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ABSTRACT To help elucidate the general rules of equi-
librium globular protein folding, dynamic Monte Carlo simu-
lations of a model SB-barrel globular protein having the six-
stranded Greek key motif characteristic of real globular
proteins were undertaken. The model protein possesses a
typical B-barrel amino acid sequence; however, all residues of
a given type (e.g., hydrophobic residues) are identical. Even in
the absence of site-specific interactions, starting from a high-
temperature denatured state, these models undergo an all-
or-none transition to a structurally unique six-stranded B-
barrel. These simulations suggest that the general rules of
globular protein folding are rather robust in that the overall
tertiary structure is determined by the general pattern of
hydrophobic, hydrophilic, and turn-type residues, with site-
specific interactions mainly involved in structural fine tuning of
a given topology. Finally, these studies suggest that loops may
play an important role in producing a unique native state.
Depending on the stability of the native conformation of the
long loop in the Greek key, the conformational transition can
be described by a two-state, three-state, or even larger number
of multiple equilibrium states model.

The ability to predict the three-dimensional (tertiary) struc-
ture of a globular protein given the amino acid sequence has
been a long desired objective of biochemistry (1-6). Although
the equilibrium folding and unfolding of proteins has received
substantial attention, a surprising number of questions re-
main unanswered. Does the folded structure result primarily
from local interactions, perhaps involving adjacent residues,
or are tertiary interactions involving pieces of the protein that
are spatially close but rather far down the chain contour
dominant (7-9)? More generally, what is the level of detail
required for tertiary structure prediction? Is a very detailed
free energy surface required before tertiary structure predic-
tion becomes a reality (10-16)? Or, are the general rules of
folding rather robust in that a small number of general criteria
are responsible for producing a given topology (17, 18)? If so,
then, the myriad of local details would enter in the ‘‘fine
tuning”’ of the native conformation. Theoretical models
should prove very useful in identifying the essential elements
of globular protein folding. This article demonstrates that the
conformational transition from the denatured state 1 of Fig.
1A to the Greek key motif seen in many B-barrel globular
proteins (19) and illustrated in 2 of Fig. 14, in a side view, and
Fig. 1B, ina top view, can be reproduced from a rather simple
protein model, whose details are elaborated on below.
Unlike alternative theoretical approaches that construct a
model protein by using the most realistic available potential
energy surface (10-16), we have examined a class of models
having a minimal set of interactions (17, 18); yet, they
reproduce in a qualitative sense a number of the essential
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features of the glouular protein conformational transition.
When using a schematic model, one must be sure that it
embodies the essential physics of the real system. For
globular proteins, the model must be able to sample all of
configuration space; interactions between all of the residues
must be allowed and the system must find its way to the
native state. For small proteins, the collapse transition must
be thermodynamically all-or-none (6, 20-25). That is, the
system must spend the majority of its time either in the
random coil state or in the completely folded native state, and
folding intermediates must be sparsely populated. Further-
more, the collapse must always be to the same native
structure. Of course, small local fluctuations in the native
state should occur just as in real proteins (26, 27).

In the present paper, we demonstrate that a general pattern
of hydrophobic and hydrophilic residues plus the presence of
appropriately placed regions that have, based on tertiary
interactions, a statistical preference to form loops and turns,
are sufficient to fold a six-stranded Greek key B-barrel 2 of
Fig. 1, whose topology is very close to that of plastocyanin
(19, 28, 29). The requirements for folding to the unique Greek
key 2 are similar to those seen in earlier (and simpler)
simulations on the folding of a four-stranded g-barrel (18).
For a variety of loop and turn stabilities, these models exhibit
all the essential features of the equilibrium folding transition
found in real globular proteins. The present study once again
indicates that the general rules of protein folding are rather
robust; a very complicated native state topology can be
reproduced without introducing site-specific interactions.
Hence, these studies appear to point the way toward a
general theory of protein tertiary structure prediction.

MODEL

To facilitate the sampling of the important regions of config-
uration space, an a-carbon representation of a globular
protein confined to a diamond lattice is used. The model
protein contains n = 74 beads, each representing an amino
acid residue, which may be hydrophobic, hydrophilic, or
inert. Multiple occupancies of all lattice sites are prohibited,
thereby implementing excluded volume. Each of the n — 3
interior bonds has three allowed rotational states, the planar
trans (t) and either of the two out of plane gauche (g* or g™)
states. Since we are interested in forming antiparallel g-
proteins, and a sequence of frans states produces the B-sheet
conformation, ,, the intrinsic energy of a gauche relative to
a trans state, is taken to be positive, unless otherwise
indicated. The reduced temperature scale is defined as T* =
kgT/e,, where kg is Boltzmann’s constant and T is the
absolute temperature. Typical values of ¢,/kgT in the tran-
sition region are 0.7—-0.8.

Abbreviation: MC, Monte Carlo.
#To whom reprint requests should be addressed.
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Imagine a nonbonded pair of nearest-neighbor residues. If
both are hydrophobic, then &, (negative) is the attractive
potential of mean force that mimics the hydrophobic inter-
action. ¢, might also mimic the interaction if the pair forms
a salt bridge. If one of the beads is hydrophobic and the other
is hydrophilic or if both are hydrophilic, then &,, (positive)
mimics the repulsive potential of mean force. The value of the
interaction parameter ¢, or &, depends only on the kind of
amino acid pair and not their location in the sequence. In
addition, a cooperativity parameter, ., which allows for
direct conformational coupling between any two nonbonded
trans states is used. References 17 and 18 present a more
detailed discussion of «..

The primary sequence is specified as follows. B{k) repre-
sents the ith stretch in the primary sequence containing k
consecutive residues. A given stretch need not necessarily
form a B-pleated sheet. All the ¢, in the B{k) are the same.
Regions that, based on tertiary interactions, might have a
statistical tendency to form tight bends are denoted by b; and
consist of the last two residues of region i and the first bead
of region i + 1. For all three residues in b;, ., &, and ¢,, are
zero, but &, isn’t necessarily zero. Finally, the amino acid
sequence of the long loop joining B-strands 5 and 6 of 2 in Fig.
1is specified by L(k). For these putative loop residues ¢. =
0, but ¢, ¢4, and ¢, need not necessarily be zero.

In all cases, a primary sequence pattern B,(11)b;B,(11)b,-
B;(11)b3B4(12)bsBs(11)L(7)Bs(11) is used, and the B-strands
of the native state contain 11 or 12 residues. For all B; with
i=1,...5, the odd (even) residues are all hydrophobic
(hydrophilic). Because of the lattice, the even hydrophilic
residues on strand 2 are nearest neighbors to the odd
hydrophobic residues on strand 5. Similarly, the even hy-
drophilic residues of strands 1 and 3 are nearest neighbor to
the even hydrophobic residues of strand 6. However, in the
native conformation all the hydrophobic residues of strands
S and 6 have the apex of their bond pointing in the direction
of the protein interior, whereas the hydrophilic-type residues
point out into the solvent; thus, we set the interactions
between these residues for all (and not necessarily native)
geometries to be attractive and equal to ¢,. The loop has a
uniform attractive interaction of magnitude —g, with the
residues at the start of the turn between strands 3 and 4
(residues 33 and 34) and is repulsive with all the hydrophilic
residues in strands 1, 2, 5, and 6. The results reported below
are for a few representative choices of parameters; qualita-
tively identical behavior is observed for a broad range of
parameters. More specifically, e. was set equal to zero, as
well as —e,/2; ¢, ranged over values from —g,/8 to —g,/2.

To surmount the multiple minima problem inherent in
protein folding, a highly efficient dynamic Monte Carlo (MC)
technique with an asymmetric Metropolis scheme is used (30,
31). For details, we refer to previous work (18). For the
parameters described below, at least three independent
cooling and heating sequences composed of a minimum of 2
x 10° MC cycles per temperature were run. In the transition
region, the temperature gradient between runs is less and the
number of MC cycles is increased up to 3 x 107 cycles. Great
care has been taken to generate and sample highly equili-
brated systems. This allows us to accurately describe the
equilibrium properties of the native and denatured states.
However, at a given temperature in the transition region, due
to limitations of computer time, we have only been able to
observe a small number (on the order of 10) of jumps between
the native and denatured state. Thus, the equilibrium fraction
of native and denatured states in the transition region is not
very well characterized. Better computation of the equilib-
rium constant requires alternative sampling techniques
whose development is under way.
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RESULTS

The simplest amino acid sequence pattern that gives the
structurally unique Greek key 2 of Fig. 1 and whose transition
is thermodynamically all-or-none, is model A: B;(11)b{-
B,(11)b9B3(11)bIB4(12)b3Bs(11)L(7)Bs(11). For all hydro-
philic residues in B;, €,, = &,; for all hydrophobic residues, ¢,
= —&,/4 and for all residues in B;, e, = —¢,/2. The super-
script zero on b indicates that ¢, = 0 for residues 10-12, 21-
23, 32-34, and 44-46. Hence, the native turn configuration
gtg g" associated with b) to b based on short range
interactions is but one of 27 possible weighted configurations.
For the putative loop residues numbered 57-63, the local
energetic preferences are —2¢,, 2¢,, —2¢&,, —2&,, 2&,, 284,
and —2¢,, respectively. The —2¢, (+2¢,) indicates that the g*
or g~ (t) state is favored. Without long-range interactions, the
native loop conformation g~tg"g ttg* is one of 16 equally
weighted conformations of the gauche states. Thus, based on
intrinsic stability, a native-like conformation of the loop is not
enforced. Finally, we point out that because this model has
a spherical potential, both the native conformation and its
mirror image are isoenergetic and both have been obtained.

The curve denoted by the solid diamonds in Fig. 2 presents
the mean square radius of gyration, (§2), vs. T* obtained as
an average over four cooling runs. The fraction of trans
states, f;, increases from =0.55 in the denatured state to 0.77
in the native conformation. The f; of the pure native Greek
key 2 of Fig. 1 equals 0.78. Tertiary interactions induce both
additional secondary structure and the location of the tight
bends and the long loop. The desired native conformation is
the only collapsed state obtained on cooling and has been
obtained from the denatured state over 30 times.

In Fig. 3, the average number of native contacts, N, as a
function of time is plotted at T* = 1.333, 1.220, and 1.111,
respectively. (The pure native state has 74 contacts.) Each
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FiG. 1. (A) Representative configuration of a random coil state
1, in equilibrium with the six-stranded B-barrel Greek key 2, for
which a side view is shown. (B) Top view of the native Greek key 2
that shows the numbering convention for the B-strands used in the
text.
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FiG. 2. Plot of the mean square radius of gyration, (S2), vs. T*
for models A, B, and C in the curves denoted by e, m, and a,
respectively.

time unit represents 20,000 MC cycles. At T* = 1.333, the
system is under strongly denaturing conditions. As is appar-
ent from Fig. 3B, at T* = 1.220, where the system is in the
transition region, the conformational transition is all-or-none,
with the system spending <2.8% of its time in intermediate
conformations. The oscillations in N, between 55 and 74
involve fluctuations of the ends of strands 1 and 6 in the native
state, an entirely expected result (26, 27). On further cooling,
as in Fig. 3C to T* = 1.111, the system is under strongly
renaturing conditions. Thus, it appears that model A is a
rather good schematic model of a globular protein, as a major
feature of the thermodynamics of the folding transition has
been reproduced. Such folding intermediates, which do
occur, involve a four-member B-barrel involving strands 2-5,
perhaps with B-strand 1 or B-strand 6. These intermediates
can be made more populous by decreasing the strength of the
attraction of the loop for the bottom of the native structure.
This transforms the two-state model into a three-state model,
where strands 1-5 form an equilibrium folding intermediate.
Here too, the low-temperature conformation is the unique
Greek key 2 of Fig. 1.

We next investigate some features that might enhance the
range of thermal stability. One simple way is to augment the
statistical preference for the native bend formation. The
plausibility of this is supported by the elegant NMR studies
of Wright et al. (32, 33), who find substantial populations of
native-like B-turns in peptide fragments in the denatured
state. We emphasize that such a local preference for turn
formation is not required by the model.

Model B has the primary sequence B;(11)b;B,(11)b,-
B;(11)b3B4(12)b4Bs(11)L(7)B¢(11); the turn neutral regions of
model A are replaced by residues having an energetic
preference for any gauche state equal to —2¢,. For the bends
b;, i =1, ... 4 based on their local intrinsic stability, any one
of the 8 triplets of gauche states is equally likely. The native
gtg g* state should be stabilized from the tertiary interac-
tions. In Fig. 2, for model B, (§2) vs. T* obtained as an
average over five cooling sequences is given in the curve
denoted by the solid squares. As expected, because of the
lower free energy of the native Greek key as compared to
model A, the transition has shifted to substantially higher
temperature. f; increases from ~0.47 in the denatured state to
0.76 in the native conformation. Because of the enhanced
preference for the gauche state, conformations in the dena-
tured state, (S2) in model B is less than in model A.
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F1G.3. (A-C) Plot of the number of native state contacts, N, vs.
time for model A at T* = 1.333, 1.220, and 1.111, respectively. Each
time unit corresponds to 20,000 MC cycles. All values of N, above
the arrow reflect minor oscillations of B-strands 1 and/or 6 about the
native conformation.

A similar analysis as presented in Fig. 3 reveals that this
model too has an all-or-none transition. Basically, in models
A and B the only intermediate states of any significance
involve the four-member B-barrel of strands 2-5, sometimes
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with strand 1 or 6. By increasing the stability of the native
conformation (now the free energy of the native turn is
lower), this further diminishes the importance of folding
intermediates in comparison to model A.

An interesting but probably somewhat artificial model is
provided by model C, having the primary sequence pattern:

1(11)b°B2(l1)b°B3(11)b°B4(12)b°B5(ll)L°(7)B6(11) Model C
is identical to model A in that all the b; are turn neutral, but
the loop region of model A has been replaced by a region
where ¢, = 0 for residues 57-63. Hence, the native loop
configuration g~tg"g ttg" is one of 2187 equally weighted
configurations in the absence of long-range interactions.
Once again, the low-temperature state is the unique Greek
key 2 of Fig. 1. However, in the transition region, the
four-member B-barrel intermediate is substantially popu-
lated, as are out of register conformations of strand 6 in the
native-like states. This transition is not all-or-none. Model C
points out the crucial role of the loop in determining the
uniqueness and stability of the native state. In Fig. 2, for
model C, the curve containing the solid triangles presents a
plot of the (S2) vs. T*. The fraction of trans states, f;,
increases from =0.58 prior to collapse to 0.73 for the native-
like states.

DISCUSSION

For the first time in a computer simulation, the folding to the
complicated structural motif of a B-barrel Greek key has been
obtained. These systems start out in the completely unfolded
state and must hunt through all of configuration space to find
the native structure that they prefer. An odd/even pattern of
hydrophobic/hydrophilic residues, a loop that has a local
energetic bias for a small subset of states, which includes the
native conformation and the presence of residues that are
intrinsically indifferent to tight turn formation, is sufficient to
fold to a unique six-stranded Greek key 2 of Fig. 1. The origin
of the uniqueness is as follows: Unlike turn neutral residues,
if the hydrophobic residues occur in a bend this costs free
energy—i.e., tertiary interactions induce bend and loop for-
mation. Juxtaposition of this effect with the free energy cost of
having nonbonded hydrophobic and hydrophilic residues as
nearest neighbors produces only in register unique native
conformations. Furthermore, the conformational transition is
well approximated by a two-state model. If the long loop
weakly interacts with the remainder of the assembled protein,
folding intermediates comprised of the four-member g-barrel
involving strands 2-5, perhaps with strand 1 or 6 also in the
native conformation are observed and a two-domain model
protein results. The transition from the random coil to the
four-stranded B-barrel is all-or-none, as is the transition from
the B-barrel intermediate to the Greek key. We therefore
conclude that loops can play a very important role in deter-
mining the thermodynamics of the conformational transition,
and their native state secondary structure, while irregular, is
nevertheless very important (34-36). If the loop is made
intrinsically indifferent to the native state conformation, while
the Greek key structure 2 of Fig. 1 is reproduced at low
temperatures, a whole spectrum of equilibrium folding inter-
mediates emerge in the transition region. If there are regions
having substantial variations in tertiary interactions (for ex-
ample, loops that have to overcome a large entropic barrier for
native state formation and that energetically marginally favor
the native state), then multiple-domain proteins can emerge.
Thus, the unique native conformation results from the inter-
play of short-range interactions, which impart a marginal
stability to a given element of secondary structure, and tertiary
interactions, which stabilize the secondary structure found in
the native state.

The complicated six-stranded Greek key native state is
obtained without invoking site-specific interactions—i.e., a
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very detailed model is not required. An identical conclusion
was arrived at in previous folding simulations of four-
stranded B-barrels (18) and four helix bundles having tight
bends (ref. 37; unpublished data). However, unlike these
cases, the Greek key topology reproduced here has a reversal
of strand direction (19). Thus, the conjecture that the folding
rules are extremely robust and, more specifically, that the
gross native state topology depends on the hydrophobic/
hydrophilic amino acid sequence pattern plus the presence of
regions that, based on tertiary interactions, have a statistical
preference to form loops or bends is again borne out, this time
in the B-barrel Greek key topology. Hence, these models of
protein folding, while schematic, seem to embody the nec-
essary physics of globular protein folding. They reproduce
both the thermodynamics and topology of real globular
proteins. Of course, refinements in these models allowing the
treatment of local details are required. We believe that these
details of the free energy surface will produce small scale
modifications of the tertiary structure—e.g., they might
modify side-chain packing. Perhaps the most restrictive
feature of the diamond lattice models is that a-helices and
B-sheets cannot be parallel to each other. To accommodate
the motif of a/B proteins, a more flexible lattice is required.
Thus, the development of a more general lattice model is now
under way.
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