternative Names, Eponyms
None.

Genetic Locus
20p 11.2–q11.2 (pericentromeric region).

Gene
Unknown.

Inheritance
Autosomal dominant.

Onset
First or second year, occasionally congenital.

Signs (Fig. 23A)
Often asymmetric. Corneal clouding ranging from a diffuse haze to a ground-glass, milky
appearance with occasional focal gray spots. Thickening of the cornea (can be 2–3 times normal
thickness). Rarely subepithelial band keratopathy. Asymptomatic patients have only
endothelial changes in form of moon crater–like appearance and peau d’orange texture. Rarely
elevated IOP.
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FIGURE 23.
Congenital hereditary endothelial dystrophy. A, CHED1—Milky appearance of cornea with
diffuse illumination. B, CHED2—Slit beam photograph demonstrating diffuse stromal
thickening in a homozygote individual with SLC4A11 mutations.

Symptoms
Corneal clouding with blurred vision, photophobia, and tearing. Worsening of vision in the
morning. Exclusively peau d’orange–like endothelial alterations with no or little objective
reduction of vision.

Course
Progression of corneal clouding over 1–10 years. Slow progression of endothelial alterations
with the possibility of endothelial decompensation over a prolonged period.

Light Microscopy
Diffuse thickening and lamination of Descemet membrane. Sparse and atrophic endothelial
cells. Parts of the endothelium are replaced by keratin containing stratified squamous
epithelium.

Transmission Electron Microscopy
Multiple layers of basement membrane–like material on the posterior part of Descemet
membrane. Degeneration of endothelial cells with many vacuoles. Stromal thickening with
severe disorganization and disruption of the lamellar pattern.

Confocal Microscopy
Not reported.

Category
2.
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Congenital Hereditary Endothelial Dystrophy 2 (CHED2)
MIM #217700.
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Alternative Names, Eponyms
Maumenee corneal dystrophy.

Genetic Locus
20p13 (telomeric portion).

Gene
Solute carrier family 4, sodium borate transporter, member 11—SLC4A11.

Inheritance
Autosomal recessive.

Onset
Congenital.

Signs (Fig. 23B)
Often asymmetric. More common and severe than CHED1. Corneal clouding ranging from a
diffuse haze to ground-glass, milky appearance with occasional focal gray spots. Thickening
of the cornea (can be 2–3 times normal thickness). Rarely secondary subepithelial band
keratopathy. Rarely elevated IOP.

Symptoms
Corneal clouding with blurred vision often accompanied by nystagmus. Minimal to no tearing
or photophobia.

Course
Relatively stationary.

Light Microscopy
Diffuse thickening and lamination of Descemet membrane. Sparse and atrophic endothelial
cells.

Transmission Electron Microscopy
Multiple layers of basement membrane–like material on the posterior part of Descemet
membrane. Degeneration of endothelial cells with many vacuoles. Stromal thickening with
severe disorganization and disruption of the lamellar pattern.

Confocal Microscopy
Not reported.

Immunohistochemistry
Distribution of collagen types I and III–V, and laminin within the posterior collagenous layer
of Descemet membrane. SLC4A11 encodes Bicarbonate transporter-related protein-1 (BTR1).
BTR1 mutants remain in cytoplasm, whereas wild-type BTR1 localizes mostly to the plasma
membrane.

Category
1.
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X-linked Endothelial Corneal Dystrophy (XECD)
MIM: None.

Alternative Names, Eponyms
None.

Genetic Locus
Xq25.

Gene
Unknown.

Inheritance
X-chromosomal dominant.

Onset
Congenital.
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FIGURE 24.
X-linked endothelial corneal dystrophy. Seven-year-old boy with milk glass appearance of the
cornea.

Signs (Fig. 24)
Males—Congenital clouding ranging from a diffuse haze to a ground-glass, milky appearance.
Possible nystagmus.

Only moon crater–like endothelial changes.

Secondary subepithelial band keratopathy combined with moon crater–like endothelial
changes.

Females—Only moon crater–like endothelial changes.

Symptoms
Males: Often blurred vision.

Females: Asymptomatic.

Course
Males: Progressive. Females: Nonprogressive.

Light Microscopy
Moon crater endothelial changes and subepithelial band keratopathy. Irregular thinning of the
epithelium and Bowman lamella. Anterior stroma with irregularly arranged collagen lamellae.
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Irregular thickening of Descemet membrane with small excavations and pits. Loss of
endothelial cells or atypical appearance.

Transmission Electron Microscopy
Moon crater endothelial changes and subepithelial band keratopathy. Subepithelial
accumulations of an amorphous granular material. Irregular thinning of Bowman layer (up to
0.5 mm) with many interruptions and gaps. Thickening of Descemet membrane (20 -35 mm)
consisting of an abnormal anterior and posterior banded zone. Complete absence of the
posterior nonbanded zone. Discontinuous endothelial layer with partly normal and partly
degenerative appearing cells. No evidence of desmosome-like adherent junctions between the
cells or tonofilament bundles within the cytoplasm.

Confocal Microscopy
Not reported.

Category
2.
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Appendix

RECOMMENDATIONS OF THE IC3D-THE ESTABLISHMENT OF ACCEPTED
CRITERIA FOR PUBLICATION OF POTENTIAL NEW OR VARIANT CORNEAL
DYSTROPHIES

We have attempted to present a revision of corneal dystrophy nomenclature that is accurate,
is easy to use, and can be updated with new discoveries. For over a century, the corneal
dystrophy nomenclature has been confounded by the reports of new corneal dystrophies or
corneal dystrophy variants with inadequate factual substantiation. Sometimes, these “new”
diseases have been variants of previously described dystrophies. However, the advent of
genetic testing has provided the opportunity to obtain genetic information to accurately
substantiate whether or not a corneal dystrophy is actually new. Ophthalmologists should adopt
a more scientific approach to the field of genetic corneal disease by both detailed
characterization of phenotypic changes and obtaining genetic testing when indicated. We hope
the IC3D nomenclature classification will effectively endorse a more scientific and objective
criteria for determining whether a “new” corneal dystrophy or dystrophy variant has indeed
been discovered. We urge authors and reviewers alike that more stringent criteria must be met
before publication of these entities.

APPENDIX

Table of Genes and Mutations Associated with the Corneal Dystrophies
The tables are grouped into four categories:

• Epithelial and subepithelial dystrophies
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• Bowman layer dystrophies

• Stromal dystrophies

• Descemet membrane and Endothelial dystrophies

Each table is organized into columns:

• Gene (locus) —The abbreviation and chromosomal location for each gene are
provided.

• RefSeq ( reference sequence)—The reference sequence used to determine the
nucleotide and amino acid position of each mutation is listed.

• Exon—The exon in which each mutation is located is given.

• Nucleotide change—Each mutation is described at the nucleotide level. All nucleotide
changes are numbered according to the Human Genome Variation Society (HGVS)
mutation nomenclature system, in which nucleotide 1 is the A of the ATG-translation
initiation codon.

• AA change (amino acid change) —Each mutation is given at the amino acid level.
The HGVS mutation nomenclature system is used, employing the three letter amino
acid abbreviations, with the translation initiator methionine numbered as +1.

• Original—Each mutation, as originally reported, is listed to allow the reader to
correlate the mutations listed in the nucleotide and amino acid change columns with
the nomenclature utilized by the original authors.

• Reference—References are provided for each reported mutation.

Epithelial Dystrophies
TABLE 1

The IC3D Classification—Abbreviations and MIM Number

MIM
Abbreviation

IC3D
Abbreviation MIM #

Epithelial basement
 membrane dystrophy EBMD EBMD 121820

Epithelial recurrent erosion
 dystrophy None ERED 122400

Subepithelial mucinous CD None SMCD None

Meesmann CD None MECD 122100

Lisch epithelial CD None LECD None

Gelatinous drop-like CD GDLD, CDGDL GDLD 204870

Reis–Bücklers CD CDB1, CDRB, RBCD RBCD 608470

Thiel–Behnke CD CDB2, CDTB TBCD 602082

Grayson –Wilbrandt CD None GWCD None

Classic Lattice CD CDL1 LCD1 122200

Lattice CD, Meretoja type None LCD2 105120

Granular CD, type 1 CGDD1 GCD1 121900

Granular CD, type 2
 (granular–lattice) CDA, ACD GCD2 607541

Macular CD MCDC1 MCD 217800

Schnyder CD None SCD 121800
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MIM
Abbreviation

IC3D
Abbreviation MIM #

Congenital stromal CD CSCD CSCD 610048

Fleck CD None FCD 121850

Posterior amorphous CD None PACD None

Central cloudy dystrophy of
 François None CCDF 217600

Pre-Descemet CD None PDCD None

Fuchs endothelial CD FECD1 FECD 136800

Posterior polymorphous CD PPCD1 PPCD 122000

Congenital hereditary
 endothelial dystrophy 1 CHED1 CHED1 121700

Congenital hereditary
 endothelial dystrophy 2 CHED2 CHED2 217700

X-linked endothelial CD None XECD None

Online MIM (McKusick VA et al. http://www.ncbi.nlm.nih.gov/sites/entrez)

CD, corneal dystrophy; MIM, Mendelian Inheritance in Man.

Epithelial Basement Membrane Dystrophy (EBMD)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

TGFBI (5q31) NM_000358 11 c.1526T>G p.Leu509Arg L509R 1

16 c.1998G>C p.Arg666Ser R666S 1

Meesmann Corneal Dystrophy (MECD)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

KRT3 (12q13) NM_057088 7 c.1508G>C p.Arg503Pro R503P 2

c.1525G>A p.Glu509Lys E509K 3

KRT12 (17q12) NM_000223 1 c.386T>C p.Met129Thr M129T 4, 5

c.389A>C p.Gln130Pro Q130P 6

c.394C>G p.Leu132Val p.Leu132Val 7

c.399T>G p.Asn133Lys N133K 8

c.403A>G p.Arg135Gly Arg135Gly 9

c.404G>T p.Arg135Ile Arg135Ile 9

c.404G>C p.Arg135Thr R135T 3, 4

c.405A>C p.Arg135Ser Arg135Ser 10

c.409G>C p.Ala137Pro Ala137Pro 11

c.419T>G p.Leu140Arg Leu140Arg 9

c.427G>C p.Val143Leu V143L 3

6 c.1171_1197dup p.Lle391_Leu399dup 1222ins27 10

c.1276A>G p. Ile 426Val I426V 12

c.1277T>G p. Ile 426Ser I426S 5
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Meesmann Corneal Dystrophy (MECD)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

c.1285T>G* p.Tyr429Asp Tyr429Asp 9

c.1286A>G p.Tyr429Cys Y429C 2

*
Reported as c.4046T>G ( GenBank accession number AF137286).

Gelatinous Drop-Like Corneal Dystrophy (GDLD)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

TACSTD2 (M1S1) (1p32) NM_002353 1 c.2T>G p.Met1Arg M1R 13

c.198C>A p.Cys66X C66X 14

c.250A>T p.Lys84X K84X 15

c.322T>C p.Cys108Arg C108R 15

c.341T>G p.Phe114Cys F114C 14

c.352C>T p.Gln118X Q118X 16-22

c.352C>G p.Gln118Glu Q118E 13

c.355T>A p.Cys119Ser C119S 13

c.493_494ins
CCACCGCC

p.Gly165AlafsX15 8-bp ins 13

c.509C>A p.Ser170X S170X 22

c.519dupC p.Ala174ArgfsX43 520insC 23

c.551A>G p.Tyr184Cys Y184C 16

c.557T>C p.Leu186Pro L186P 14, 24

c.564delC p.Lys189SerfsX82 870delC 13

c.581T>A p.Val194Glu V194E 13

c.619C>T p.Gln207X Q207X 22

c. 632delA p.Gln211ArgfsX60 632delA 22

c.653delA p.Asp218ValfsX53 c.653delA 25

c.679G>A p.Glu227Lys E227K 14

c.772_783del
ATCTATTACCTGinsT

p.Lle258X 772 to 783del
(ATCTATTACCTG)
+ 772insT

26

c.811delA p.Lys271SerfsX26 1117delA 13

Bowman Layer Dystrophies
Reis–Bücklers Corneal Dystrophy (RBCD) = Granular Corneal Dystrophy, type 3 (see TGFBI
corneal dystrophies) Thiel-Behnke Corneal Dystrophy (TBCD) (see TGFBI corneal
dystrophies)
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Stromal Dystrophies

Lattice Corneal Dystrophy, Gelsolin Type (LCD2)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

GSN (9q34) NM_000177 4 c.654G>A* p.Asp187Asn* G654→A654 27-32

c.654G>T* p.Asp187Tyr* G654→T654 33-36

*
Nucleotide and codon numbering system used by the authors who first reported mutations in gelsolin gene,28 with the amino

acid numbering starting at the 28th translated residue Ala, preceded by a 27-residue signal peptide. If the initiation Met is
designated codon +1, the mutations would be documented as c.640G>A (p.Asp214Asn) and c.640G>T (p.Asp214Pyr).

TGFBI Corneal Dystrophies

Dystrophy Gene (Locus) Refseq Exon Nucleotide
Change

AA Change Original Reference

Reis–Bücklers
= granular
corneal
dystrophy type
3 (RBCD)

TGFBI(5q31) NM_000358 4 c.371G>T p.Arg124Leu p.Arg124Leu 37-40

Thiel–Behnke
corneal
dystrophy
(TBCD)

12 c.1664G>A p.Arg555Gln p.Arg555Gln 37, 38

Classic Lattice
corneal
dystrophy
(LCD1)

4 c.370C>T p.Arg124Cys p.Arg124Cys 37, 41

Granular
corneal
dystrophy, type
1 (classic)
(GCD1)

12 c.1663C>T p.Arg555Trp p.Arg555Trp 37

Granular
corneal
dystrophy, type
2 (granular-
lattice) (GCD2)

4 c.371G>A p.Arg124His p.Arg124His 37, 40

Granular Corneal Dystrophy—Variants

Classification Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

Variant GCD TGFBI(5q31) NM_000358 4 c.337G>A p.Val113Ile Val113Ile 42

Variant GCD c.367G>C p.Asp123His D123H 43, 44

Variant GCD c.370C>A p.Arg124Ser R124S 45, 46

Variant GCD c.371G>T & c.373_
 378delACGGAG

p.Arg124Leu
 p.Thr125_Glu126del

R124L and
 DeltaT125–DeltaE126

47, 48
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Lattice Corneal Dystrophy—Variants

Classification Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

Variant LCD TGFBI (5q31) NM_000358 11 c.1501C>A p.Pro501Thr Pro501Thr 19, 20, 49-52

Variant LCD c.1514T>A p.Val505Asp V501D 53

Variant LCD 12 c.1553T>C p.Leu518Pro p.Leu518Pro 20, 54-57

Variant LCD c.1580T>G p.Leu527Arg L527R 20, 54, 55,
58-63

Variant LCD c.1612A>C p.Thr538Pro Thr538Pro 64

Variant LCD c.1613C>G p.Thr538Arg T538R 45

Variant LCD c.1616T>A p.Val539Asp Val539Asp 65

Variant LCD c.1618_1620delTTT p.Phe540del DF540 45, 66

Variant LCD c.1619T>C Phe540Ser Phe540Ser 67

Variant LCD c.1631A>G p.Asn544Ser N544S 49, 61, 68

Variant LCD c.1636G>A p.Ala546Thr A546T 47, 69, 70

Variant LCD c.1637C>A p.Ala546Asp A546D 71-75

Variant LCD c.1640T>C p.Phe547Ser F547S 76

Variant LCD c.1652C>A p.Pro551Gln P551Q 71-73

Variant LCD 13 c.1706T>G p.Leu569Arg Leu569Arg 77

Variant LCD c.1714_1716delCAC p.His572del His572del 78

Variant LCD c.1715A>G p.His572Arg H572R 79

Variant LCD c.1781G>T p.Gly594Val Gly594Val 65

Variant LCD 14 c.1903T>A p.Met619Ly Met619Lys 80

Variant LCD c.1864A>C p.Asn622His A→C transition at
 nucleotide 1911

81

Variant LCD c.1866T>A p.Asn622Lys N622K(A) 45

Variant LCD c.1866T>G p.Asn622Lys N622K(G) 45

Variant CBD I
 & Variant
LCD c.1868G>A p.Gly623Asp G623D 27, 45, 82

Variant LCD c.1870_1875del
 GTGGTC

p.Val624_Val625del Val624-Val625del 65

Variant LCD c.1874T>A p.Val625Asp V625D 83

Variant LCD c.1877A>G p.His626Arg H626R 45-47, 65, 84

Variant LCD c.1877A>C p.His626Pro H626P 45

Variant LCD c.1879delG p.Val627SerfsX44 V627S 45

Variant LCD c.1886_1894dup p.Thr629_Asn630insAsnValPro NVP629-630ins 85

Variant LCD c.1892T>A p.Val631Asp V631D 45
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Descemet membrane and Endothelial Dystrophies

Macular Corneal Dystrophy (MCD)

Gene
(Locus)

Refseq Exon Nucleotide
Change

AA
Change

Original Reference

CHST6
(16q22)

NM_021615 1 c.1A>T p.M1? p.M1? 86

c.6G>A p.Trp2X Trp2Ter 87

c.7C>A p.Leu3Met Leu3Met 87

c.15_16delCG p.Val6LeufsX102 delCG707-708 88

c.16_40del25 p.Val6_Leu14.
 SerfsX56

c.16_40del, Val6fs, R5fs;
 c.708-732del, R5fs

87, 89

c.15_16ins
 ATGCTGTGCG

p.Val6MetfsX106 c.15_16ins
 ATGCTGTGCG, V6fs

90

c.44T>C p.Leu15Pro 736T>C, L15P 91

c.51delG p.Gln18ArgfsX52 c.51delG, Gln18fs 92

c.52C>T p.Gln18X c.744C>T, Q18X 89

c.65T>G p.Leu22Arg Leu22Arg 88

c.91C>T p.Pro31Ser 783C>T, P31S 93

c.94_100del
 TCGTCCC

p.Ser32GlnfsX36 c.786-792del, P31fs 89

c.124C>T p.His42Tyr His42Tyr 88

c.137T>C p.Leu46Pro c.137T>C, Leu46Pro 92

c.148C>A* p.Arg50Cys Arg50Cys 94

c.148C>T p.Arg50Cys C840T, Arg50Cys 88

c.149G>T p.Arg50Leu Arg50Leu 88

c.152C>T p.Ser51Leu C844T, S51L; Ser51Leu 95

c.155G>A p.Gly52Asp c.847G>A, G52D 89

c.158C>T p.Ser53Leu Ser53Leu 88, 89

c.161C>T p.Ser54Phe Ser54Phe 87

c.166_167
 delGTinsAG

p.Val56Arg Val56Arg 87

c.172C>T p.Gln58X 864C>T, Q58X 91

c.176T>C p.Leu59Pro T868C, L59P 96

c.180delC p.Phe60LeufsX10 c.180delC, Phe60fs;
 c.872delC, F60fs

87, 89

c.182A>C p.Asn61Thr 874A>C, N61T 91

c.189C>G p.His63Gln c.189C>G, His63Gln 92

c.196G>T p.Val66Phe Val66Phe 97

c.196G>C p.Val66Leu G888C, V66L 96

c.198delC p.Phe67SerfsX3 delC890; c.890delC, V66fs 88, 89

c.202T>C p.Tyr68His 894T>C, Y68H 91

c.209T>A p.Met70Leu 891T>A, M70L 91

C214C>T p.Pro72Ser 906C>T, P72S, Pro72Ser 93, 95

c.217G>A p.Ala73Thr Ala73Thr 87

c.217G>C p.Ala73Pro c.217G>C, Ala73Pro 92
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Macular Corneal Dystrophy (MCD)

Gene
(Locus)

Refseq Exon Nucleotide
Change

AA
Change

Original Reference

c.226G>A p.Val76Met G918A, V76M 96

c.231G>C p.Trp77Cys c.923G>C

c.231G>A p.Trp77X c.231G>A, Trp77X 92

c.244C>T p.Gln82X 936C>T, Q82X, Gln82Stop 91, 98

c.271_273
 delGCTinsA

p.Ala91SerfsX17 962_965delGCTinsA 91

c.274G>C p.Val92Leu c.274G>C, Val92Leu 92

c.277C>A p.Arg93Ser c.969C>A

c.278G>A p.Arg93His Arg93His 88

c.290G>C p.Arg97Pro Arg97Pro 88

c.293_294
 delCCinsGG

p.Ser98Trp c.985C>G, c.986C>G, S98W 89

c.293_294
 delCCinsTG

p.Ser98Leu Ser98Leu 87

c.304T>G p.Cys102Gly 996T>G, Cys102Gly 91, 95

c.305G>A p.Cys102Tyr Cys102Tyr 88

c.310A>G p.Met104Val Met104Val 95

c.320T>C p.Phe107Ser c.1012T>C, F107S 89

c.329A>G p.Tyr110Cys Tyr110Cys 95

c.340C>T p.Arg114Cys c.340C>T, Arg114Cys 92

c.363C>G p.Phe121Leu c.1055C>G, F121L 89

c.364dupC p.Gln122ProfsX100 1055-1056insC 91

c.365A>C p.Gln122Pro Gln122Pro 95

c.369G>A p.Trp123X c.369G>A, Trp123X;
 c.1061G>A, W123X

87, 89

c.369_375
 dupGGCCGTG

p.Ser126GlyfsX98 1067-1068ins(GGCCGTG) 98

c.379C>T p.Arg127Cys Arg127Cys 88

c.383C>T p.Ala128Val p.A128V 90

c.391T>C p.Ser131Pro c.391T>C, Ser131Pro;
 1083T>C, S131P

87, 91

c.392C>T p.Ser131Leu c.392C>T, Ser131Leu 92

c.413_414
 dupTT

p.Pro139PhefsX243 2T insertion after 1106T,
 frameshift after 137A

94

c.418C>T p.Arg140X C1110T, R140X, Arg140end 99, 100

c.455T>C p.Leu152Pro 1147T>C, L152P 91

c.459C>A p.Cys153X c.459C>A, Cys153X;
c.1151C>A, C153X

87, 89

c.484C>G p.Arg162Gly p.Arg162Gly 92

c.494G>A p.Cys165Tyr p.C165Y 86

c.494_495delGCinsCT p.Cys165Ser c.494G>C, c.495C>T,
 Cys165Ser

87

c.495C>G p.Cys165Trp Cys165Trp 87
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Macular Corneal Dystrophy (MCD)

Gene
(Locus)

Refseq Exon Nucleotide
Change

AA
Change

Original Reference

c.497G>C p.Arg166Pro 1189G>C, R166P 91

c.500C>T p.Ser167Phe Ser167Phe 87

c.518T > C p.Leu173Pro p.Leu173Pro 101

c.521A>G p.Lys174Arg A1213G, K174R 94

c.529C>T p.Arg177Cys c.529C>T, Arg177Cys 92

c.530G>A p.Arg177His R177H 102

c.533T>G p.Phe178Cys Phe178Cys 87

c.545delA p.Gln182ArgfsX199 c.545delA, Gln182fs;delA1237 87, 88

c.573dupC p.Ala192ArgfsX30 c.573_574insC, Ala192fs 92

c.578T>C p.Leu193Pro Leu193Pro 87

c.581_586
 delACCTACinsGGT

p.Asn194_Arg196
 delinsArgCys

ACCTAC 1273 GGT 88

c.585_587
 dupACG

p.Arg196_Lle197insArg c.1279insACG, R195-196ins 89

c.593T>A p.Val198Glu c.1285T>A, V198E 103

c.599T>G p.Leu200Arg 1291T>G, L200R;Leu200Arg;
 T1291G, L200R

91, 99

c.604C>A p.Arg202Ser c.1296C>A, R202S 89, 91

c.607G>A p.Asp203Asn c.607G>A, Asp203Asn 92

c.609C>A p.Asp203Glu C1301A, D203E 94

c.611C>A p.Pro204Gln P204Q;c.1303C>A, P204G;
 1303C>A, P204Q

89, 91, 102

c.611C>G p.Pro204Arg Pro204Arg 87

c.612_614
 delGCGinsAT

p.Arg205TrpfsX176 GCG 1304 AT 88

c.614G>A p.Arg205Gln Arg205Gln 88

c.614G>T p.Arg205Leu R205L 102

c.616G>A p.Ala206Thr Ala206Thr 88

c.617C>T p.Ala206Val 1309C>T, A206V 93

c.629C>T p.Ser210Phe c.1321C>T, S210F 89

c.631C>T p.Arg211Trp C1323T, 1323C>T, R211W 94, 102

c.632G>A p.Arg211Gln Arg211Gln 98

c.649G>A p.Ala217Thr A217T 102

c.656_657insCTG p.Ala219_Arg220insTrp c.656_657insCTG,
 Ala219_Arg220insTrp;
 c.1348insCTG, W219-220ins

87, 89

c.661G>T p.Asp221Tyr c.661G>T, Asp221Tyr;D221Y 87, 89

c.663C>G p.Asp221Glu c.663C>G, Asp221Glu;
 c.1355C>G, D221E

87, 89

c.668G>A p.Gly223Asp Gly223Asp 100

c.682_683
 delACinsGA

p.Thr228Asp c.682A>G, 683C>A,
 Thr228Asp

92

c.696G>A p.Trp232X G1388A, W232X 96
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Macular Corneal Dystrophy (MCD)

Gene
(Locus)

Refseq Exon Nucleotide
Change

AA
Change

Original Reference

c.738C>G p.Cys246Trp c.738C>G, Cys246Trp 92

c.740delG p.Arg247LeufsX134 c.740delG, Arg247fs 92

c.744C>G p.Ser248Arg c.744C>G, Ser248Arg 92

c.746A>C p.His249Pro His249Pro 88

c.803A>G p.Tyr268Cys A1495G, Y268C 96

c.814C>A p.Arg272Ser Arg272Ser 87

c.815G>A p.Arg272His c.815G>A, Arg272His 92

c.820G>A p.Glu274Lys Glu274Lys 88, 94

c.827T>C p.Leu276Pro Leu276Pro, c.1519T>C;
 L276P, T1519C

87, 99

c.925G>T p.Gly309X c.1617G>T, G309X 89

c.985G>C p.Val329Leu c.985G>C, p.V329L 90

c.991C>T p.Gln331X Gln331X 95

c.993G>T p.Gln331His Gln331His 100

c.1000C>T p.Arg334Cys Arg334Cys 87

c.1001G>A p.Arg334His c.1693G>A, Arg334Cys 97

c.1002_1012delinsTTG p.His335CysfsX27 His335fs 87

c.1039G>T p.Glu347X c.1731G>T, E347X 89

c.1046G>A p.Cys349Tyr c.1046G>A, Cys349Tyr 92

c.1047C>G p.Cys349Trp c.1047C>G, Cys349Trp 92

c.1052_1059
 dupCTGCGCTG

p.Gln354ValfsX30 c.1744_1751
 dupGTGCGCTG

95

c.1056_1078del23 p.Ala352AlafsX5;
 p.Leu353CysfsX4

del1748-1770 88

c.1072T>G p.Tyr358Asp T1764G, Y358D 99

delORF Absent Protein delORF 88

*
c.148C>A translates to p.Arg50Ser. Authors reported Arg50Cys as amino acid change, which would mean that nucleotide

change is actually c.148C>T.

Schnyder Corneal Dystrophy (SCD)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

UBIAD1 (1p36) NM_013319 1 c.305A>G p.Asn102Ser p.Asn102Ser 104-107

c.335A>G p.Asp112Gly p.Asp112Gly 104

c.353A>G p.Asp118Gly p.Asp118Gly 107

c.355A>G p. Arg119Gly p. Arg119Gly 104, 106

c.361C>G p.Leu121Val p.Leu121Val 106, 107

c.511T>C p.Ser171Pro p.Ser171Pro 107

c.524C>T p.Thr175Ile p.Thr175Ile 104, 107

c.529G>A p.Gly177Arg p.Gly177Arg 105, 107

c.556G>A p.Gly186Arg p.Gly186Arg 107
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Schnyder Corneal Dystrophy (SCD)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

2 c.695A>G p.Asn232Ser p.Asn232Ser 104

c.708C>G p.Asp236Glu p.Asp236Glu 107

Congenital Stromal Corneal Dystrophy (CSCD)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

DCN (12q22) NM_133503 8 c.941delC p.Pro314HisfsX14 p.Pro314fsX14 108

8 c.967delT p.Ser323LeufsX5 p.S323fsX5 109

Fleck Corneal Dystrophy (FCD)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

PIP5K3 (2q35) NM_015040 17 c.2098delA p.Asn701ThrfsX7 2256delA 110

17 c.2116_2117delCT p.Leu706ValfsX6 2274delCT 110

Intron 20 c.3619 -1G>C p.Val1207AlafsX11 IVS19-1G→C,
intron 19

110

20 c.2551C>T p.Arg851X R851X 110

20 c.2962C>T p.Gln988X Q988X 110

20 c.3088G>T p.Glu1030X E1030X 110

20 c.3112C>T p.Arg1038X R1038X 110

20 c.3308A>G p.Lys1103Arg K1103R 110

Early-Onset Variant of Fuchs Endothelial Corneal Dystrophy (FECD)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

COL8A2 (1p34.3-1p32) NM_005202 2 c.1349T>G p.Leu450Trp L450W 111

2 c.1363C>A p.Gln455Lys gln455lys 112

Posterior Polymorphous Corneal Dystrophy 3 (PPCD3)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

TCF8(10p11–10q11) NM_030751 1 c.2T>G p.Met1Arg Met1Arg 113

c.34C>T p.Gln12X Gln12X 113

5 c.640C>T p.Gln214X Gln214X 113

7 c.929dupA p.Cys311ValfsX25 c.953_954insA 113

c.973C>T p.Arg325X Arg325X 113
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Posterior Polymorphous Corneal Dystrophy 3 (PPCD3)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

c.1124delT p.Phe375SerfsX31 p.F375fs 114

c.1332_1335delCAAT p. Ile444MetfsX48 c.1332_1335delCAAT 115

c.1348C>T p.Gln450X c.1350C→T 115

c.1387_1390delCCTT p.Pro463_Leu464
>TrpfsX29

p.P463fs 114

c.1482dupA p.Glu495ArgfsX10 c.1506dupA 113

c.1568delA p.Val526X c.1592delA 113

c.1576dupG p.Val526GlyfsX3 c.1578_1579insG 115

c.2157C>G p.Tyr719X p.Y719X 114

c.2182G>T p.Glu728X c.2184G→T 115

c.2324dupA p.Glu776GlyfsX44 c.2324_2325dupA 114

9 c.2916_2917delTG p.Gly973ValfsX14 c.2916_2917delTG 115

c.2988_2989delAG p.Glu997AlafsX7 c.3012_3013delAG 113

Congenital Hereditary Endothelial Dystrophy 2 (CHED2)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

SLC4A11
 (20p11.2-20q11.2)

NM_032034 2 c.140delA p.Tyr47SerfsX69 Tyr47SerfsX69 116

c.246_247delTTinsA p.Phe84LeufsX32 p.Arg82ArgfsX33 117

3 c.306delC p.Gly103ValfsX13 c.[306delC]+[?] 116

c.334C>T p.Arg112X Arg112X 116

4 c.353_356delAGAA p.Lys118ThrfsX12 353_356delAGAA 118

c.473_480
 delGCTTCGCC

p.Arg158ProfsX4 p.Arg158ProfsX4;
 Arg158GlnfsX4

116, 119

5 c.618_619delAG p.Val208AlafsX38 Val208AlafsX38 116

c.625C>T p.Arg209Trp Arg209Trp 116

c.637T>C p.Ser213Pro p.Ser213Pro 119

c.638C>T p.Ser213Leu Ser213Leu 116

6 c.695G>A p.Ser232Asn p.Ser232Asn 120

c.697C>T p.Arg233Cys Arg233Cys 116

7 c.859_862
 delGAGAinsCCT

p.Glu287ProfsX21 E287fsX21 121

c.878_889del12 p.Glu293_Glu296del Glu293_Glu296del 116

c.985A>T p.Arg329X p.Arg329X 120

IVS-7 c.996 + 26C_+44Cdel19 Unknown Unknown 116

IVS-8 c.1091-1G>C Unknown Unknown 116

9 c.1202C>A Thr401Lys Thr401Lys 116

10 c.1253G>A p.Gly418Asp Gly418Asp 116

c.1317_1322del6ins8 p.Leu440ValfsX6 Leu440ValfsX6 116
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Congenital Hereditary Endothelial Dystrophy 2 (CHED2)

Gene (Locus) Refseq Exon Nucleotide Change AA Change Original Reference

11 c.1378_1381
 delTACGinsA

p.Tyr460_Ala461
 delinsThr

p.Tyr460_Ala461
 delinsThr

119

c.1391G>A p.Gly464Asp G464D 118

c.1418T>G p.Leu473Arg Leu473Arg 116

c.1463G>A p.Arg488Lys p.Arg488Lys 119

12 c.1466C>T p.Ser489Leu S489L 116, 118

13 c.1704_1705delCT p.Ser569ArgfsX177 p.His568HisfsX177 117

c.1751C>A p.Thr584Lys Thr584Lys 116

14 c.1813C>T p.Arg605X p.Arg605X 116-118

c.1894G>T p.Glu632X p.Glu632X 116, 117

15 c.2014_2016delTTC or
 c.2017_2019delTTC

p.Phe672del or
 p.Phe673del

F672del or F673del 121

IVS 15 c.2067 -6_-16 delins
 GGCCGGCCGG

Inactivation of splice
 acceptor site

IVS15 –6_-16delins
 GGCCGGCCGG

118

16 c.2233_2240
 dupTATGACAC

p.Ile748MetfsX5 p.Thr747ThrfsX6 119

17 c.2263C>T p.Arg755Trp Arg755Trp 116

c.2264G>A (g.9044G>A) p.Arg755Gln p.Arg755Gln 117, 118

c.2318C>T p.Pro773Leu Pro773Leu 116

c.2389_2391delGAT p.Asp797del Asp797del 116

c.2407C>T p.Gln803X Gln803X 116

c.2411G>A p.Arg804His p.Arg804His 117

c.2420delTinsGG p.Leu807ArgfsX71 p.Leu807ArgfsX71 117

c.2423_2454del p.Leu808ArgfsX110 p.Leu808ArgfsX110 119

18 c.2470G>A p.Val824Met p.Val824Met 116, 119

c.2498C>T p.Thr833Met p.Thr833Met 117

c.2528T>C p.Leu843Pro p.Leu843Pro 119

c.2566A>G p.Met856Val p.Met856Val 119

c.2606G>A p.Arg869His p.Arg869His 117

c.2605C>T p.Arg869Cys R869C 116, 118

19 c.2623C>T p.Arg875X Arg875X 116
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