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Abstract: For naturally occurring proteins, similar sequence implies similar structure.

Consequently, multiple sequence alignments (MSAs) often are used in template-based modeling of
protein structure and have been incorporated into fragment-based assembly methods. Our

previous homology-free structure prediction study introduced an algorithm that mimics the folding

pathway by coupling the formation of secondary and tertiary structure. Moves in the Monte Carlo
procedure involve only a change in a single pair of /,w backbone dihedral angles that are obtained

from a Protein Data Bank-based distribution appropriate for each amino acid, conditional on the

type and conformation of the flanking residues. We improve this method by using MSAs to enrich
the sampling distribution, but in a manner that does not require structural knowledge of any

protein sequence (i.e., not homologous fragment insertion). In combination with other tools,

including clustering and refinement, the accuracies of the predicted secondary and tertiary
structures are substantially improved and a global and position-resolved measure of confidence is

introduced for the accuracy of the predictions. Performance of the method in the Critical

Assessment of Structure Prediction (CASP8) is discussed.

Keywords: protein folding; multiple sequence alignment; ItFix; folding pathway; statistical potential;

Monte Carlo simulated annealing

Introduction
Given the expansion of the sequence database, an imperative of the field of structural biology is to cluster

related sequences into families and determine a representative structure for each family.1–5 The already large

number of families is rapidly expanding and the cost of determining representative protein structures is

high. Computational structure prediction may provide the most effective means of mapping the protein

Abbreviations: MCSA, Monte Carlo simulated annealing; MSA, multiple sequence alignment; 2o, secondary; 3o, tertiary.

Additional Supporting Information may be found in the online version of this article.

Grant sponsor: National Institutes of Health research and training grants; Grant sponsor: National Science Foundation; Grant
number: OCI-721939 and OCI-0944332; Grant sponsors: TeraGrid resources provided by the National Center for Supercomputing
Applications, The LSU Center for Computing Technology, The Texas Advanced Computing Center, The Argonne Leadership
Computing Facility, The US Department of Energy; Grant number: DE-AC02-06CH11357..

*Correspondence to: Tobin R. Sosnick, Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th
Street, GCIS W101C, Chicago, IL 60637. E-mail: trsosnic@uchicago.edu and Karl F. Freed, Department of Chemistry, University of
Chicago, 929 E. 57th Street, GCIS E231, Chicago, IL 60637. E-mail: freed@uchicago.edu

520 PROTEIN SCIENCE 2010 VOL 19:520—534 Published by Wiley-Blackwell. VC 2010 The Protein Society



universe. Structure prediction, however, is inher-

ently challenging because of the enormous conforma-

tional space accessible to each amino acid sequence.

For this reason, the most successful prediction meth-

ods seek to narrow the conformational search, for

example by using large Protein Data Bank (PDB)-

based fragments6 rather than simulating the protein

ab initio.7,8

We have recently developed a Cb-level, homol-

ogy-free structure prediction algorithm, termed

ItFix,9 in which the conformational search space is

restricted by iteratively fixing secondary (2�) struc-

ture assignments of certain portions of the sequence

after incorporating the influence of tertiary (3�) con-
text. Moreover, the iterative feature enables regions

of lower confidence to be predicted after the fixing of

more confident regions. The coupling and mutual

stabilization of 2� and 3� structure formation mimics

the pathway character exhibited by real

proteins.10,11

The computationally rapid algorithm uses

moves involving only the change in a single pair of

/,w dihedral angles (pivot moves). Hence, its per-

formance is independent of the existence of appropri-

ate fragments from the PDB. Nevertheless, our algo-

rithm can outperform current homology-based 2�

structure prediction methods for many proteins.

ItFix also generates 3� structures of comparable ac-

curacy to existing methods for many small proteins,

including ones with few sequence homologues.

Our earlier study revealed that a large impedi-

ment to more accurate structure prediction arises

from the intrinsically low propensity of some resi-

dues to adopt the backbone dihedral angles found in

their native structures. In the protein 1dcj, for

example, the middle of a helix contains a proline fol-

lowed by a glycine, two residues that are very

unlikely to be found together in helices. Even

though ItFix uses more confidently assigned regions

to identify native structure in otherwise weakly

determined regions, the additional contextual infor-

mation occasionally is insufficient to override very

strong local biases. Unfortunately, issues of this se-

verity occur often in many proteins, and the associ-

ated errors can detrimentally affect the accuracy of

the 2� and 3� structure prediction.

Here, we employ multiple sequence alignments

(MSAs) to mitigate the influence of the nonnative

local biases. MSAs are incorporated into many popu-

lar 2� structure12,13 and both template-based14–16

and template-free17,18 3� structure prediction meth-

ods. In our distribution of sampled /,w angles, the

nonnative biases are manifested as a low probability

of native-like angles. This PDB-based distribution is

now enriched using the sequence diversity found in

an MSA, but does without requiring structural infor-

mation from any constituent sequence. We denote

this procedure as Structure Prediction Enhanced by

Evolutionary Diversity (SPEED; Fig. 1). The combi-

nation of ItFix and SPEED significantly increases

the accuracy of 2� and 3� structure predictions, and

more so in combination with novel energy functions

and clustering methods. We also provide global and

local measures of the confidence of our predictions,

thereby providing an essential tool for assessing the

accuracy of the predicted structures of unsolved

sequence families.

Results

Overview
Figure 1(a) provides an overview of both the homol-

ogy-free and SPEED structure prediction methods

using the ItFix 2� structure fixing procedure. The

fundamental difference between our original homol-

ogy-free protocol and the new SPEED protocol

relates to the Ramachandran (Rama) /,w sampling

distribution. In the homology-free protocol, the dis-

tribution is generated only from the target sequence,

whereas in the new protocol, the distribution is con-

structed from an MSA of the target sequence. At the

beginning of the ItFix procedure, no 2� structure is

fixed, and the /,w distribution at each position

reflects all 2� structure types, although the distribu-

tion is contingent on the amino acid identities of the

neighboring positions [Fig. 1(b)]. Through rounds of

folding (Monte Carlo simulated annealing, MCSA)

using an energy function that promotes hydrophobic

burial and that penalizes polar burial (Methods), the

2� structure options, helix, strand, or coil, are pro-

gressively eliminated when their occurrence in the

final collapsed structures falls below a �0–10%

threshold.9 Angles originating from the eliminated

2� structure option are excluded in the calculation of

the Rama distribution for the subsequent round.

The folding and elimination process proceeds until

no further 2� structure options can be eliminated

[Fig. 1(b), middle and bottom]. The final result is a

more restricted Rama distribution across the entire

sequence, which greatly reduces the search space.

The final Rama distribution is used to generate

a large (10,000) ensemble of 3� structure models.

These models are clustered into groups of similar

structure, and the models from the largest cluster

are selected for refinement and prediction, using our

DOPE-PW statistical potential.

SPEED enhanced Ramachandran distributions

At the beginning of the ItFix rounds, the Rama dis-

tribution at each position is conditional only on the

amino acid identities of the position and its two

neighbors. Our homology-free implementation

obtains this distribution solely using the target

sequence. For example, N4 of 1tif is flanked by I3

and E5 (denoted INE), with the resulting INE having
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a homology-free Rama distribution displayed in the

left panel of Figure 1(b). The SPEED-enhanced

Rama distribution is the sum (with equal weights) of

the distributions of all possible three-residue combi-

nations generated from the amino acid substitutions

identified by the MSA. For example, the SPEED dis-

tribution for INE is the sum of multiple Rama distri-

butions derived from the MSA, such as IND, IGD,

and VGN. At the beginning of the algorithm when no

2� structure option is eliminated, the native Rama

region has a small sampling probability in the

homology-free distribution [Fig. 1(b), red circle, P ¼
0.01), and the predominant Rama region is right-

handed helix (P ¼ 0.6). By contrast, the native

Rama region has a �20-fold larger probability in the

equivalent SPEED Rama distribution. Also, at the

end of the ItFix rounds, the SPEED probability of

the native Rama region has nearly doubled com-

pared with the homology-free probability (P ¼ 0.37

vs. 0.21). The native Rama probability enhancement

due to ItFix, thus, is significantly improved by the

MSA-based procedure.

To illustrate the benefit of using SPEED, we

quantify the enhancement across all positions in the

folding targets by comparing the native Rama proba-

bility of the homology-free distribution to that of the

SPEED-derived distribution (Fig. 2). This analysis

proceeds by partitioning the Rama map into four

broad regions [Fig. 2(a)]. More refined divisions of

the Rama map exist, but this division into four

regions may be the most refined definition with clear

borders. The quality of SPEED-derived distribution

is quantified as the percentage of positions with

high probability of the native Rama region (P >

0.25). This percentage is a useful metric because any

position with a low native Rama probability is an

obvious candidate for improvement.

Compared with the homology-free Rama distri-

butions, the new procedure decreases the percentage

of residues having a nonnative Rama propensity for

10 of the 12 targets studied [Fig. 2(b)]. The two

exceptions remain unchanged because their homol-

ogy-free distributions already are very good. The two

targets with the largest improvement in Rama dis-

tribution are 1csp (78 ! 86%) and 1dcj (84 ! 94%).

In particular, the homology-free Rama distribution

for 1dcj contains serious flaws due to the aforemen-

tioned proline-glycine pair in the second a-helix and

Figure 1. Structure prediction protocol. (a) The 2� and 3� structure prediction protocol for homology-free modeling uses the

target sequence to generate a Rama sampling distribution, whereas SPEED uses a distribution that is averaged over a MSA.

The ItFix algorithm iteratively defines the 2� structure, and clustering and refinement are used to predict 3� structure. (b) The

Rama distribution for position 4 of the sequence of 1tif is shown for representative rounds of ItFix for homology-free and

SPEED sampling. The native u,w angles are denoted as a red circle.
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for residues in the turn separating the second helix

and third strand [Supporting Information Fig.

S1(a)]. SPEED overrides the nonnative propensity of

G46 in the second helix (P ¼ 0.21 ! P ¼ 0.62) and

also enhances the E52 turn position’s native propen-

sity (P ¼ 0.01 ! P ¼ 0.32).

In addition to the moderation of outliers,

SPEED enhances the native Rama propensity when

it is already high, as is the case for 1b72. Here, the

native Rama probability at only 1 of the 10 coil posi-

tions (E31) falls below the 0.25 threshold [Fig. 2(c)].

Its native-like probability is only P ¼ 0.03 in the

homology-free distribution but increases to P ¼ 0.23

in the enhanced distribution. In addition, the native

Rama probability in the SPEED-derived distribution

is 2-fold higher than the homology-free distribution

in 7 of 10 coil positions. Similar improvements for

other targets can be seen in Supporting Information

Fig. 1.

The exceptions to this trend generally emerge

for positions which already have a very strong

native-like propensity in the target sequence. An

illustration of this effect is the left-handed turn posi-

tion G10 in 1ubq. Because glycine favors the native

left-handed turn basin more than any other residue,

any substitution lowers the native Rama probability

[Supporting Information Fig. S1(b)]. Nevertheless,

the decrease in native probability due to the use of

SPEED is on average is much smaller than the ben-

efit across the entire sequence (Fig. 2, Supporting

Information Fig. S1).

ItFix 2� structure
The 2� structures of the final models are identified

using the DSSP program for 2� structure determina-

tion.19 Because DSSP-identified b-strands must be

involved in b-sheet networks with optimized hydro-

gen bonds, we lower the strand-fixing threshold with

Figure 2. SPEED-enhanced /,w sampling distribution. (a) Rama space is divided into four coarse regions for analysis. (b) The

percentage of residues with probability exceeding 0.25 for the native Rama region is increased for SPEED for all targets,

particularly 1csp and 1dcj. (c) For 1b72, the probability of the native Rama region is greatly enhanced using SPEED.
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no noticeable decrease in fidelity compared with our

previous study. In many cases, the fidelity for speci-

fying 2� structure is higher. This increase is particu-

larly evident for the all-a targets, where the b-
strand option is eliminated at every position within

the first two rounds as a result of the b-strand prob-

ability vanishing (P < 0.005) at every position (in

the first round for 1af7 and 1b72; in the second

round for 1r69). The same accuracy is found for the

helical regions of the ab targets.

Improvement in 2� prediction accuracy

The 2� structure prediction accuracy using SPEED

compares very favorably with the popular 2� struc-

ture prediction methods SSPro13 and PSIPRED12

(Table I). When predicting 2� structure at the level

of helix, extended or coil (three options, termed Q3),

ItFix-SPEED is more accurate than its homology-

free ItFix counterpart (average accuracy 84 ! 88%).

Most of this improvement is because of to 1csp (79

! 87%) and 1dcj (45 ! 83%), the two targets with

the largest improvements in Rama distributions

because of SPEED [Fig. 2(b)]. The 2� structures for

the all-a targets already are predicted to high accu-

racy using the homology-free ItFix, so the average

improvement because of SPEED is small (93 !
96%), with the exception of 1b72 where the improve-

ment is more substantial (88 ! 96%). The one

exception is 1di2, which is discussed in the 3� struc-

ture prediction section later.

More impressive is the increase in accuracy for

the prediction of 2� structure at the more refined Q8

level where coil is subdivided into six DSSP-identi-

fied subtypes (this level of prediction is unavailable

with PSIPRED). For 1b72, the overall Q8 accuracy

increases (84 ! 96%) using SPEED with a >0.95

probability assigned to the native Q8 value at every

position in the second coil region. Two other targets

that have substantial improvements in Q8 accuracy

are 1dcj (29 ! 65%) and 1ubq (69 ! 82%). Most of

the Q8 improvements for 1dcj arise from the same

helix and strand improvements found for the Q3 val-

ues, whereas the Q8 improvements for 1ubq are due

almost exclusively to better turn predictions within

the coil subtype.

Energy functions

We continue to use a reduced Cb model that includes

the backbone heavy atoms, backbone amide hydro-

gen, and the side chain Cb, and a slightly modified

version of the DOPE-PW energy function.9 This

energy function is a pairwise additive statistical

potential based on the observed distance distribu-

tions in the PDB. In addition to distinguishing each

type of atom, the energy function classifies each

interaction according to residue type, 2o structure

assignment, and side-chain orientation.

In the prior ItFix treatment, the 2� structure

assignment at a position is the same assignment as

in the original PDB structure from which the last

u,w pair is selected at this position. Here, the 2�

structure is specified using a geometric definition of

2�structure that is applied in each energy calcula-

tion (i.e., in the application of the strand-strand

terms, helix-helix terms, etc.). A residue is consid-

ered to lie in a helix if it is situated in a block of

Table I. SPEED 2� Structure Prediction Comparisona

Protein
Rama enrichmentb

(angles/residue) 2� Structure accuracyc Q3 (Q8)

PDB ID Size Fold NEFF
d Hfree SPEED ItFix ItFix SPEED SSPro PSI-PRED

1af7 69 a 7.3 1426 5599 97 (86) 96 (88) 86 (81) 90
1b72 50 a 5.7 1384 4229 88 (84) 96 (96) 68 (72) 84
1csp 67 b 6.0 1069 2365 79 (67) 87 (70) 75 (67) 88
1di2 68 ab 6.8 1230 4964 88 (79) 66 (54) 74 (75) 97
1dcj 72 ab 7.0 1059 4381 45 (29) 83 (65) 65 (56) 89
1mky 77 ab 5.0 1572 3947 86 (70) 83 (65) 87 (71) 90
1o2f 77 ab 5.5 1059 4506 78 (69) 84 (73) 79 (66) 75
1r69 61 a 7.5 1036 5058 93 (89) 97 (89) 74 (72) 92
1shf 59 b 7.1 774 3213 76 (56) 71 (51) 85 (69) 80
1tif 57 ab 4.4 1349 3233 89 (79) 91 (81) 76 (70) 93
1tige 86 ab 5.4 1194 3323 83 (70) N/A 69 (67) 83
1ubq 72 ab 7.7 1152 3405 92 (69) 94 (82) 88 (67) 90

a Target sequences are from our previous homology-free ItFix study,9 which have been selected from a previous Rosetta
prediction study.17
b Rama enrichment is the positional average of the number of PDB angles used to generate the Rama distribution for each
method. The Q3 and Q8 (in parentheses) 2� structure prediction accuracies are reported for the previous homology-free
study and SPEED sampling.
c SSpro and PSIPRED 2� structure predictions are obtained from their respective servers.39,40 (value in %)
d NEFF

41 is a Shannon entropy measure on a scale of 1–20 of the amino acid diversity of the sequence alignment (1 ¼ single
amino acid, 20 ¼ all amino acids are equally likely).
e Folding of 1tig could not converge in reasonable amount of time because radial terms could not be satisfied in a small
number of MCSA steps.
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more than four residues in a row satisfying the fol-

lowing criteria:

½ð�90 < /i < �40Þ and ð�60 < wi < �20Þ�
or½HBondedðResði� 4Þ;ResðiÞÞ�

The minimum distance between the hydrogen

bond donors and acceptors is described by the dis-

tance criterion from the hydrogen bond potential of

Kortemme et al.,20

f½1:7 < distðCOi;NHjÞ < 2:6� or ½1:7 < distðNHi;COjÞ
< 2:6�g

In addition to this distance constraint, the

hydrogen bond energy function also considers the

influence of hydrogen bond orientation. The follow-

ing term is used to describe the orientation between

two covalent bonds, an example being the backbone

carbonyl (C¼¼O) bond and amide bond (NAH) orien-

tation:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq12 � 90Þ2 þ ðq21 � 90Þ2

q
;

In this equation, q12 represents the angle

between the CO
�!

and CN
��!

vectors, and q21 represents

the angle between the NH
��!

and NC
��!

vectors. We

impose a 90� minimum on q to maintain a planar

sheet network for both parallel and antiparallel

strand orientations.

Our previous study9 finds that the statistical

potential alone often is incapable of generating a

large proportion of well-collapsed models for the tar-

gets that contain b-sheets. These simulation models

commonly contain attributes that are uncharacteris-

tic of real proteins, such as buried polar residues,

unpaired buried b-strands, and a high radius of

gyration of Ca atoms (Rg). Buried polar residues and

buried unpaired b-strands are symptomatic of an

energetic benefit allotted for the close pairing of non-

polar residue Cb atoms and the lack of penalty for

the close pairing of polar and nonpolar residue Cb

atoms. Thus, the prior treatment allows a strand to

be buried in the hydrophobic core of a model so

long as it contains a sufficient number of nonpolar

residues. High-Rg models can be low in energy

because of highly optimized substructures, such as b
hairpins, which are formed at the expense of inte-

grating the entire chain into a properly-collapsed

model.

Adding a penalty for the burial of polar residues

impedes the generation of low-Rg models, and forc-

ing a lower Rg on the chain can worsen the burial of

polar groups and b-strands. For this reason, in addi-

tion to Rg, two radial terms are included to encour-

age the proper global collapse of the entire chain.

Radial uniformity (Ru) is the standard deviation of

the distances of Ca atoms from the Ca center of

mass (cm),

Ru ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðrcmi � lcmÞ2
N � 1

s
;

where rcmi ¼ ri
!� rcm

�!�� ��; and lcm ¼ 1
N

P
rcmi . The Ru

term is necessary because small globular single-do-

main proteins rarely have a completely buried chain

segment, but instead have an amphipathic alterna-

tion between exposed and buried side chains. Enforc-

ing a small value of Ru prevents any portion of the

chain from being too close to the center of mass and,

therefore, diminishes the propensity for the burial of

entire 2� structure units in the core of the model. Rg

and Ru are minimized to create a collapsed chain

with no completely buried chain segments.

A third radial term, the ratio of the Rg of the

nonpolar Cb atoms to the Rg of the polar Cb atoms,

is called burial ratio (Br):

Br ¼ Rgnon-polar=Rgpolar

Most small proteins have the nonpolar Cb atoms

closer to the center of the protein, whereas the polar

Cb atoms are more likely to be on the exterior, so a

Br value less than unity captures the global hydro-

phobic burial of globular proteins. The global burial

induced by the Br term contrasts to the local optimi-

zation of statistical potentials, which can optimize

local subsets of hydrophobic atom pairs at the

expense of global burial.

We multiply the three radial terms to obtain the

overall scoring function, where EDOPE-repulsive is sum

of the positive (repulsive) DOPE terms,

Eradial ¼ 100�Ru � Rg � Br þ EDOPE-repulsive

Each MCSA simulation is repeated using Eradial

until the Br is less than 0.80. We cap the minimum

value of Ru at 2.5 Å, because it is very easy for the

chain to fold into a ring structure with Ru close to 0.

The multiplied radial terms have a coefficient of

100, so that their combined magnitude is significant

relative to the repulsive part of DOPE.

The radial terms are used throughout the ItFix

algorithm until the 2� structure is determined. For

the final round of folding (10,000 models), if the 2�

structure is all-a, the DOPE-PW energy function is

used, otherwise the Eradial energy function is used.

The final model refinement process uses the DOPE-

PW energy function for all targets.

Improvement in 3� structure
SPEED significantly improves the quality of 3� mod-

els compared with the homology-free treatment (Ta-

ble II). The model with the lowest Ca-RMSD (best
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model) is lower for SPEED in every case except 1di2.

Because the best model is not always a very reproduc-

ible metric of over-all performance, we consider

instead the fraction of final structures below 5 Å Ca-

RMSD to the native structure (Fig. 3). This fraction

is on average several times greater for SPEED than

from the homology-free approach when all other fold-

ing parameters (2� structure assignment, energy

weighting coefficients, etc.) are identical (Table II,

last column). The SPEED folding ensemble for 1ubq

contains six times more native-like models than the

homology-free ensemble. For four out of the twelve

targets, the homology-free distribution produces no

models below 5 Å, and hence, the SPEED enhance-

ment factor is effectively infinite. Even so, improve-

ment also is evident across all ranges of Ca-RMSD.

For 1b72, the addition of SPEED improves the 3�

structure ensemble such that 83% of the models are

less than 5 Å Ca-RMSD to the native structure [Fig.

3(b)], which compares favorably to 76% of the homol-

ogy-free models falling below that threshold. We note

that in these direct comparisons of the 3� structure

prediction accuracy between homology free and

SPEED Rama distributions, the SPEED 2� structure

assignments are used in the homology free Rama dis-

tribution. Because the SPEED 2� structure is typi-

cally more accurate, in reality the 3� structure accu-

racy enhancement due to SPEED is much larger.

Compared with the b and ab targets, the three a
targets have the most native-like ensembles for both

homology-free and SPEED methods, and, hence, this

class yields the smallest enhancement factor. Con-

versely, the b and ab targets produce a very small

fraction of native-like models for both SPEED and

homology-free methods but have the largest increase

in native-like models due to the use of SPEED (Ta-

ble II). Neither the SPEED nor homology-free meth-

ods generate native-like models for 1di2, most likely

because it is considerably more prolate in shape

than the rest of the proteins, and the radial energy

terms (Ru, Rg, Br see Methods) enforce a spherical

bias (Supporting Information Table S1).

An obvious question is whether the increase in

the accuracy of 3� structure prediction found with

SPEED emerges from the improvement of a few resi-

dues with low homology-free native (/,w) probability
or from small improvements across the entire

sequence. Although it is impractical to test the effects

of SPEED one residue at a time, the general behavior

is illustrated for 1dcj, the protein for which the use of

SPEED introduces the largest improvement in the ac-

curacy of both 2� and 3� structure predictions. With-

out SPEED, we fail to predict the second helix, which

contains the Pro-Gly combination and has low intrin-

sic helicity. Even with the 2� structure of this helix

correctly fixed, the 3� accuracy still is inferior without

incorporating SPEED (Table II), presumably due to

the extremely low homology-free turn probability at

position 52 compared with the SPEED-based proba-

bility (Phfree¼0.02; PSPEED¼0.32). Hence, we believe

that the larger improvements due to SPEED probably

can be localized to a few critical positions. However,

the improvement of near native structures (e.g.,

RMSD less than 3–5 Å) likely arises from the cumula-

tive effect of enhancement at many positions.

Averaging the energy function across the MSA
Analogous to the SPEED-improved Rama distribu-

tion, we have also tested an energy function that is

averaged over the MSA to incorporate additional

Table II. 3� Structure Prediction

Protein 3� Structure accuracy (values in Å)

PDB ID size fold NEFF Previous ItFixa ItFix-Hfreeb ItFix- SPEEDc Ca-5.0X
d

1af7 69 a 7.3 2.9 (2.5) 2.5 (2.5) 2.6 (1.6) 1.2
1b72 50 a 5.7 3.5 (1.6) 3.6 (1.7) 3.5 (1.6) 1.1
1csp 67 b 6.0 10.5 (6.0) NC (4.6) 5.2 (4.1) 4.2
1di2 68 ab 6.8 6.1 (4.6) NC (6.8) NC (6.6) N/A
1dcj 72 ab 7.0 13.3 (7.6) NC (5.9) 5.3 (4.6) 1
1mky 77 ab 5.0 6.9 (6.1) NC (4.4) 5.2 (4.2) 1
1o2f 77 ab 5.5 11.2 (5.8) NC (6.7) NC (4.2) 1
1r69 61 a 7.5 4.2 (2.4) 3.7 (2.1) 3.5 (1.6) 1.8
1shf 59 b 7.1 12.2 (6.7) NC (6.2) NC (3.8) 1
1tif 57 ab 4.4 11.3 (4.2) 5.7 (3.7) 5.4 (3.2) 4.3
1tige 86 ab 5.4 6.4 (5.3) N/A N/A N/A
1ubq 72 ab 7.7 5.3 (3.1) 4.4 (3.6) 2.6 (1.9) 6.0

a The Ca-RMSD to the native of prediction based on energy and best model (in parentheses) from our previous homology-
free ItFix study.9
b Folding with the homology-free Rama distribution and with the final SPEED 2� structure (2000 trajectories), cluster, and
refinement prediction and best model (in parentheses).
c Folding with the SPEED Rama distribution with final SPEED 2� structure (10,000 trajectories), cluster and refinement
prediction and best model (in parentheses).
d Ratio of the percentage of models below 5.0 Å Ca-RMSD to native of SPEED (column 7) to homology-free (column 6).
e Folding of 1tig could not converge in reasonable amount of time because radial terms could not be satisfied in a small
number of MCSA steps.
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sequence information, specifically via sequence

correlations in the long-range interactions. The anal-

ysis of correlated mutations in sequence alignments

has been used previously in other prediction and

design methods.21–24 The new energy function uses

the original statistical potential and the same

pairwise distances, Di,j, between the pairs of

amino acids. However, the new energy for each (i,j)

residue pair now is the average energy calculated

using the distance Di,j and statistical potential

appropriate for the amino acid pair found in each

sequence in the MSA. This procedure includes extra

long-range information by incorporating the pairwise

amino acid correlations inherent in each aligned

sequence.

Although this method is intellectually appeal-

ing, the results are variable. We suspect that for

each interaction, the optimal (lowest energy) separa-

tion distance for each contact varies too much for

the different combination of residues found in the

sequences in the MSA. Consequently, the energy

surface averaged across the sequences in the MSA

has a shallower minimum compared with the energy

function calculated using only the target sequence.

Cursory tests using a single consensus sequence

with the standard energy function also fail to pro-

duce uniformly superior results. However, we main-

tain that a careful and clever implementation or

extension of these ideas could yield strong

improvements.

Figure 3. Improvement in 3� structure prediction using SPEED. The percentage of models with a Ca-RMSD to the native

below a cutoff level (x-axis) provides a comparison of the overall accuracy of the folding ensembles. The top cluster (solid

line) from SPEED is much better than the entire SPEED ensemble (dashed line), which is better than the ensemble generated

using the homology-free ItFix Rama distribution with the SPEED-generated 2� structure assignments (dotted line).
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Clustering
The enhancement of the fraction of native-like mod-

els obtained using SPEED has additional implica-

tions for 3� structure prediction. In our previous

homology-free study, the predicted structure is the

lowest energy model from the final folding ensemble.

But, that structure is native-like (<5 Å) only for

about half of the targets, failing mostly when few or

no accurate models are generated. Although the use

of SPEED increases the proportion of accurate mod-

els, energy alone is insufficient for reliably choosing

the best model. This situation is common in struc-

ture prediction. As a result, clustering methods are

frequently used because repeatedly occurring low

energy conformations are typically more accurate

than structurally isolated low-energy models.25

The lowest energy model from the top cluster for

the homology-free and SPEED-based Rama distribu-

tions are presented when a cluster exists (Table II). A

larger fraction (8/12) of the SPEED-based ensembles

contains identifiable clusters compared with the

homology-free ensembles (6/12), and their size often

is larger as well (Fig. 3). Even when the largest clus-

ter is the best, it may share a similar average contact

profile to other less accurate clusters (Fig. 4). For

example, the contact profiles of the largest two clus-

ters of 1b72 display almost identical contacts, but

decidedly different values for the average Ca-RMSD

to the native (cluster 1, < 4 Å; cluster 2, > 10 Å).

This result is due to the simplicity of the 1b72 fold (a

3-helix bundle), which permits a low energy fold that

is a pseudo-mirror image fold of the native and,

therefore, has similar contacts and similar average

energy. Given this energetic similarity, the Rama dis-

tribution determines the favorability of the native

conformation, with the SPEED protocol succeeding to

a greater extent than the homology-free protocol.

Confidence assessed from reproducibility

Although numerous methods exist for structure pre-

diction,6–8,17,26,27 the quantification of the accuracy

and confidence of a prediction is a crucial, but often

elusive component. Template-based methods typi-

cally infer confidence from the quality of the avail-

able information used to generate an alignment and

a consensus of aligned models.28–30 When predicting

remote templates, this technique can suffer from a

dearth of PDB templates that independently align to

the target sequence with high confidence. This situa-

tion precludes any meaningful clustering analysis

and, therefore, imparts a large uncertainty to model

quality.

Template-free prediction methods have an

advantage of generating a large number of models

that can be clustered. One noticeable feature of our

method is the high correlation (R2 ¼ 0.85) between

the average Ca-RMSD between models in the pre-

dicted cluster and the average accuracy (Ca-RMSD

to the native) of the models within the cluster (Fig.

5). This trend suggests that template-free models

that are reproduced with a high degree of structural

similarity tend to be proportionately more accurate

than models that are structurally further removed

from their closest neighbors. Noticeably, the average

Ca-RMSD between models in a cluster is typically 1

to 2 Å lower than the average Ca-RMSD to the

native of the cluster, suggesting that the top cluster

has converged upon a stable but slightly nonnative

energy minimum. Nonetheless, this difference can

be factored in when quantifying the predicted accu-

racy and may be diminished by improvements in the

energy function and sampling distributions.

In addition to global accuracy, the residue level

RMSD at each position is calculated to quantify the

confidence of the prediction for each amino acid in

the protein (Fig. 6). Specifically, the average and

standard deviation of the distance at each position

between the aligned models in the cluster are highly

correlated to the respective average distance and

standard deviation at each position between the

aligned cluster models and the native model, sug-

gesting that the accuracy and uncertainty at each

position in the protein can be predicted.

This finding has implications for other template-

free methods, which may suffer method-specific diffi-

culties when trying to quantify the confidence of

model predictions. Most template-free methods rely

on large fragments from PDB models.6,14,17 In the

cases where the number of such fragments is lim-

ited, a bias would be introduced due to the highly re-

stricted nature of the conformational search. In

other words, independently converging on very simi-

lar models may not be as meaningful when the like-

lihood of sampling the same conformation is very

high. Because the conformational changes in ItFix

feature the rotation of only a single pair of u,w
angles, a resulting ensemble consisting of a cluster

of very similar models can be treated with higher

confidence given that the accessible conformation

space is much larger than in fragment based meth-

ods. Similarly, the bias likely is even weaker for all-

atom physics-based simulations8 and ab initio fold-

ing simulations,7 which have the least restricted

conformational search. ItFix-SPEED may combine

the best of both a restricted and unbiased conforma-

tional search in regards to assessing accuracy from

the structural diversity of the largest cluster.

Performance in CASP8
We have applied an early version of the ItFix-

SPEED protocol in the 2008 Critical Assessment of

Structure Prediction (CASP8) for the human/server

targets when a suitable template from the PDB

could not be identified by the threading program
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RAPTOR,31,32 one of the top performing entries in

the server category. Of these targets, the 120 residue

T0482 is the only small, globular, single-domain

free-modeling target with no confident templates,

making it a prime candidate for the ItFix-SPEED

methodology. This target has been subjected to mul-

tiple rounds of ItFix-SPEED, and our final three

submitted models are very similar with highly accu-

rate 2� and 3� structures [Fig. 7(a)]. Our predicted

2� structure is slightly improved over the

PSIPRED12 prediction. Because of time constraints,

we initially assigned PSIPRED’s high confidence

(>90%) predictions at �10% of the positions (total

wall clock time for prediction was under 12 hr from

Figure 4. Comparison of contacts for the top clusters of several targets. Each map is a Ca-Ca contact matrix with a 10.0 Å

distance cutoff for a targets (1af7, 1b72) and a 8.0 Å distance cutoff for the ab and b targets (1mky and 1csp). Contacts of

the native model are presented on the lower right of each map. The largest cluster for 1af7 has the most native contacts and

has an average Ca-RMSD to the native less than 4 Å. The next largest 1af7 cluster, which has an averge greater than 10 Å

Ca-RMSD to the native, exhibits many native and nonnative contacts. The largest 1b72 cluster is the most native in terms of

Ca-RMSD (<3Å average), but contains identical contacts to the next largest cluster (>10 Å Ca-RMSD to native average) that

is the mirror-image fold of the native. The contacts matrices of the top clusters of 1mky and 1csp are both very native-like.
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start of prediction to submission). When the central

100 residues (ignoring the solvent exposed ends of

the NMR structure) of these models are aligned to

the now published structure, the Ca-RMSD to native

is 4.8 Å. Hence, our algorithm is able to confidently

predict the correct structure without any false posi-

tive submissions. In addition, our top model has the

lowest Ca-RMSD among all submitted #1 models. We

have performed commendably for other challenging

template-free modeling targets, such as the D1 sub-

domain of protein T0405 [Fig. 6(b)]. These results

constitute strong evidence of the predictive capabil-

ities of the ItFix-SPEED algorithm.

Our participation in CASP8 also includes predic-

tions for sequences that have only poor templates

and are considered template-free modeling targets.

For target T0429, RAPTOR chooses multiple homol-

ogy-based templates, but it is uncertain as to which

template is correct for the C-terminal domain. ItFix-

SPEED folding simulations for this domain have

been used to compare the average contact matrix of

our folding simulations with the contacts of each

possible template [Fig. 7(d)]. This process has

enabled us to choose a better template (T0429-2ckk)

than RAPTOR’s top scoring template.

The SPEED-based sampling protocol also has

been used to determine the structure of the inser-

tions of unknown structure that are present in

Figure 5. Assessing global accuracy from reproducibility of

the top cluster. The mean Ca-RMSD to native of the top cluster

is strongly correlated with the mean Ca-RMSD between the

models in that cluster, indicating that the latter metric can be

used as a measure of predicted model’s accuracy.

Figure 6. Assessing local accuracy from reproducibility of top cluster. Position-resolved model accuracy and confidence. The

average aligned distance between all models in the predicted cluster and the standard deviation of that distance is

determined for each position. These values are highly correlated to the respective average aligned distance and standard

deviation at each position between each model in the cluster and the native structure. The standard deviation for each of

these values also is highly correlated, suggesting the ability to use clustering to determine confidence for each position in a

predicted model.
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Figure 7. ItFix-SPEED blind predictions in CASP8. (a) 2� and 3� structure prediction of target T0482. The ItFix 2� structure

prediction compares favorably to the native at 84% accuracy, which is slightly superior to the 82% accuracy of PSIPRED.

The Global Distance Test (GDT) value is the percentage of the residues within a cutoff distance of the native structure. This

cutoff distance is the y-value on the plot (e.g., for the ItFix prediction, 83% and 100% of the residues are predicted to within

4.7 and 7.8 Å of the native structure, respectively). The GDT trace for the ItFix prediction (blue line) is the rightmost of all the

Model 1 predictions indicating that the method is able to predict more residues with higher accuracy. In addition, the Ca-
RMSD to native is the lowest of all the Model 1 predictions. The Itfix-SPEED prediction for (b) the entire Domain 1 of target

T0405, and (c) the 24-residue insertion in RAPTOR’s predicted template for T0464. (d) Itfix-SPEED selection of the best

template identified by RAPTOR based on average predicted tertiary contacts. Contact map, upper left: ItFix average contacts

for the final structures from 100þ folding trajectories; lower right: contacts of one of RAPTOR’s lower ranked templates,

which is the closer to the native structure than its top ranked template, which has a less similar contact map. Values in

parenthesis are the Ca-RMSD between predictions and the native structure. GDT plots are taken from the CASP8 website

(www.predictioncenter.org/casp8/index.cgi).
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RAPTOR-generated models. These situations have

been treated by breaking the chain at one end of the

insertion and then folding this free end in the con-

text of the entire protein. The most successful out-

come is for a 24-residue insertion for target T0464,

where our prediction ranks as one of the top submis-

sions [Fig. 6(c)].

Discussion
Our computationally rapid algorithm using only sin-

gle (/,w) dihedral angle pivot moves can generate

very accurate predictions of both 2� and 3� struc-

tures without relying on any known structures, tem-

plates, or fragments. For the test set, we typically

predict 2� structure with �90% accuracy, while the

best 3� structure for 4/12 of the targets have Ca-
RMSD less than 2 Å. Hence, given intelligent search

strategies and scoring functions, Cb representations

can be used to accurately predict 2� and 3�

structures.

Structure prediction is beyond current capabil-

ities for the vast majority of the families identified

by large-scale sequencing efforts.4,33 The number of

sequences with minimal sequence similarity to

known structures is increasing at a rate that outpa-

ces our ability to identify new families.4 Currently,

only about one third of the single-domain architec-

tures have known folds.4

Conclusion
The ItFix-SPEED procedure is well suited to contrib-

ute to mapping the protein universe, particularly for

low homology sequences. Because our procedure

uses only MSAs, it can take advantage of the 107

known sequences and is not limited to the �104

unique structures in the PDB. For CASP8 target

T0482, no member of its family had a known struc-

ture, although its fold is not new. The ItFix-SPEED

procedure accurately predicted its structure using

only 50 nonredundant sequence homologues and no

structural information. Furthermore, the ItFix-

SPEED procedure is able to quantify the global and

local accuracy of its prediction from the reproducibil-

ity of the trajectories, a highly desirable feature

from the perspective of users of any sequence data-

base annotation.

Methods

Generation of sequence alignments

Sequence alignments are generated by PSI-BLAST34

using the executables from NCBI on the nonredun-

dant database. An intersequence similarity cutoff of

65% is imposed with CD-HIT.35 PSI-BLAST searches

are performed in three passes with an E-value cutoff

of 1.0. We choose only sequences that cover more

than 90% of the target sequence length and have

gaps that span at most one position. These con-

straints are chosen such that sequences are very

likely to approximate the same structure as the tar-

get. As a result of these constraints, the average E-

value of each sequence in an alignment is orders of

magnitude lower than 1.0.

SPEED sampling

The MSA is used to generate an amino acid substi-

tution matrix at each position in the target

sequence. Any amino acid that occurs in more than

10% of the alignments is included at that position. If

a position only has only one amino acid in its substi-

tution matrix, the amino acid occurrence threshold

is decremented by 1% until there is more than 1

substitution, with the exception of proline, which is

kept as the sole amino acid at a position down to 5%

probability as long as there are no neighboring posi-

tions with prolines that occur at a greater probabil-

ity. If proline is the sole amino acid in the MSA-gen-

erated substitution matrix, we mutate the target

sequence at that position to proline. In all other

cases, the sequence used during folding remains the

same as the target sequence.

We initially tried calculating the SPEED distri-

bution of a position by adding the Rama distribu-

tions at that position for each sequence in the align-

ment. The SPEED distributions created from this

method, however, are more similar to the homology-

free distribution because the target sequence amino

acid often has the highest-probability in the align-

ment and would be weighted proportionately in the

SPEED distribution. Using a substitution matrix,

conversely the other hand, weights all amino acids

above a threshold equally, thereby rendering the

resulting Rama distribution less similar to the

homology-free distribution.

Because the statistics for the distributions con-

structed from an MSA permit many different combi-

nations of amino acids, the area of the Rama map

with vanishing probability tends to be much lower

for the SPEED distribution than previously used

because of the added MSA-identified combinations.

In fact, the average number of angles per position

used to generate a SPEED distribution is three- to

five-fold larger than the number of angles used to

generate a homology-free distribution (Table I). As

seen in Figure 1(b) and the subsequent predictions,

this added diversity does not dilute the specificity of

the conformational search; indeed the distributions

are more native-like.

Ramachandran sampling

Our prior treatment used a sampling of specific u,w
angle pairs from a library generated from high reso-

lution crystal structures, conditional on the 2� struc-

ture and nearest neighbor amino acid identities. The

present study likewise employs a distribution of u,w
angles with the same dependencies, but instead of
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sampling from a large list of angles extracted from

PDB models, the u,w angles are chosen from a

Rama distribution that is generated for each position

based on the amino acid identity and the 2� struc-

ture specification of that position and of its nearest

neighbors. Thus, Rama distributions are calculated

for the central residue in each of the distinct 8000

combinations of three contiguous amino acids, condi-

tional on the amino acid identity and on the 2�

structure of all three residues. Because the ItFix

simulations consider six possible categories of 2�

structure for the construction of the sampling distri-

butions (H: helix, E: strand, C: coil, A: everything,

O: not helix, and Q: not strand), 1,728,000 possible

Rama distributions are constructed to describe the

possible 8000 amino acid triplets. Each Rama distri-

bution has 722 5� � 5� bins, and each bin is assigned

a probability that is determined by frequency of

occurrence of these backbone dihedral angles in the

PDB for the specific conditions of amino acid identi-

ties and 2o structure. A Rama distribution accommo-

dates the increase in PDB-derived angles introduced

by SPEED without increasing the system memory,

as occurs when each angle is explicitly stored in

memory.

The sampling of u,w angles begins by selecting

a bin in Rama space according to the probability

assigned to that bin (e.g., a bin that contains 1.5% of

the angle counts for the distribution at that position

has a 0.015 probability of being selected). This bin

selection is followed by the selection of a random

angle uniformly from within the 5� � 5� window of

that bin. The Rama distribution of the central resi-

due of the triplet INE (position 4 in 1tif) with all

allowed 2� structures is an example of one such sam-

pling distribution [Fig. 1(b), top]. If the subsequent

round of ItFix eliminates a 2� structure option at a

position, the Rama distribution at that position is

changed accordingly [Fig. 1(b), middle, bottom].

Clustering algorithm
After the ItFix protocol generates a predicted 2o

structure, a further 10,000 folding simulations are

run to maximize the exploration of conformational

space. The pairwise Ca-RMSD matrix of the result-

ing 10,000 models is used to cluster the ensemble

into groups of models that all align to each other

below a Ca-RMSD cutoff, an approach that is similar

to the SPICKER algorithm.25 Other methods36 clus-

ter according to the Ca-Ca distance instead of the

pairwise Ca-RMSD, but we find that the Ca-Ca dis-

tances in some cases are highly correlated even

though the Ca-RMSD between the models are quite

different [Fig. 4(b)].

When identifying clusters, the upper limit of the

cutoff distance of the inter-model Ca-RMSD is

increased in increments of 1 Å starting at 1 Å until

at least five clusters are found, or a 7 Å limit is

reached. Every model in the cluster must have a Ca-

RMSD to every other model in the cluster that is

less than the cutoff distance. Targets with predicted

all-a 2� structures have a minimum cluster size of

5%, whereas the minimum size for targets with other

predicted 2� structure types can be as low as 0.04%.

A cluster is eliminated if it contains a model present

in a larger cluster. The largest cluster is selected as

the predicted model, unless it has an above average

energy and there is another cluster with an energy

that is greater than one standard deviation below av-

erage. For ab and b targets, the predicted cluster can-

not consist of a fold that contains a predicted b-strand
that is not part of a b-sheet.

Model refinement

One of the most important challenges of structure

prediction is an effective exploration of conforma-

tional space. Ideally an exhaustive refinement is

performed for every model generated by folding, but

we take a computationally thrifty approach and

refine only the models in the largest cluster of each

target. Refinement consists of the same move set

and energy function as folding, with the addition of

the fact that we reject moves that increase the Rg,

Br, or Ru of the starting model. Each model in the

cluster is refined 100 times, and the model with the

lowest average energy among all the refined models

is chosen at the prediction listed in Table I.

Parallel scripting with swift

The ItFix-SPEED algorithm has been implemented,

tested and evaluated37 using an innovative parallel

scripting language called Swift.38 The Swift runtime

system automates parallelization, data management,

and error recovery, and supports execution on a

wide variety of parallel computer systems. This

allows the composition of flexible structure predic-

tion scripts to address new energy functions and

explore algorithm enhancements, and to compare

the behavior of the algorithm under a wide range of

conditions and parameter settings.
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