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Abstract: Understanding the key factors that influence the interaction preferences of amino acids
in the folding of proteins have remained a challenge. Here we present a knowledge-based

approach for determining the effective interactions between amino acids based on amino acid

type, their secondary structure, and the contact based environment that they find themselves in
the native state structure as measured by their number of neighbors. We find that the optimal

information is approximately encoded in a 60 3 60 matrix describing the 20 types of amino acids in

three distinct secondary structures (helix, beta strand, and loop). We carry out a clustering scheme
to understand the similarity between these interactions and to elucidate a nonredundant set. We

demonstrate that the inferred energy parameters can be used for assessing the fit of a given

sequence into a putative native state structure.

Keywords: scoring matrices; secondary structure and contact based environment; hydrophobicity;

accessible surface area

Introduction
The protein folding problem has remained unsolved

because of the sheer complexity of the system. There

are typically thousands of atoms in a protein mole-

cule. In addition, the solvent molecules play a cru-

cial role in the folding process. A simplifying approx-

imation is to adopt a coarse-grained description of

the protein within which one considers what one

hopes are the essential degrees of freedom. The

degrees of freedom not explicitly considered can be

averaged over yielding effective interactions. The

determination of these interactions is an important

challenge.

In spite of the complexity of a protein, there are

hints of great simplicity. Not only are protein native

state structures built up of the same emergent build-

ing blocks, helices and strands assembled into

almost planar sheets, but also the total number of

distinct folds is only of the order of a few thousand.1

It has been suggested that one can understand the

common features of proteins based on protein struc-

tures occupying a marginally compact phase of mat-

ter.2–4 The key idea is that a chain molecule is

inherently anisotropic and that the interactions

between the constituents of a chain cannot be fully

characterized through pair-wise couplings alone but

rather that the context of the chain constituents

matter. In other words, it does not suffice to merely

specify the distance between pairs of amino acids.

Addition relevant information includes the sequence

separation between the amino acids in contact and

the relative orientations of the Frenet coordinate

systems5 of the tangent-normal–binormal at each of

the two amino acid locations.6

A simple and powerful method of inferring the

relative strength of the pair wise interactions
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between amino acids is the quasi-chemical method.7

This method can be rationalized through information

theory. The method entails taking a training set of pro-

teins with known native state structures and counting

the numbers of different types of pair wise contacts

(e.g., alanine-leucine or valine-tryptophan) among all

the native state structures. These numbers are then

compared with a reference set, which is obtained

through the assumptions of isotropy and independence

in the probabilities of occurrence of individual amino

acids constituting an interacting pair. If the actual

number of contacts exceeds that in the reference set,

the presumption is that the interaction is attractive

and the strength of the interaction is measured by the

degree of excess. Likewise, fewer contacts than in the

reference set indicate a repulsive interaction. In the

simplest scenario, the reference set is obtained by

imagining that the amino acids constituting the pro-

teins in the training set form a random admixture of

amino acids, so that the reference probability of amino

acid X and amino acid Y being in contact is taken to be

simply proportional to the product of the fraction of

amino acid X and the fraction of amino acid Y. Such a

scheme is merely an approximation because neither

the topology of the connectivity is taken into account

nor can the treatment go beyond pair wise interactions

because of poor statistics of many-body interactions.

Yet, the quasi-chemical method provides a rough esti-

mate of the interactions between pairs of amino acids

in the native state structures. Recent work has consid-

ered cooperative models with four body contacts.8,9

Here we extend the application of the quasi-

chemical method to study the influence of two other

key factors that influence the behavior of proteins:

The propensity of specific amino acids to be in sec-

ondary structures (for simplicity, we consider just

three: Helix, strand, and loop) as well as their tend-

ency to avoid contact with water (We use as a simple

surrogate the number of neighbors, defined by some

convenient criterion, of an amino acid in its native

state structure—Amino acids in the core of the

native state structure have more neighbors in the

native state than amino acids at the edge of the

native state conformation; for simplicity, we consider

five distinct classes of neighborhoods.). Given that

there are 20 types of amino acids, we are able to

derive several interaction matrices: 20 � 20 for just

the amino acids, 60 � 60 for the amino acids along

with secondary structure, 100 � 100 for the amino

acids and their contact based propensities, and 300

� 300 for the amino acids with both their secondary

structure as well as contact based propensities. We

analyze these interaction matrices and we test their

efficacy in sequence design by comparing the scores

of randomly generated sequences with the same

composition as the protein sequence within its

native state structure. We also test the performance

of our scoring functions on two different decoy sets.

Our principal finding is that a parsimonious descrip-

tion of the interactions is provided by the 60 � 60

matrix, which encodes information about the second-

ary structure propensity of an amino acid. We carry

out a hierarchical clustering of the interaction ma-

trix and divide up the 60 entities (20 amino acids

each in three secondary structures) into several

groupings, which provide useful biological insights.

We briefly summarize previous work on the devel-

opment of knowledge-based pair-potentials with protein

native state structures as input. One of the very first

attempts was made more than three decades ago10 with

about 25 protein structures. Since then, numerous stud-

ies have been carried out (some of which are summar-

ized in Table I). These studies differ principally in the

way that contacts are defined between the interacting

amino acids, the dataset used and the method of esti-

mation of the scores. These different potentials have

been compared with each other by Pokarowski et al.30

Some of these studies have focused on the statistical

distribution of the number of contacts made by different

amino acids. However, protein structures are more com-

plex and subtle differences from the averages carry

more information about their structure. Specifically, it

has been recognized that understanding the distribu-

tion of amino acids in different contact environments

will provide valuable information.8,9,19 A few other

studies have also considered the environment, two of

which are somewhat similar to the present study.28,29

The methodology used here is different from these ear-

lier studies as are our derived scoring matrices.

The propensity of amino acids in different envi-

ronments in the protein is related to the concept of

hydrophobicity, which was introduced by Kauz-

mann31 and Tanford.32,33 At the basic level, it is a

measure of the free energy of partition of amino

acids in aqueous and nonpolar solvent.10 The scale

has been modified by large number of people34 and

the details of their findings have been reviewed in

several articles.35,36 According to the recent litera-

ture, at least 56 hydrophobicity scales are avail-

able.37 Most commonly, the amino acid hydrophobic-

ity scales are derived based on the propensity of

amino acids to be buried in the protein environment

or exposed to the aqueous medium. The solvent ac-

cessible area and number of contacts made by amino

acids in proteins are used to measure the protein

environment.38–42 Hydrophobicity scales are derived

based on the average value obtained for a given

amino acid. However, a key difficulty arises because

proteins do not provide a uniform environment as in

the case of liquids, and hence, an accurate estima-

tion of the free energy of partitioning cannot be

made. Here we revisit hydrophobicity in a simplified

manner based on the amino acid propensity prefer-

ences in different environments. As stated before,

we have also considered secondary structure propen-

sity of the amino acids making contacts and find
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that the performance of the resulting 60 � 60 matrix

is comparable with the 100 � 100 contact based scor-

ing matrix in capturing the effective interactions.

Results

Analysis based on CaACa based contacts

Contact based environment. The amino acids in

the protein structure are divided into different

groups depending on the number of connections

(degree) they make. (The results are presented for

CaACa connections, unless otherwise specified.).

Note that the coarse-grained representation used

here is an approximation which yields an effective

scoring matrix for the degrees of freedom considered

here, that is, the Ca atoms of the amino acids. The

degree varies from 1 to 11. However, the interactions

between residues of very high and very low degree

are rare. As discussed in the Methods section, we

have five categories of environments based on the

Table I. Different Potential Energy Matrices

S. No. Potential Matrices Method Comments

1 TS (Tanaka and Scheraga)10 Distance less than sum of
van der waals radii

Oldest statistical
potential, 25 proteins

2 RO (Robson and Osguthorpe)11 Included van der Waals,
electrostatic, hydrogen
bonding, and solvent-
dependent interactions

25 proteins

3 MC (Maiorov and Crippen)12 Backbone–backbone contact
if d(0, N) < 32 Å and d(C,
N) > 3.9 Å; a backbone
sidechain contact if d(N or
O, CB) < 5.0 Å and no
other atom between the
interacting pair closer
than 1.4 Å to the line
segment joining them; and
a sidechain–sidechain
contact if d(Cb, Cb) < 9 Å

73 proteins

3 BL (Bryant and Lawrence)13 At various distances in
0–10 Å

161proteins

4 TD (Thomas and Dill)14 Contacts between backbone
and Cb atoms at 5–9 Å

73 proteins, based on MC

5 MS (Mirny and Shakhnovich)15 Heavy atoms in 4.5 Å 104 proteins
6 VD (Vendruscolo and Domany)16 Ca atoms in 8.5 Å,

optimization based of
perceptron criteria

Based on Ref. 12

7 BFKV17 Heavy atoms in 4.5 Å 1169 proteins
8 MJ (Miyazawa and Jernigan)7 Ca atoms in 6.5 Å 42 proteins
9 MJ (Miyazawa and Jernigan)18 Modified with new dataset 1198 proteins
10 MJ (Miyazawa and Jernigan)19 Approximation of

equilibrium mixtures of
residues with Bethe
approximation

11 DT (Krishnamoorthy and Tropsha)9 Four body statistical
potential

Two datasets (1563 and 1167 chains)

12 Feng et al.8 Four body contact potential
from reduced amino acids
alphabet

Two datasets (774 and 513 chains)

13 BT (Betancourt and Thirumalai)20 Rescaled MJ matrix
14 HL (Hinds and Levitt)21 Atom–atom contact in 4.5 Å 246 proteins
15 GKS (Godzik et al.)22 Atom–atom contact in 4.5 Å 381 proteins
16 TE (Tobi et al.)23 Matrices for different

distance cut-offs (2–9)
572 proteins

17 MSBM (Micheletti et al.)24 Ca atoms in 6.5 Å,
Optimization based

18 OPUS-Ca (Wu et al.)25 Distance dependent pairwise
energy with orientational
preference

19 Baker and coworkers26,27 Used in Rosetta
20 Bolser et al.28 Distance between Ca and Cb

atoms at different cutoff
Matrix based on degree

21 Zhang and Kim29 Centroids of amino acids in
6.5 Å

Secondary structure based
energy matrix
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degree. The environments with lower degree are

exposed and the environments with higher degrees

are buried.

Distribution of amino acids in different con-

tact based environments. The plots of the dis-

tribution of amino acid contacts in different environ-

ments (five figures for five different environments)

are shown in Supporting Information Figure S1. The

distribution of contacts in different environments is

different. For example, amino acids in environment

I have roughly the same propensity for making con-

tacts with all amino acids from different environ-

ments, whereas buried amino acids tend to have

contacts principally with other buried amino acids.

Surprisingly, the pattern is independent from the

size and type of amino acids. The total number of

contacts is more for more buried amino acids.

Scoring matrix. The amino acids have been di-

vided into five different environments, and hence,

the size of the contact matrix is 100 � 100. It is a

symmetric matrix so the total number of unique ele-

ments is 5050. Thus, each element of the matrix

gives the number of contacts made by a specific

amino acid in a particular environment, with

another specific amino acid in one of the five envi-

ronments. These numbers are converted into scores

following the procedure outlined in the Methods sec-

tion. The scores range from �2.737 to þ2.333. The

scoring matrix is given in the Supporting Informa-

tion Table T1. The values are also presented in pic-

torial form in Figure 1. The matrix elements are or-

dered in such a way that first 5 entries are for L

(leucine) (i.e., L1, L2, L3, L4, and L5), the next five

entries are for F, and so on. For example, the matrix

element M (12, 24) gives the score between amino

acid I (ile) in environment 2 making contact with

amino acid V (val) in environment 4. The color code

ranges from blue to red, with the blue and red repre-

senting the most negative (attractive) and the most

positive (repulsive) values, respectively. Surprisingly,

an amino acid in one environment has approxi-

mately the same color (with some exceptions) for its

score with all amino acids in different environment.

For example, boxes in the row for L in environment

5 are mostly cyan in color. The boxes representing

the scores for Cys–Cys from different environments

are all in blue, that is, these pairs are energetically

most favorable, irrespective of the environment. The

least stable pairs are in dark red colors, for example,

C (cys) in environment I with Y (tyr) in environment

III. The main points to notice are: (1) The same

amino acid, pairing with other amino acids, shows

different environment dependent scores; (2) the

hydrophobic amino acids show more positive values

in environments with low degree and more negative

values in environments with high degree, and the

trend is reversed for polar and charged amino acids;

(3) although the scores of amino acids in one envi-

ronment are approximately the same for the interac-

tions with all amino acids in different environments,

there are variations in the values, justifying the

need for a 100 � 100 scoring matrix.

Secondary structure based environment. The

secondary structures of all the amino acids in the

protein dataset have been identified (described in

Methods) and divided into three different groups.

Distribution of amino acids in different sec-
ondary structural environments. The contacts

between amino acids from different secondary struc-

tures are shown in Figure 2. Generically, the amino

acids in one secondary structure prefer to make con-

tacts with the same type of secondary structure in

proteins. The probability of contact of amino acids

from the same type of secondary structures is higher

in the case of helix and sheet, whereas for residues

in the loop structure, the interacting residues are

distributed in all types of secondary structures.

Amino acids L, A, E, V, I, R, and K make more con-

tacts within helices and V, L, I, A, T, and F dominate

in beta-sheets. G, P A, S, and D amino acids favor

contacts within loop.

Scoring matrix. The scoring matrix of size 60 �
60 is based on three secondary structure groups of

20 amino acids. The matrix has 1830 unique ele-

ments due to symmetry. The scoring matrix is given

in Supporting Information Table T2 and the values

are presented in a pictorial form in Supporting

Figure 1. A pictorial representation of the environment

based scoring matrix. The blue color is for the most

negative score (the most attractive) and the red is for the

highest positive value (the most repulsive). The range of

scores (�2.737 to þ2.333) has been divided into 10 equal

intervals and are represented by different colors decreasing

from blue to red. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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Information Figure S2. The scores are in the range

of �2.978 to þ2.538. The order of amino acids along

the matrix in the table and in the figure is the same

as in the case of the contact based environment. The

matrix element M (22, 33), for example, is the score

between the pair of Y (tyr) in helix with T (thr) in

loop. Here also the blue and the red colors indicate

the most negative (attractive) and the most positive

(repulsive) scores. Again, the Cys–Cys pairs are the

most favorable ones irrespective of the secondary

structure. The least favorable pairs are prolines in

helices, prolines in sheets, Glu (E) in sheet contact-

ing with His (H), or Phe (F) in helix. The scores indi-

cate a preference for the hydrophobic residues to be

in a helix or sheet environment compared with their

presence in the loop environment. The polar–polar

interactions are by and large less favorable in most

environments. The helix–helix and sheet–sheet con-

tacts are more favorable than the other type of inter-

actions. A similar result has also been observed by

Zhang and Kim.29

Contact based hydrophobicity. We have shown

that the tendency for amino acids to make contact

with other amino acids depends sensitively on their

preferred environment. Some of the amino acids (L,

F, I, M, V, W, C, Y, and A) make more contacts with

degrees 5–8, whereas others make preferential con-

tacts in a lower environment. This tendency has

been observed in CaACa based contacts as well as

for all atom–atom based contacts. This is related to

the hydrophobicity of amino acids. However, our

results show that this tendency is dependent on the

environment and it leads to variations in the hydro-

phobicity values as a function of contact based envi-

ronment. Thus, a set of hydrophobicity values can be

given for each environment rather than as an aver-

age value and we call this contact based environ-

mental hydrophobicity. We calculate the modification

factor (FA�x) from the distribution of amino acid con-

tacts in different environments as follows:

FA�x ¼ nA�x

nA

� �
� nx

N

� �
(1)

where nA�x ¼ number of amino acid A in environ-

ment x, nA ¼ total number of amino acid A, nx ¼
total number of amino acids in environment x, and

N ¼ total number of contacts.

A plot of FA�x value for each of the 20 amino

acid in five environments is presented in Figure 3.

The base line (with value of zero) in the figure rep-

resents the average (from all the environments) dis-

tribution of contacts for a given amino acid. The neg-

ative and the positive values represent the decrease

and the increase of the contact from the average

value in a given contact based environment.

As expected, the factor FA�x is positive in envi-

ronments of higher degrees and negative in lower

degrees for hydrophobic amino acids, and the

reverse trend is seen for polar and charged amino

acids. However, it is worth noting that the variations

are not uniform for different amino acids. For

instance, the hydrophobic amino acid valine shows

the highest positive value (þ0.0902) and tryptophan

shows a lower value (þ0.0191) in environment V.

Similarly, in the case of charged and polar amino

acids, glutamic acid shows the highest (�0.1037)

Figure 2. Distribution of the number of contacts between one amino acid and other amino acids in their respective

secondary structural environment. Three bars are shown for each amino acid, representing the interaction of other amino

acids in helix, beta sheet, and loop environments. (a), (b), and (c) are the plots corresponding to the selected residues in helix,

beta-sheet, and loop environment, respectively. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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and arginine has the lowest (�0.0402) negative

value. Also, the residues like threonine, glycine, and

proline follow their own patterns. Thus, the modifi-

cation factor FA�x, (for amino acid A and environ-

ment x) reflects the contact propensity variations

and it can be used to obtain the hydrophobicity

value of amino acids in different environments,

which can be defined as:

HA�x ¼ hAð1þ FA�xÞ (2)

where HA�x ¼ modified hydophobicity for amino acid

A in environment x, FA�x ¼ modification factor for

amino acid A in environment x, and hA ¼ hydropho-

bicity value for amino acid A from any known hydro-

phobicity scale.

As an illustration, we have used the hydropho-

bicity scale given by Tanford and later modified by

Jones43 and the values are given in Table II.

The hydrophobicity values presented in this ta-

ble are centered on the input value and are different

in different environments. Furthermore, the values

for hydrophobic residues are least in the lower envi-

ronment and maximum in the environments IV or V.

A reverse trend is seen for the polar and charged

amino acids. However, in the case of histidine and

arginine, the highest value is not in the lowest envi-

ronment. Because of this sensitivity to the

Figure 3. A plot of the modification factor FA�x (on Y-axis) of 20 amino acids in five different environments. The values are

relative to the average and so a more negative value indicates that it is less favored than the other environments and vice

versa. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Table II. Environment Dependent Hydrophobicity for All Amino Acids

S. No. AA

Environment Dependent Hydrophobicity*

Hydrophobicity (h)I II III IV V

1 L 2.080 2.220 2.316 2.398 2.337 2.27
2 F 2.799 2.919 3.048 3.049 3.037 2.97
3 I 2.971 3.166 3.287 3.409 3.416 3.25
4 M 1.468 1.705 1.773 1.848 1.876 1.77
5 V 1.796 1.915 1.985 2.006 2.148 1.97
6 W 3.662 3.812 3.946 3.985 3.943 3.87
7 C 1.405 1.521 1.613 1.606 1.955 1.62
8 Y 2.596 2.718 2.818 2.840 2.878 2.77
9 H 0.973 0.985 0.988 0.967 0.937 0.97
10 A 0.890 0.932 0.946 0.971 1.112 0.97
11 T 0.173 0.172 0.169 0.167 0.168 0.17
12 G 0.213 0.199 0.200 0.188 0.204 0.20
13 P 3.427 2.994 2.836 2.605 2.487 2.87
14 R 0.955 0.961 0.955 0.967 0.912 0.95
15 Q 0.101 0.102 0.101 0.102 0.094 0.10
16 S 0.178 0.172 0.167 0.163 0.170 0.17
17 N 0.202 0.194 0.190 0.185 0.180 0.19
18 E 1.715 1.688 1.617 1.627 1.452 1.62
19 D 0.842 0.781 0.753 0.739 0.684 0.76
20 K 1.847 1.788 1.746 1.741 1.578 1.74

* Bold numbers are highest and italic bold numbers are lowest among different environments for an amino acid.
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environment, we have referred to this as contact

based environmental hydrophobicity.

Environment based solvent accessible surface

area. The degree of the amino acid is inversely

correlated to the solvent accessible surface area

(ASA), because the lower contact residues are

exposed to the solvent and the higher contact resi-

dues are buried in the interior of the protein. Sev-

eral hydrophobicity scales are derived on the basis

of ASA and recently more than 50 scales37 have

been compared with the ASA derived hydrophobicity.

Here again, we would like to point out that the

hydrophobicity derived from average ASA is only ap-

proximate and perhaps this is the reason that there

was no good correlation (highest correlation coeffi-

cient was 0.40) between the ASA derived and other

hydrophobicity scales.37 We suggest that as in the

case of contact environments, the ASA of each amino

acid be divided into different classes (as given in

Table III) and that the propensity of amino acids in

different ASA ranges be evaluated.

The hydrophobicity modification factor, which

was evaluated using Eq. (4), is used in this case also

and the results are presented in Figure 4. Qualita-

tively, we see the same features as was observed in

the contact based environment. Interestingly, the

correlation coefficient between the modification fac-

tor from ASA and degree based analysis is 0.8.

Thus, the contact based environment dependent

hydrophobicity is a reasonable measure of the amino

acid properties in proteins.

Evaluation of scoring matrices

Comparison with random sequences. We

have considered 10 proteins [ribonuclease A (7RSA),

hydrolase (1OD3), Bacillus subtilis LuxS (1J98), T4-

lysozyme (1LYD), Bacillus stearothermophilus ade-

nylate kinase (1ZIP), triosephosphate isomerase

(5TIM), tryptophanyl-trna synthetase (1I6M),

exchange factor (1R8M), mesophile reductase

(1LVL), and theromophile reductase (1EBD)] with

different native state structures and sizes from the

Protein Data Bank44 to test our four scoring matri-

ces and to compare with the frequently used 20 � 20

scoring matrix (MJ).18 A set of 10,000 random

sequences with the same amino acid composition as

that of the native sequence was generated for all 10

proteins and the scores were calculated for all these

sequences by using MJ and our scoring matrices.

The summary of the scores of native and random

sequences is presented in Table IV.

The best score among the random sequences,

which is better than the score of the native

sequence, is indicated in italics. There are 6, 5, 2,

and 1 cases (out of 10) with the MJ matrix, our 20 �

Table III. Solvent Accessible Surface Area (ASA) Based Classification of Amino Acids in Proteins

Environment ASA Range (Å2) Type of Amino Acids No. of Amino Acids

I >50.0 Completely Exposed 144,979
II >30.0 � 50.0 Exposed 111,384
III >14.0 � 30.0 Intermediate 106,594
IV >2.5 � 14.0 Partially Buried 125,173
V �2.5 Totally Buried 143,763

Figure 4. Modification factor (on Y-axis) for all 20 amino acids in five ASA based environments. [Color figure can be viewed

in the online issue, which is available at www.interscience.wiley.com.]
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20 matrix, the environment dependent 100 � 100

matrix, and the secondary structure dependent 60 �
60 matrix, respectively, in which the best score

among the random sequences is better than that of

the native sequence. Interestingly, the score of the

native sequences is better than the random sequen-

ces in all the 10 proteins with the 300 � 300 scoring

matrix. Thus, the 60 � 60 scoring matrix turns out

to be the most parsimonious and effective descrip-

tion of the scoring matrix.

The analysis of these scoring matrices in terms

of z-score has been presented in Table V. The z-score

has been defined as:

z ¼ lrand � En

rrand
(3)

where En ¼ score of native protein sequence, lrand ¼
mean of the scores of random sequences, and rrand

¼ standard deviation of the scores of random

sequences.

The secondary structure based scoring matrix

yields a higher z-score than the MJ, 20 � 20 and

100 � 100 and a roughly comparable performance

with the 300 � 300 scoring matrix.

Comparison with decoy structures. In princi-

ple, one would like to choose a potential function,

which unambiguously identifies the native state struc-

ture as the lowest energy state among all the decoys.

Note that our analysis, like many other studies, is

entirely based on just the sequences and the native

state structures of the proteins in the learning set.

Unlike other more complicated methods, several stud-

ies, including our own, do not consider an exploration of

structure space as determining the scoring function.

The performance of these scoring functions in structure

space is thus a more stringent test, which folds in the

quality and the realism of the decoy structures. In addi-

tion to exploring the rank of the native state structure

within the decoy set, one can also use the so-called Z-

score for an evaluation of the scoring function. The Z-

score, as defined in Eq. (3), is a measure of how much

lower in energy the sequence is in the native state

structure compared with the mean energy in the decoy

structures measured in units of the standard deviation

of the energies in the decoy structures. This parameter

can be related to the funnel-like characteristics of the

free energy landscape45—The higher the Z-score, the

better the folding. Here we have performed preliminary

Table IV. Scores of Native and Energetically Best Random Sequence for Ten Different Proteins Calculated From
Five Different Scoring Matrices

S. No.
PDB (No. of
Residues)

MJ Native
(Best of Random)

20 � 20a Native
(Best of Random)

60 � 60b Native
(Best of Random)

100 � 100c

Native
(Best of Random)

300 � 300d Native
(Best of Random)

1 7RSA (124) �816.02 (�798.75) �15.60 (�14.90) �61.38 (�33.98) �35.74 (�29.30) �58.32 (�14.17)
2 1OD3 (131) �1010.73 (�1027.94) �9.37 (�10.14) �67.11 (�65.71) �26.32 (�30.88) �58.97 (�54.19)
3 1J98 (153) �1187.00 (�1227.20) �2.91 (�5.30) �25.05 (�43.52) �26.66 (�26.08) �65.98 (�11.30)
4 1LYD (164) �1331.50 (�1376.75) �6.56 (�10.95) �49.73 (�35.85) �32.13 (�40.48) �56.04 (�35.85)
5 1R8M (195) �1606.68 (�1661.40) 1.82 (0.26) �24.80 (�20.19) �56.84 (�42.28) �72.58 (�25.98)
6 1ZIP (217) �1824.61 (�1835.77) �7.99 (�8.12) �117.49 (�36.04) �62.39 (�38.45) �152.35 (�8.98)
7 5TIM (249) �2017.69 (�1991.50) �32.43 (�25.46) �120.02 (�44.26) �90.90 (�51.32) �139.20 (þ8.28)
8 1I6M (326) �2752.46 (�2771.34) �13.22 (�5.89) �74.90 (�22.29) �96.17 (�34.39) �113.20 (þ27.30)
9 1LVL (458) �3838.06 (�3826.37) �55.40 (�42.77) �197.68 (�23.49) �114.11 (�57.18) �214.59 (þ62.18)
10 1EBD (951) �7945.87 (�7797.99) �104.44 (�46.70) �383.91 (þ62.50) �304.19 (�32.54) �491.93 (þ327.85)

a Score calculated from 20 � 20 scoring matrix.
b Score calculated by using secondary structure based scoring matrix.
c Score obtained from environment based scoring matrix.
d Score calculated by using scoring matrix which uses the information about the secondary structure and environment of
the contacting amino acids.

Table V. Z-Score from 5 Different Scoring Matrices for Selected Proteins

S. No. PDB MJ 20 � 20 60 � 60 100 � 100 300 � 300

1 7RSA 2.17 1.84 2.54 1.92 2.34
2 1OD3 3.54 3.79 3.82 3.08 3.73
3 1J98 3.43 3.08 3.44 3.35 5.10
4 1LYD 0.88 1.16 2.10 1.53 2.06
5 1R8M 2.28 3.43 3.10 4.89 4.98
6 1ZIP 1.56 1.65 3.15 2.18 3.21
7 5TIM 2.10 2.47 3.09 2.50 3.46
8 1I6m 1.52 2.41 2.62 2.65 3.17
9 1LVL 3.97 5.99 8.05 5.18 8.39
10 1EBD 6.32 10.57 11.60 9.09 13.07
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testing of our scoring functions on two sets of

decoys,46,47 with 12 proteins taken from each set (see

Table VI). Our scoring functions do moderately well in

predicting the native state structure as being in the top

50% among the decoys in some cases, within the top

10% in others, and as the very best in a few cases. The

Z-scores show a similar quality trend. Our analysis reit-

erates the point48,49 that the performance in such tests

is not only a function of the scoring function but also

depends substantially on the decoy set, for instance the

method of decoy generation, the quality and fidelity of

the decoys, as well as the length of the protein.

Clustering of 60 flavors. The 60 different flavors

of 20 amino acids in three different secondary

Table VI. Z-Scorea for the Decoy Sets

S. No. PDB Sequence length 60 � 60 100 � 100 300 � 300

(a) Decoy setsb from Andrej Sali
1 1onc 101 1.54 1.19 1.12
2 1cew 108 1.76 1.47 1.91
3 1cid 109 2.05 2.82 0.94
4 1c2r 115 2.38 1.80 1.96
5 1bbh 127 1.15 0.62 0.72
6 1mdc 130 1.25 1.39 1.01
7 1dxt 143 �0.30 2.12 1.74
8 1cau 178 1.92 1.27 1.90
9 1gky 186 2.40 2.71 2.44
10 1eaf 201 1.86 1.89 1.98
11 1lga 279 1.06 2.44 1.07
12 2afn 289 1.23 3.08 1.65

Average 1.53 1.90 1.54

(b) Decoy setsc from Rosetta
1 1ksr 100 2.98 1.15 2.53
2 1kte 100 3.93 �0.33 2.05
3 1ag2 103 �0.26 1.80 1.42
4 1aa2 105 2.10 0.27 2.32
5 1erv 105 3.35 1.36 2.45
6 1lis 111 �0.19 2.01 2.36
7 1pd0 121 3.90 1.53 3.24
8 4fgf 121 0.14 3.09 1.07
9 1acf 123 1.24 3.39 1.49
10 1hlb 138 1.10 1.30 1.42
11 1mbd 147 0.10 2.95 3.01
12 2gdm 149 0.35 2.06 2.37

Average 1.56 1.72 2.14

a Here the values in bold indicate that the native state structure is the best, bold and italics means that the native state
structure is among the top 10% of decoy structures, whereas italic refer to those which have a z-score less than 1.
b Each set has 1000 model structures.
c Each set has 300 model structures.

Table VII. Groups of Amino Acids in Different Secondary Structures

S. No. Groups Remarks

1 [Lh Qh Mh Eh Wh] Bigger amino acids in helices
2 [Hh Th Nh Sh Dh] Polar/charged and smaller residues in helices
3 [Fh Yh Rh Kh Ih Vh] Aromatic, positively charge, and bigger residues in helices
4 [Gh Ph] Helix breaker
5 [Rs Qs Ks] Contains positively charged residues in sheets
6 [Es Ds] Negatively charged residues in sheets
7 [Ls Ms Hs]
8 [As Gs] Small residues in sheets
9 [Fs Ys Is Ws Pl] Contains aromatic residues in sheets

(with exception of proline in loops)
10 [Hl Tl Sl Nl Dl Ts] Contains polar/charges residues in loops
11 [Fl Yl Al Wl Rl Ql Kl Ml Ss] Contains aromatic and positively charges residues in loops
12 [Ll Il Vl El Ns] Contains hydrophobic residues in loops
13 [Vs Gl Ah Cs]
14 [Cl]
15 [Ch]
16 [Ps]
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structural types have been grouped into 16 clusters,

which exhibit biologically sensible characteristics

(shown in Table VII). In general, the clusters typi-

cally comprise amino acids from the same secondary

structural environment (with a few exceptions). For

example, F, Y, R, K, I, and V in a helical environ-

ment form a cluster. It is interesting to note that the

grouping of residues is clearly based on their second-

ary structural environment. It emphasizes the fact

that the behavior of a given amino acid is dictated

by its presence in a given secondary structural envi-

ronment. It also indicates that the ‘‘distance’’

between amino acids from different secondary struc-

tures is greater than the ‘‘distance’’ between amino

acids in same secondary structural environment.

Discussion

The interaction preferences of amino acids in folded

proteins have been investigated for several decades

using knowledge based approaches. As the number

of accurately known structures has increased, so

also has the quality of the measurement of the pro-

pensity of amino acids to make contacts with each

other. There are distinct regions of the protein

native state structure such as the type of secondary

structure or whether the amino acid is in the hydro-

phobic core or in the periphery of the native state

structure. One would expect that the environments

of the amino acids making contact ought to matter.

Our main result is the incorporation of such envi-

ronmental factors into the scoring matrix for amino

acid interactions using the simple, albeit approxi-

mate, quasi-chemical approach.

The basic input for our calculations is knowl-

edge of the amino acid composition of all the pro-

teins in the training set (in order to define a refer-

ence system based on invoking random contacts

between amino acids taking into account their con-

centration) along with a count of the actual numbers

of distinct types of contacts (in order to compare

with the numbers in the reference system). The

amino acid composition is determined straightfor-

wardly and objectively. The actual numbers of con-

tacts, however, depend on one’s definition of when a

contact is made. Here we consider two distinct defi-

nitions of a contact, one based on the distance

between alpha-carbon atoms and the second based

on checking whether there is at least a single pair of

atoms, one from each amino acid, within a certain

threshold distance. The results described in the

main text rely on the first method and a detailed

comparison of the results obtained using the two

definitions of contacts is presented as Supporting In-

formation. The number of amino acids with a high

coordination number is larger in the atom–atom con-

tact definition than for the CaACa based contacts

and the distribution of contacts are quite different in

the two cases. Yet, there are qualitative similarities

in the scoring matrix for the two cases.

Generically, we replace the 20 distinct amino

acids by a larger number of flavors: 60 correspond-

ing to the 20 amino acids in three distinct secondary

structures, 100 corresponding to the 20 amino acids

in five distinct contact based environments, and 300

corresponding to 20 amino acids in three secondary

structures and five contact based environments. The

issue is whether the cost of introducing more flavors

(and more scores) is offset by a gain of a refinement

in the determination of the propensities of the fla-

vors to be in contact with each other. Another ques-

tion is the relative importance of the secondary

structures or the contact based environment in

encoding a useful score. We find that a 20 � 20 scor-

ing matrix may not be detailed enough to effectively

capture the complete picture of amino acid place-

ment within the native state structure. Using a test

based on the scores of randomly shuffled sequences

of ten proteins, the 60 flavor scheme of the amino

acids in three distinct secondary structures is found

to be the most effective and parsimonious descrip-

tion for modeling and structure prediction.

We have revisited the definition of hydrophobic-

ity based on our analysis of the contact based envi-

ronment (the 100 flavors case). Conventionally, the

scale is defined based on an amino acid preference

to be buried in the interior of the protein or exposed

to the solvent. Here we find that this preference, for

any given amino acid, is a sensitive function of the

contact environment it is in. We argue that it is

more meaningful to define an environment depend-

ent hydrophobicity scale. It is well-known that the

ASA of an amino acid can also be associated with

the concept of hydrophobicity. However, there is a

poor correlation between ASA and the hydrophobic-

ity evaluation from different methods.37 Interest-

ingly, we find that the ASA evaluated as a function

of the contact environment correlates well with the

contact based hydrophobicity values. Thus, a contact

based definition of hydrophobicity may prove to be

useful in the design of better sequences for a given

structure,50 in the selection of ligands for docking,

and for other modeling studies.

As more and more sequences of proteins are

being determined, there is a drive to predict the

structure of these sequences using homology model-

ing, threading, and ab initio structure prediction

methods. All of these methods rely on accurate scor-

ing functions. Although the scoring functions devel-

oped here may be directly useful in certain situa-

tions when the parameterization used here is used,

more generally, the lessons learned from our studies

ought to be useful for deducing increasingly accurate

scoring functions. Progress along these lines would

have applications in structure prediction and

sequence design.
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Methods

Dataset
We have curated the dataset of 1654 proteins from

the PISCES server51 and obtained structural infor-

mation from the PDB44 with the following

constraints:

a. Only globular proteins.

b. minimum sequence length is 80.

c. Sequence identity is less than 15%.

d. X-ray structures with resolution better than 1.8 Å.

e. R factor better than 0.3.

The data set has been further manually ana-

lyzed to remove membrane related proteins and pro-

teins with several model structures and multiple

occupancies.

Connectivity matrix

We have considered two different measures of

connectivity:

Based on CaACa distance. Adjacency matrices

have been generated for each protein based on the

distance cut-off of 6.5 Å between CaACa atoms of

amino acids with the exclusion of nearest neighbors

along the sequence. The adjacency matrix is:

Aij ¼ 1 fif d ðCa��CaÞ � 6:5Åg
¼ 0 fotherwiseg:

Atom–atom contact between two residues. Here

residues i and j are considered to be in contact if

any atom (hydrogen atoms have not been included)

of the residue i is within a distance of 4.5 Å52 with

any atom of the residue j. Nearest neighbors (i 6 2)

along the sequence are not considered. The elements

of this matrix are:

Aij ¼ 1 fif distance between any two atom

of amino acids � 4:5Åg
¼ 0 fotherwiseg:

Amino acid composition

The sequences of all the proteins in the dataset were

extracted and the amino acid composition of the

entire dataset is given in Table VIII.

Degree (number of connections)
We have calculated the number of contacts made by

each amino acid in all the proteins and define it as

the degree of the given amino acid. The maximum

degree obtained in the whole dataset is 21 and 34

for (CaACa) and all atom–atom contacts, respec-

tively. Based on the degree, we have categorized the

contact based environment into five classes:

Environment I ¼ Degree (1 þ 2 þ 3),

Environment II ¼ Degree 4,

Environment III ¼ Degree 5,

Environment IV ¼ Degree 6, and

Environment V ¼ Degree 7 and higher.

Such a classification is necessary because the

number of contacts in certain degree-pairs (e.g.,

degree 1–degree 11 pair) is negligibly small. This

categorization also helps reduce the size of the scor-

ing matrix between amino acids from different envi-

ronments to 100 � 100.

Secondary structure determination

The program DSSP53 has been used to identify the

secondary structure of each residue in the proteins

of the dataset.

Seven classes of secondary structures given in

DSSP have been merged into three basic types (he-

lix, sheet, and loops) as:

a. Helix (H)–H, G, and I,

b. sheet (S)–E,

c. loop (L)–B, T, and S.

The amino acid distribution in these three dif-

ferent secondary structures is shown in Table IX.

Solvent accessible surface area

The solvent ASA of each amino acid in the dataset

was computed by using the program NACCESS,54

which is an implementation of the Lee and Richards

Table VIII. Amino Acid Composition

S. No. AA

Composition

In Number (%)

1 L 58,290 (9.27)
2 F 25,214 (4.00)
3 I 36,132 (5.75)
4 M 11,260 (1.78)
5 V 45,703 (7.26)
6 W 9280 (1.47)
7 C 8224 (1.31)
8 Y 22,236 (3.53)
9 H 14,854 (2.34)
10 A 53,204 (8.43)
11 T 34,323 (5.43)
12 G 47,105 (7.45)
13 P 29,246 (4.57)
14 R 32,583 (5.16)
15 Q 23,739 (3.76)
16 S 36,842 (5.81)
17 N 27,019 (4.28)
18 E 43,366 (6.84)
19 D 37,157 (5.86)
20 K 36,119 (5.70)
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algorithm.55 The absolute (ABS) value of ASA for all

atoms has been chosen for the contact based envi-

ronment based analysis in our study.

Contact based scoring matrices

A total of eight different scoring matrices have been

generated, four are based on (CaACa) contacts and

the other four are the corresponding ones based on all

atom–atom contacts. Operationally, we add the 1654

adjacency matrices from the dataset to get a single

symmetric matrix giving information about the num-

ber of contacts between amino acids in a given cate-

gory (secondary structure or contact based environ-

ment or both). We will denote an amino acid in a

specific state generically as a flavor. Thus, we deal

with 20 flavors or 60 flavors or 100 flavors or 300 fla-

vors depending on whether we are dealing with the

20 amino acids, the amino acids in a specific second-

ary structure, the amino acid in a specific contact

based environment or an amino acid in a specific sec-

ondary structure, and contact based environment.

Scoring matrix of size 20 � 20. The interaction

score between amino acid pairs has been calculated

as follows:

Mði; jÞ ¼ � ln
nA�B

g� sA
S

� �� sB
S

� ��N

" #
(4)

where nA�B ¼ number of contacts between amino

acid A and amino acid B, N ¼ total number of con-

tacts in dataset, sA
S

� � ¼ fraction of amino acid A in

dataset, sB
S

� � ¼ fraction of amino acid B in dataset, g

¼ 1 when the amino acids in contact are the same,

and g ¼ 2 otherwise.

The combinatorial factor of g is introduced

because when the amino acids in contact are the

same, there is exactly one way of picking the pair,

whereas when the amino acids are different, there

are two distinct ways in which they could arise, for

example, (alanine and leucine) and (leucine and ala-

nine). Similar g factors are introduced in the calcu-

lations of the scoring matrices later.

Scoring matrix of size 60 � 60. A 60 � 60 scor-

ing matrix has been generated for the 60 flavors

case by using the secondary structural information

(obtained from DSSP) of all the 20 amino acids. The

matrix elements are a measure of the interaction

between the 60 flavors. For example, the matrix ele-

ment M (5, 10) yields the score for the contact

between amino acid F (phe) in sheet and amino acid

M (met) in helix. The score matrix element is:

Mði; jÞ ¼ � ln
nA1�B2

g1 � sA
S

� �� sB
S

� �� f1
F

� �
� f2

F

� �
�N

2
4

3
5

¼ � ln
nA1�B2

g2 � sA
S

� �� sB
S

� �� ðE1�2Þ

" #
ð5Þ

where nA1�B2 ¼ number of contacts between amino
acid A in secondary structure 1 and amino acid B in
secondary structure 2, sA

S

� � ¼ fraction of amino

acid A in dataset, sB
S

� � ¼ fraction of amino acid B in

dataset, f1
F

� �
¼ fraction of amino acids in secondary

structure 1 in dataset, f2
F

� �
¼ fraction of amino

acids in secondary structure 2 in dataset,

E1�2 ¼ f1
F

� �
� f2

F

� �
�N ¼ number of contacts between

secondary structure 1 and secondary structure 2, S

¼ F ¼ total number of amino acid in dataset, and g1
¼ 1 for all diagonal elements and g1 ¼ 2, otherwise

g2 ¼ 2 when the contacting pair are comprised of dif-

ferent amino acids in the same environment and g2
¼1 otherwise.

Scoring matrix of size 100 � 100. A 100 � 100

connectivity matrix was created by considering each

of the 20 amino acids in five different contact based

environments leading to 100 flavors.

The matrix element:

m(i, j) ¼ number of contacts between amino acid A

in environment x and amino acidB in environment y.

The interactions score between amino acid A in

environment xwith amino acid B in environment y is:

Mði; jÞ ¼ � ln
nAx�By

g� sA
S

� �� sB
S

� �� ðEx�yÞ

" #
(6)

where nAx�By ¼ number of contacts between amino

acid A in environment x and amino acid B in envi-

ronment y, sA
S

� � ¼ fraction of amino acid A in dataset,
sB
S

� � ¼ fraction of amino acid B in dataset, Ex�y ¼
number of contacts between environments x and y, S

Table IX. Amino Acid Distribution in Different
Secondary Structures

S. No. AA Helix Sheet Loop

1 L 27,034 14,710 16,546
2 F 8779 8077 8358
3 I 13,043 13,850 9239
4 M 4804 2643 3813
5 V 14,552 19,064 12,087
6 W 3651 2690 2939
7 C 2449 2346 3429
8 Y 7970 6976 7290
9 H 4924 3350 6580
10 A 27,054 9098 17,052
11 T 9718 9144 15,461
12 G 8099 7243 31,763
13 P 5801 2745 20,700
14 R 14,096 6544 11,943
15 Q 11,178 4154 8407
16 S 10,653 7335 18,854
17 N 7737 3791 15,491
18 E 22,080 6674 14,612
19 D 12,338 4318 20,501
20 K 15,259 6505 14,355
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¼ total number of amino acid in dataset, and g ¼ 2

when the contacting pair are comprised of different

amino acids in the same environment and g ¼1

otherwise.

Scoring matrix of size 300 � 300. This is the

300 flavors case corresponding to an amino acid in a

specific secondary structure and in a specific contact

based environment. The matrix element:

Mði; jÞ ¼ � ln
nAx1�By2

g� sA
S

� �� sB
S

� �� ðEx1�y2Þ

" #
(7)

where nAx1�By2 ¼ number of contacts between amino

acid A in secondary structure 1 in environment x

and amino acid B in secondary structure 2 in envi-

ronment y, sA
S

� � ¼ fraction of amino acid A in dataset,
sB
S

� � ¼ fraction of amino acid B in dataset, Ex1�y2 ¼
number of contacts between secondary structure 1

in environment x and secondary structure 2 in envi-

ronment y, S ¼ total number of amino acid in data-

set, and g ¼ 2 when the contacting pair are com-

prised of different amino acids from same

environments and g ¼ 1 otherwise.

The calculations are done for two different ways

of measuring contacts and so we have eight distinct

scoring matrices based on noncovalent contacts

between amino acids.

Grouping of amino acids in different

secondary structures

The amino acids in different secondary structure

were grouped by using PHYLIP software with the

(CaACa) contact based 60 � 60 scoring matrix as the

starting input. The distance matrix of 60 flavors was

constructed using the following formula:

Dði; jÞ ¼ sqrt
X
k

ðRði;kÞ � Rðj;kÞÞ2
n o" #

(8)

where Rði; jÞ ¼ ðSði; jÞ �meanðSÞÞ=SDðSÞ, and mean

(S) and SD(S) are the mean and the standard devia-

tion of the upper triangular elements of the symmet-

ric scoring matrix S.

The unweighted pair group method with arith-

metic mean (UPGMA)56 technique was applied to

the distance matrix to study the clustering proper-

ties of 60 flavors.
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