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Abstract
In many regions of the visual system, the activity of a neuron is normalized by the activity of other
neurons in the same region. Here we show that a similar normalization occurs during olfactory
processing in the Drosophila antennal lobe. We exploit the orderly anatomy of this circuit to
independently manipulate feedforward and lateral input to second-order projection neurons (PNs).
Lateral inhibition increases the level of feedforward input needed to drive PNs to saturation, and this
normalization scales with the total activity of the olfactory receptor neuron (ORN) population.
Increasing total ORN activity also makes PN responses more transient. Strikingly, a model with just
two variables (feedforward and total ORN activity) accurately predicts PN odor responses. Finally,
we show that discrimination by a linear decoder is facilitated by two complementary transformations:
the saturating transformation intrinsic to each processing channel boosts weak signals, while
normalization helps equalize responses to different stimuli.
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Sensory neurons are selective for specific stimulus features. For example, a neuron in primary
visual cortex may be sensitive to both the spatial location and the orientation of a stimulus.
Similarly, the preferred stimulus of an olfactory neuron is defined by the molecular features
of the odors that are effective at driving that neuron. Stimuli with nonpreferred features often
have an inhibitory effect on a sensory neuron. The earliest illustrations of this principle came
from studies of neurons in the Limulus eye (Hartline et al., 1952) and vertebrate retina (Barlow,
1953; Kuffler, 1953). These neurons respond best to light at a particular spatial location, and
responses to light at the best position can be suppressed by simultaneously illuminating other
locations. This concept was later extended to features other than spatial location. For example,
it was observed that in primary visual cortex, a neuron's response to a grating with a preferred
orientation can be suppressed by superimposing a nonpreferred orientation (Morrone et al.,
1982).

The idea linking these findings is that a neuron's response to a preferred stimulus feature is
inhibited by adding nonpreferred stimulus features. This phenomenon can be understood as a
form of “gain control”, defined as a negative feedback loop which keeps the output of a system
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within a given range. It has been proposed that this type of gain control in the visual system
works by performing a divisive normalization of neural activity (Heeger, 1992). According to
the divisive normalization model, the response of a neuron to a complex stimulus is not the
sum of its responses to each stimulus feature alone. Rather, the response is divided by a factor
related to the total “stimulus energy”, which increases with stimulus intensity and complexity.
For this reason, the response of a neuron to a complex stimulus is closer to an average of its
responses to each feature.

A fundamental question is how gain control alters the response of a neuron to its preferred
stimuli. A neuron's response to preferred stimuli is generally nonlinear, with intense preferred
stimuli driving the neuron to saturation. It is important to define whether gain control scales
the input to this function (thus making it more difficult to reach saturation), or the output of
this function (diminishing the strength of the saturated response). Both forms of gain control
seem to occur in visual processing and attentional control (Albrecht and Geisler, 1991;
Cavanaugh et al., 2002; Williford and Maunsell, 2006; Reynolds and Heeger, 2009). Another
important question is what cellular and circuit mechanisms form the substrate of this process.
At least in some classic examples of gain control in visual processing, there is a clear role for
lateral inhibition (Kuffler, 1953; Hartline et al., 1956).

One reason why these questions have been difficult to resolve is the complexity of the
underlying circuits. Ideally, one would like to selectively manipulate feedforward excitation
and lateral inhibition to the neuron one is recording from. From this perspective, the
Drosophila antennal lobe is a useful preparation because of its compartmental organization
(Figure 1A). All the olfactory receptor neurons (ORNs) that express the same odorant receptor
project to the same glomerulus in the brain, where they make excitatory synapses with
projection neurons (PNs). Each PN receives ORN input from one glomerulus and lateral inputs
from other glomeruli (Bargmann, 2006). A PN's odor responses are disinhibited by silencing
input to other glomeruli (Olsen and Wilson, 2008; Asahina et al., 2009), implying that lateral
interactions are mainly inhibitory. This could explain the observation that a PN's response to
an odor can be inhibited by adding a second odor that is ineffective at driving that PN when
presented alone (Deisig et al., 2006; Silbering and Galizia, 2007). Similar mixture suppression
effects occur in the vertebrate olfactory bulb (Kang and Caprio, 1995; Giraudet et al., 2002;
Tabor et al., 2004).

The aims of this study are to understand how lateral inhibition alters the response of a PN to
its presynaptic ORNs, and how this type of gain control affects PN population codes for odors.
Previous studies have used odor stimuli that activate multiple ORN types, thereby driving both
direct and lateral input to a PN. Instead, we here begin with “private” stimuli, defined as stimuli
that activate only one ORN type (Figure 1A). By mixing private stimuli with varying
concentrations of “public” stimuli (defined as stimuli that selectively activate a population of
other glomeruli), we measure how increasing activity in other glomeruli suppresses the
response of a PN to its presynaptic ORNs.

Results
A uniform intra-glomerular transformation

Based on a previous study (Hallem and Carlson, 2006), we identified four likely private odors
and their cognate ORN types (Supplemental Table 1). We sampled randomly from many ORNs
of other types in order to confirm that these odors do not activate non-cognate ORNs (Figure
S1). Moreover, where mutations were available in the cognate odorant receptors for these
odors, we verified that they virtually abolish the response of the ORN population (Figure S1).
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For each of the four associated glomeruli, we recorded the responses of both ORNs and PNs
to a range of concentrations of their private odor. Responses were quantified as spike rates over
the 500-msec stimulus period. We found that the input-output relationships for three of these
glomeruli were very similar (Figure 1B). In all these cases, weak ORN inputs were selectively
boosted and strong inputs saturated. In the fourth glomerulus, the relationship between PN and
ORN responses was shallower, but when GABA receptor antagonists were added, this
relationship reverted to the typical steeper shape. The antagonists had no effect on a more
typical glomerulus (Figure 1B).

These results suggest that all glomeruli perform a similar transformation on their inputs,
although in some cases this transformation is modified by GABAergic inhibition. We can
formalize this by fitting all these input-output relationships with the same equation:

(1)

where PN is the response of an individual PN to a private odor stimulus, and ORN is the
response of an individual presynaptic ORN to the same stimulus. Rmax is a fitted constant
representing the maximum odor-evoked response, and σ is a fitted constant representing the
level of ORN input that drives a half-maximum response. Rmax and σ are essentially the same
for all glomeruli (except that without GABA receptor antagonists σ is larger for the fourth
glomerulus we examined). The saturating form of this function reflects the combined effects
of short-term depression at ORN-PN synapses and the relative refractory period of PNs
(Kazama and Wilson, 2008). In Equation (1), the input terms are raised to an exponent of 1.5
because this produced the best fit; a similar equation describes the contrast response functions
of visual neurons, and there too an exponent >1 is generally required (Albrecht and Hamilton,
1982; Heeger, 1992; Reynolds and Heeger, 2009; see Discussion).

Lateral interactions are inhibitory
We next asked how activity in other glomeruli affects a PN's response to its cognate ORNs.
Here we focused on two glomeruli, VM7 and DL5. In order to manipulate input to other
glomeruli independently from input to these glomeruli, we used a “public” odor that activates
many ORN types but not these ORNs (Figure 1A). We verified that this odor (pentyl acetate)
does not activate either VM7 or DL5 ORNs (at dilutions up to 10-3, see Figure S2). Thus
varying the concentration of pentyl acetate allows us to vary total ORN activity, as measured
by field potential recordings in the antenna (Figure 2A).

We mixed pentyl acetate with 2-butanone (the private odor for VM7 ORNs) at various
concentrations, generating 20 stimuli in total which we then tested on VM7 PNs. We found
that pentyl acetate inhibited the responses of VM7 PNs to 2-butanone, with higher
concentrations producing more inhibition (Figure 2B,C). The effect of pentyl acetate was
blocked by GABA receptor antagonists (Figure 2D), as expected.

Similar results were obtained for a second glomerulus, DL5. Here we mixed pentyl acetate
with trans-2-hexenal, the private odor for DL5 ORNs (Figure 2E). The magnitude of inhibition
was consistently smaller for DL5 than for VM7, implying that glomeruli differ in their
sensitivity to lateral inhibition.
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Lateral inhibition normalizes input
We next asked whether lateral inhibition scales the horizontal or vertical axis of the input-
output function (Figure 3A,B). We term horizontal scaling “input gain control”. We can express
this by adding a suppression factor s to the denominator of the hyperbolic ratio function:

(2)

We term vertical scaling “response gain control” (Figure 3B), and we can express this by
scaling Rmax:

(3)

We fit both these models to the data in Figure 2, fixing Rmax and σ at the values we obtained
from the curves in Figure 1B, and letting s be a fitted variable which varies with the
concentration of pentyl acetate.

We found that for both VM7 and DL5, the input gain model generated better fits than the
response gain model (Figure 3C-G). This reflects the fact that responses to dilute private odor
were suppressed more powerfully in proportional terms than responses to concentrated private
odor. The input gain model was also better than two subtractive models (see Supplemental
Experimental Procedures). Thus, the effects of lateral inhibition are best described as input
gain control.

Lateral inhibition scales with total ORN activity
How does the level of inhibition in a given glomerulus depend on the pattern of activity in the
ORN population? It is possible that each glomerulus might receive strong inhibitory input from
just a few glomeruli. However, many individual GABAergic local neurons in the antennal lobe
innervate most glomeruli (Das et al., 2008; Lai et al., 2008), suggesting that they pool excitation
from most ORN types and inhibit each glomerulus by a factor that depends on the total activity
of this ORN population. If this were true, then our data should reveal a clear relationship
between s and total ORN activity, assuming all glomeruli contribute equally to the pool.

To test this prediction, we asked how s depends on total ORN activity. We obtained s using
Equation (2) for each concentration of pentyl acetate, again with Rmax and σ held constant at
the values obtained from the curves in Figure 1B. For each concentration of pentyl acetate, we
obtained an estimate of total ORN activity by measuring the antennal local field potential (LFP,
Figure 2A) because this scales linearly with ORN activity (Figure S3). We found that the
relationship between s and LFP was linear for both VM7 and DL5 (Figure 3H). Thus,

(4)

where the slope m represents the sensitivity of each glomerulus to lateral inhibition. (Note that
m is larger for VM7 than for DL5, Figure 3H.) The linear relationship between s and LFP
implies these glomeruli are normalized by an amount that simply scales with total ORN activity.
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If lateral inhibition in each glomerulus scales with total ORN activity, then the contribution of
any single glomerulus to the inhibitory signal should be weak. We therefore asked whether
stimulating one glomerulus can produce substantial lateral inhibition. We used private odors
to drive robust activity (∼100 spikes/sec) in a single ORN type but not in VM7 ORNs. The
ORN types activated by these odors were DM4, DL5, and DM1, and the three private stimuli
were the highest concentrations of their cognate private odors in Figure 1. Mixing each private
odor with 2-butanone produced only weak suppression of the VM7 PN response to 2-butanone
(results not shown). This result is consistent with a model whereby inter-glomerular inhibitory
connections are weak, and thus input to multiple glomeruli is required to evoke measurable
lateral inhibition.

Predicting PN responses to novel odors
These findings imply that we should be able to predict the odor-evoked firing rate of these PNs
based on only two variables: the firing rate of their presynaptic ORNs, and the firing rate of
the total ORN population. To examine the quality of these predictions, we measured the
responses of VM7 ORNs to a set of test odors that were not used to construct our model. As a
proxy for total ORN activity, we measured the antennal LFP for each test odor (Figure 4A,B).
Next, we used these measurements to predict the odor responses of VM7 PNs on the basis of
Equations (2) and (4), using the value of m that represents the sensitivity of VM7 to lateral
inhibition. Strikingly, predicted and measured PN firing rates were in excellent agreement,
with the input gain model accounting for 95% of the variance in the data (Figure 4C). We
repeated this procedure for glomerulus DL5, here using the value of m derived for DL5. Again,
the input gain model made very good predictions, accounting for 87% of the variance in the
data (Figure 4D). The success of these predictions provides further support for the conclusion
that the suppression factor s varies linearly with the LFP (Figure S4). As expected, the response
gain control model did not accurately predict PN responses (results not shown).

Gain control reformats population codes
What are the consequences of these transformations for the way odors are encoded at the
population level? To address this, we first examined the statistical properties of ORN
population codes. We then used our model to simulate PN population codes and ask how their
properties are altered as compared to ORNs. Ultimately, we are interested in how these
transformations affect odor discrimination.

As the input to our model, we used ORN odor responses measured by reference (Hallem and
Carlson, 2006), comprising 176 olfactory stimuli and 24 ORN types. This data set displays a
strong statistical regularity: stimuli that evoke a robust response in a given ORN type also tend
to evoke robust responses in many ORN types (Figure 5A1). This can be quantified by principal
components analysis on the odor response vectors, which shows that the first principal
component (PC) accounts for fully 49% of the variance in the data. This PC is essentially a
proxy for stimulus intensity (Figure S5). Another way to quantify this is to perform pairwise
comparisons between ORN types, which shows that pairwise correlations are high (Figure
5B1). These correlations have an important corollary: because some stimuli elicit weak
responses in many ORN types and others elicit robust responses in many ORN types, stimuli
produce widely varying levels of total activity. We quantified this by computing the magnitude
of the population response evoked by each stimulus, defined as the norm of the population
response vector. This distribution is broad (Figure 5C1), meaning that total odor-evoked
activity varies over a wide range. In short, all these analyses show that the responses of ORNs
are not statistically independent.

To model PNs without inhibition, we simulated the intra-glomerular transformation by
applying Equation (1) to the ORN matrix. This transformation boosts the smallest responses,
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while pushing the largest responses toward saturation (Figure 5A2). After this transformation,
correlations among glomeruli are largely unchanged (Figure 5B2), and the distribution of
population response magnitudes remains broad (Figure 5C2). Thus, this transformation has
little effect on statistical dependencies between glomeruli.

Next, we added lateral inhibition using the input gain control model. This requires us to know
the total level of ORN activity evoked by each odor. Instead of taking LFP measurements for
all these odors, we instead obtained an expression for s as a function of ORN firing rates. We
measured LFP responses to a subset of the stimuli in the ORN data set, and we fit a line to the
relationship between these LFP responses and the total number of ORN spikes evoked by each
odor (Figure S3). The fitted line is given by:

(5)

where ri is the firing rate of the ith ORN type. Combining Equations (5) and (4) we obtain:

(6)

The constant m in Equation (6) was obtained from the fit to VM7 data with the input gain model
(Figure 3H). By combining Equations (2) and (6), we were able to simulate the ORN-PN
transformation according to the input gain model (Figure 5A3). This transformation counteracts
the tendency for intense stimuli to recruit strong responses across the PN population, and for
this reason it decorrelates glomeruli (Figure 5B3). It also decreases the magnitudes of the
strongest population responses while leaving the weaker responses relatively unaffected, and
as a result population response magnitudes are now more equal (Figure 5C3).

To simulate response gain control (Figure 5A4), we combined Equations (3) and (6), and we
obtained the constant m in Equation (6) by fitting this equation to VM7 data (results not shown).
Like input gain control, this transformation decorrelates glomeruli (Figure 5B4) and tends to
equalize population response magnitudes (Figure 5C4). But whereas input gain makes it more
difficult for PN responses to saturate, response gain control does nothing to prevent saturation.
This means that intense stimuli evoke similar weak levels of activity in many PN types.

Finally, as a control, we shuffled the odor labels on each ORN response vector before
computing s. In this case, inhibition does not decorrelate glomeruli or equalize population
response magnitudes (results not shown). The key point is that gain control only produces
decorrelation and equalization of responses if inhibition grows with increasing input to the
circuit.

Input gain control promotes selective discrimination
Next, we examined how these transformations affect odor discrimination on the basis of PN
population responses. PNs make excitatory synapses with third-order neurons called Kenyon
cells (KCs), which are thought to integrate input from different glomeruli. Many KCs are
selective for a particular stimulus, and KCs tend to respond in a binary fashion, firing either
zero spikes or just a few spikes (Stopfer et al., 2003; Wang et al., 2004; Turner et al., 2007).
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This motivated us to ask how antennal lobe transformations would affect the ability of a binary
classifier to respond selectively to a single stimulus.

We simulated a set of 176 binary linear classifiers (perceptrons), one for each stimulus. The
input to each perceptron was a weighted sum of all glomerular responses, and the perceptron
responded if the sum exceeds its threshold. Input weights were constrained to be non-negative,
but they were adjusted for each perceptron so that it responded as selectively as possible to one
stimulus. For each of the four response matrices (Figure 5A) we created a set of perceptrons
with weights appropriate to that matrix. Training and test stimuli were created by adding noise
to each response matrix, where the parameters of the noise were drawn from PN data (Figure
S6). Each set of perceptrons was evaluated on the basis of its ability to correctly classify these
noisy test stimuli. Thresholds were adjusted so that the fraction of false positives equaled false
negatives.

First, we examined the case where PN responses are identical to ORN responses (i.e., no
transformation, using the matrix in Figure 5A1). Perceptrons trained and tested on these
responses performed relatively poorly (Figure 6A). Specifically, strong stimuli generated a
high rate of false positives. This is because strong stimuli generate strong responses in many
glomeruli, and thus tend to drive the weighted sum in all perceptrons above threshold.

Next, we examined the effect of the intra-glomerular transformation, without lateral inhibition.
Perceptrons trained and tested on this matrix performed better (Figure 6B). This is because the
intra-glomerular transformation selectively boosts PN responses to weak ORN inputs. This
makes it easier to find weights that yield a selective response to weak stimuli. However, every
perceptron still tended to respond inappropriately to many strong off-target stimuli.

Input gain control largely solves this problem (Figure 6C). This is because this model
normalizes PN responses by the total level of ORN input, and so strong stimuli no longer elicit
so many false positives. By comparison, the response gain control model performs more poorly
(Figure 6D). Like input gain control, this model has the virtue of normalizing responses to
strong stimuli. However, this model compresses the PN dynamic range when the total level of
ORN input is strong, and so strong stimuli elicit weak responses in all glomeruli. This makes
it difficult to find a threshold that maximizes correct hits while also minimizing false positives.

Input gain control promotes intensity invariance
Next, we asked perceptrons to respond selectively to an odor across a range of concentrations.
This task is inspired by the experimental finding that some KCs respond selectively to a
particular odor regardless of its concentration (Stopfer et al., 2003; Wang et al., 2004). Because
we had available data on 19 odors at each of three concentrations, we trained 19 perceptrons
on this task, one for each odor.

Again, we first examined the case where PN responses are identical to ORN responses (no
transformation). These perceptrons did relatively poorly (Figure 7A) because low
concentrations evoke such weak responses that they are not easily classified with high
concentrations. The intra-glomerular transformation improves performance (Figure 7B)
because it selectively boosts weak responses, and so brings low and high concentrations closer
together. Input gain control creates the best performance (Figure 7C) because it normalizes for
intensity, and this makes responses to different concentrations more similar. Response gain
control also normalizes for intensity, but it performs more poorly than input gain control (Figure
7D). Because high concentrations elicit intense lateral inhibition which suppresses all PN
responses uniformly, these strong stimuli elicit small population responses, and it becomes
difficult to maximize correct hits while minimizing false positives.
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Increasing total activity makes responses more transient
For simplicity, we have thus far quantified neural activity as mean firing rates over the stimulus
period. However, PN responses do not remain constant over the stimulus period. In order to
investigate how lateral inhibition shapes these dynamics, we compared the time course of PN
responses to different levels of private and public input. We found that, as a general rule, mixing
in a public odor tended to make PN responses to private input more transient (Figure 8A,B).

We quantified transience as the ratio of the peak firing rate to the mean firing rate (Figure 8C).
As the public odor concentration increased, the peak-to-mean ratio systematically increased.
This is probably because a strong public stimulus recruits ORNs faster. Consistent with this
idea, higher public odor concentrations produce a faster increase in the antennal LFP (Figure
8D). Faster recruitment of the ORN population should recruit faster lateral inhibition, and thus
more transient PN responses.

However, the effect of the public odor on PN dynamics was only large when the private odor
concentration was low (Figure 8A-C). This suggests that increasing total ORN activity only
makes PN responses more transient when direct input is weak. This would be consistent with
an input gain control model, because in this model the effect of lateral inhibition is strongest
when PNs are far from saturation. Thus, input gain can account for why lateral inhibition affects
the dynamics of some PN responses more than others.

Discussion
Normalization models in olfaction and vision

As originally formulated in the visual system, the normalization model of gain control includes
two conceptually separate steps: a saturating function and a normalization step (Heeger,
1992). The first step—the saturating function—is often fit by a hyperbolic ratio function (Naka
and Rushton, 1966; Albrecht and Hamilton, 1982):

(7)

where the variable c is the contrast of the visual stimulus, σ is a constant, and n is a constant
exponent (generally empirically determined to be >1). Here we show that a similar function
(Equation (1)) describes the transformation that occurs within each glomerular channel.

The second step—normalization—has been modeled in the visual system as an increase in the
contrast needed to drive a neuron to half-maximum firing rate:

(8)

where the suppression factor s depends on stimulus contrast and can be rather nonselective for
other stimulus features, presumably reflecting summed input from neurons with diverse
stimulus preferences (Heeger, 1992). Versions of this model describe neural activity in several
visual cortical areas (Carandini et al., 1997; Cavanaugh et al., 2002; Zoccolan et al., 2005),
and this model has also been extended to describe the effects of attention (Lee and Maunsell,
2009; Reynolds and Heeger, 2009). There are differences between the models in these studies;
for example, s can be either nonselective or selective. Generally an exponent >1 is required to
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fit the data (Albrecht and Hamilton, 1982; Heeger, 1992; Carandini and Heeger, 1994;
Reynolds and Heeger, 2009), although the mechanisms underlying this are uncertain.
Nevertheless, the essential concept captured by this equation is simple: the activity of each
neuron is normalized by activity in a larger pool of neurons.

Here we show that a similar function (Equation (2)) describes gain control in the Drosophila
antennal lobe. By independently manipulating direct and lateral input to a PN, we show that
the saturating transformation is intrinsic to each glomerular channel, whereas the normalization
step is due to lateral inhibition. Thus, at least in this circuit, these two transformations are not
just conceptually distinct but also mechanistically distinct.

Population codes for odors
Our results show that both the intra- and inter-glomerular transformations promote odor
discrimination by a linear decoder. First, the intra-glomerular transformation selectively boosts
weak ORN inputs. Because responses to weak stimuli are preferentially amplified, it becomes
easier to find a combination of glomerular weights that produces a selective response to one
of these stimuli. A recent theoretical study pointed out that this type of transformation should
promote linear separation (Luo et al., 2008), and our results reinforce that conclusion.

Second, the normalization step decreases the steepness of the intra-glomerular transformation
by a factor proportional to total input. As a result, activity in different glomeruli is decorrelated.
This agrees with theoretical studies showing that normalization makes the responses of
different neurons more statistically independent (Schwartz and Simoncelli, 2001). Another
precedent for our results is a recent theoretical study pointing out that global lateral inhibition
should decorrelate the odor selectivity of different glomeruli (Cleland and Sethupathy, 2006),
although that study postulated a different type of intra-glomerular transformation than the
function we describe here. Importantly, we show that this type of normalization makes it easier
for a linear decoder to respond selectively to a particular stimulus. This is because stimuli of
different intensities now evoke population responses with a more similar magnitude.

It is useful to consider both of these steps—boosting and normalization—in terms of efficient
coding. The efficient coding hypothesis has two parts: (1) each neuron should use its dynamic
range uniformly, and (2) responses of different neurons should be independent (Simoncelli,
2003). Most ORN responses are weak, so ORNs do not use their dynamic range uniformly. By
selectively boosting weak inputs, the intra-glomerular transformation creates PN responses
that use the available dynamic range more uniformly (Bhandawat et al., 2007). Meanwhile,
most ORNs are also correlated with each other. By creating competitive interactions between
neurons in different glomeruli, normalization decorrelates their responses. (Note the distinction
between decorrelating neurons and decorrelating representations: global lateral inhibition does
the former but not the latter, see Figure S7.)

A previous study reported that PN responses are not substantially more decorrelated than ORN
responses (Bhandawat et al., 2007). Two considerations reconcile our findings with that study.
First, we show here that although lateral inhibition tends to decorrelate PN odor responses, the
intra-glomerular transformation tends to correlate them. Thus the net effect of both
transformations is less decorrelating than lateral inhibition alone. Second, the previous study
used stimuli spanning a narrow range of intensities. By contrast, the stimuli in our simulations
here span a wide range, which leads to a larger decorrelation.

Toward concentration-invariant odor representations
Functional imaging studies in the olfactory bulb have shown that different concentrations of
the same odor elicit different levels of activity in the bulb, but these spatial maps are similar
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after signals are normalized to the same amplitude (Johnson and Leon, 2000; Wachowiak et
al., 2002; Cleland et al., 2007). For this reason, lateral inhibition has been proposed as a basis
for concentration-invariant odor representation in the olfactory bulb (Johnson and Leon,
2000; Wachowiak et al., 2002; Cleland et al., 2007) and the antennal lobe (Sachse and Galizia,
2003; Asahina et al., 2009). Here, we provide evidence for this computation at the level of
ORN input to Drosophila antennal lobe glomeruli.

Drosophila can discriminate between different concentrations of the same odor (Borst,
1983). If lateral inhibition tends to normalize for intensity, how is this possible? One potential
explanation is that normalization is incomplete: the most intense stimuli in our simulation
evoke responses that are substantially larger than the weakest responses. Incomplete
normalization may be a useful way to preserve information about stimulus intensity while
promoting a more efficient representation.

Glomerulus-specific sensitivity to inhibition
Our results show that glomeruli differ in their sensitivity to lateral inhibition. This appears as
differing values of the factor m that expresses how steeply lateral inhibition depends on total
ORN activity. Although we examined only two glomeruli in detail, our analysis of a published
data set comprising seven additional glomeruli (Bhandawat et al., 2007) suggests that the values
of m for VM7 and DL5 fall within the typical range. Another finding from this study is that
one of the four glomeruli we examined (DM1) is modulated by inhibition arising from odor-
evoked intra-glomerular GABA release and/or tonic inter-glomerular GABA release. This
appears as a higher value of the semisaturation constant σ for this glomerulus.

This heterogeneity does not affect our overall conclusions about the consequences of gain
control. If instead of using the value of m for VM7 as the default we randomly assign to each
glomerulus a value of m intermediate between the values for VM7 and DL5, then the overall
effects of inhibition are weaker but qualitatively unchanged. Similarly, the results of our
simulations are qualitatively unchanged if we randomly assign a high value of σ to a subset of
glomeruli (data not shown).

Given this, it is worth asking why heterogeneity might be useful. We speculate that some
glomeruli might be specialized in their sensitivity to GABAergic inhibition because they
respond preferentially to an odor with special behavioral relevance or unusual natural statistics.
Mechanistically, the explanation for heterogeneity might lie in glomerulus-specific levels of
GABA receptor expression (Root et al., 2008).

Circuit mechanisms: connectivity between glomeruli
It is generally thought that specific connectivity between glomeruli is important for olfactory
processing (Laurent, 2002; Lledo et al., 2005). Here we show that specific connectivity is not
required to account for PN odor responses: good fits to data can be obtained by assuming all-
too-all connectivity and uniform connectivity weights. We found that sparser connectivity can
also generate good fits (Figure S8) because the responses of different ORN types are correlated
with each other, and so pooling input from only a subset of glomeruli produces an effect similar
to pooling total input. However, most individual Drosophila antennal lobe local neurons
innervate the majority of glomeruli (Das et al., 2008; Lai et al., 2008), and this implies a
comparatively dense pattern of inter-glomerular connections.

In the mammalian olfactory bulb, one local interneuron cannot connect all glomeruli. However,
dense nonspecific connectivity could be implemented on a local scale. Nearby glomeruli in the
bulb are almost as diverse in their odor selectivity as distant glomeruli (Soucy et al., 2009).
Thus, the summed responses of local glomeruli might produce an inhibitory signal similar to
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the sum of all glomeruli. Alternatively, if mammalian ORN types are not as correlated in their
odor selectivity as Drosophila ORN types are, then optimal connectivity might be sparse and
specific (Fantana et al., 2008).

It should be noted that excitatory lateral connections co-exist in this circuit with inhibitory ones
(Olsen et al., 2007; Root et al., 2007; Shang et al., 2007). In this study, we found that the net
effect of lateral input was always inhibitory. However, this does not imply that lateral excitatory
connections make no contribution—only that they do not dominate.

Cellular mechanisms: pre- versus postsynaptic inhibition
Lateral inhibition in the adult Drosophila antennal lobe has a mainly presynaptic locus (Olsen
and Wilson, 2008; Root et al., 2008). This raises the question of why it might be useful to
implement inhibition pre-rather than postsynaptically. Our results suggest a novel answer. We
show that lateral inhibition in this circuit produces input gain control rather than response gain
control, and input gain control has some attractive properties. It is easy to see why presynaptic
inhibition might produce input gain control: any inhibitory process that acts prior to the
nonlinearity in the input-output function will tend to make it more difficult to reach saturation
but will not change the level at which output saturates. The major nonlinearities in the intra-
glomerular transformation are short-term synaptic depression and the postsynaptic refractory
period (Kazama and Wilson, 2008), whereas presynaptic inhibition is thought to modulate an
earlier step, i.e. presynaptic calcium influx. In other circuits the mechanisms of normalization
may be different, and may not involve GABAergic inhibition (Carandini et al., 2002; Freeman
et al., 2002).

Dynamics of gain control
We found that increasing total ORN activity (by increasing the public odor concentration) made
PN responses more transient. This result has parallels in other sensory modalities, where
increasing stimulus intensity generally decreases neuronal integration times. For example, in
the retina, increasing the luminance of a visual stimulus produces more transient responses in
ganglion cells (Shapley et al., 1972; Enroth-Cugell and Shapley, 1973). In visual cortex,
increasing the contrast of a periodic visual stimulus advances the phase of neural responses
(Dean and Tolhurst, 1986). Similarly, increasing sound intensity narrows the integration time
of auditory cortical neurons (Nagel and Doupe, 2006). These changes create an adaptive
tradeoff that should maximize information transmission over a range of stimulus intensities
(Atick, 1992). Long integration times should allow neurons to overcome the effects of noise
when stimulus intensities are low, whereas short integration times should maximize temporal
resolution of stimulus fluctuations when stimulus intensities are high. Our findings extend this
principle to olfactory processing.

Adaptive changes in integration time have been recognized as a natural extension of
normalization models. For example, if normalization is implemented by an increase in
postsynaptic inhibitory conductances, then the resulting decrease in the postsynaptic membrane
time constant would shorten the integration time (Carandini and Heeger, 1994; Carandini et
al., 1997). However, in the Drosophila antennal lobe, lateral inhibition is largely presynaptic
(Olsen and Wilson, 2008), so this mechanism is unlikely to apply. Instead, our results suggest
an alternate mechanism: shorter integration times are likely due to increasingly rapid
recruitment of lateral inhibition by increasingly intense afferent activity.

Limitations of the model
First, our model is based on measurements from only a few glomeruli. In pilot experiments we
explored other candidates, but we could not find private odors for these glomeruli. This reflects
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the constraint that the private odor must be selective even at concentrations high enough to
approach Rmax.

Second, we have not modeled the dynamics of neural activity. Because the input data set for
our model consists of ORN firing rates averaged over a 500-msec time period (Hallem and
Carlson, 2006), our model is not able to consider finer timescales. ORN responses are
themselves dynamical, and these dynamics depend on both the odor and the ORN (Hallem and
Carlson, 2006). PN response dynamics are also characteristically faster than ORN response
dynamics (Bhandawat et al., 2007). Modeling these dynamics will require a more systematic
understanding of these processes.

Finally, the usefulness of any transformation will depend on the decoder and the task. Our
model decoders are inspired by the properties of real higher-order olfactory neurons. However,
some aspects of our model decoders are unrealistic—for example, each pools input from all
glomeruli. Unraveling the actual connectivity of the higher-order olfactory circuit should help
us better constrain our models. Also, the tasks we set our decoders are probably easy compared
to natural olfaction, which is complicated by turbulence and background odors. Understanding
how these factors affect olfactory encoding should help us gain insight into the tasks this circuit
has evolved to perform.

Experimental Procedures
Fly Stocks

Fly stocks were kindly provided as follows: NP5221-Gal4, NP3062-Gal4, NP3481-Gal4 (Kei
Ito and Liqun Luo); Or92a-Gal4 (Leslie Vosshall); UAS-DTl/CyO (Leslie Stevens). The
following were obtained from the Bloomington Stock Center: UAS-CD8GFPI, UAS-
CD8GFPII, UAS-CD8GFPIII, Or42bEY14886 (see Figure S1), Or42af04305 (see Figure S1).

Electrophysiological Recordings
The total number of observations in this study comprises 1299 ORN measurements, 225 LFP
measurements, and 591 PN measurements (total n summed across all experiments). Each
measurement represents the mean of 4 consecutive trials with the same stimulus. ORN spikes
were recorded extracellularly from sensilla on the surface of the maxillary palp or antenna.
The antennal LFP was recorded with an electrode in the body of the antennal funiculus. Whole-
cell patch-clamp recordings were made from PN somata in current-clamp mode. Recordings
were targeted to specific PNs by labeling them with GFP. See Supplemental Experimental
Procedures for details.

Olfactory Stimuli
See Supplemental Experimental Procedures for details.

Data Analysis
Quantifying neural responses—Each cell was tested with multiple stimuli, typically with
4 trials per stimulus spaced 40-60 sec apart. The response magnitude for each cell/stimulus
combination was quantified as the trial-averaged number of spikes during the 500-msec odor
stimulus period, minus the trial-averaged baseline spike rate during the preceding 500 msec.
To generate a peri-stimulus-time histogram, we counted the number of spikes in 50-msec bins
that overlapped by 25 msec. LFP recordings were quantified as the integral during the 500-
msec odor stimulus period, minus the integral during the 500 msec preceding the stimulus. All
these response measures were first averaged across trials within an experiment, and then
reported as mean ± SEM across experiments.
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Fitting input-output functions—The input-output functions in Figure 1 were determined
by fitting the private odor responses for each glomerulus to Equation (1). Rmax and σ were free
parameters. Rmax = 170, 167, 163, and 144, and σ = 16.3, 11.8, 12.4, and 44.8, for glomeruli
DM4, DL5, VM7, and DM1, respectively. Equation (1) fits these data better than the
logarithmic function used in previous studies (Bhandawat et al., 2007;Olsen and Wilson,
2008).

In Figure 3, each input-output function within a panel corresponds to a different concentration
of pentyl acetate. Here we used Equation (2) for the input gain model and Equation (3) for the
response gain model. The parameters Rmax and σ were derived separately for VM7 and DL5
from the fits in Figure 1 and were held constant across all concentrations of pentyl acetate.
Thus, the only free variable in these fits was s. In Equations (1) – (3) the input variables (ORN,
σ, s) are raised to an exponent (1.5). We use this exponent because it provides the best fit to
our data. We determined this by fitting the data in Figure 3 with different exponents between
1 and 2 in increments of 0.1. The mean squared error had a minimum for an exponent of 1.5
and 1.6 for glomeruli DL5 and VM7, respectively. Choosing an exponent of 1.5 for VM7
produced only a slight decrease in fit quality and allowed a constant exponent to be used for
all equations.

Predicting PN odor responses based on the LFP—In Figure 4, PN responses to novel
stimuli were predicted from Equation (2) on the basis of two variables, the presynaptic ORN
response to that stimulus (ORN) and the value of s corresponding to that stimulus. Values of
s were derived from the LFP response to each stimulus according to Equation (4). The
relationship between s and the LFP was obtained from the linear fit in Figure 3H (m = 10.63
for VM7 and 4.19 for DL5). Each LFP value in Figure 3H is the sum of the LFP response to
one pentyl acetate concentration (Figure 2A, different for each curve) and the LFP response
to the private stimulus alone (the same for each curve). Summation is reasonable because public
and private odors do not activate the same ORNs, and because the LFP scales linearly with
summed ORN firing rates (Figure S3). To fit a curve, we needed to represent the contribution
of the private stimuli to the summed LFP with a single value, but in reality each curve was
constructed with a range of the private odor concentrations, all of which elicit slightly different
small LFP responses (Figure S1); for simplicity, we averaged the LFP measured for all these
concentrations to estimate the contribution of private stimuli to the LFP.

Modeling
Simulating PN responses—In Figures 5-7 we used the data from Hallem and Carlson
(2006) to stimulate PN population codes. Because this data set includes only 24 of the 50 ORN
types, we simulated only 24 glomeruli. Unless otherwise noted, we used the following
parameters for all glomeruli: Rmax = 165 spikes/sec and σ = 12 spikes/sec. To simulate the PN
matrix without inhibition, we used Equation (1). The input gain PN matrix was simulated using
Equations (2) and (6). The constant m in Equation (6) was set to 10.63 for all glomeruli. The
response gain PN response matrix was simulated using Equations (3) and (6) (m = 0.164). For
all simulated PN responses, if the presynaptic ORN odor response was a negative number (a
suppression of basal firing rate), then the PN response was set to zero. Population response
magnitude (Figure 5C) was quantified for each stimulus as the norm of the response vector in
24-dimensional ORN or PN space:

(9)
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where ri is the firing rate of the ith ORN type or PN type.

Decoding simulated PN responses with a linear classifier—Each perceptron
receives input from all 24 glomeruli. The perceptron classifies stimuli by computing a weighted
sum on its inputs and responding if this sum crosses a threshold, c. Its response is binary:

(10)

where ri is the response of the ith glomerulus and wi is the weight of that glomerulus. The
weights for each perceptron were derived using the normalized perceptron learning rule:

where ‖p‖ is the norm of the training input vector, pi is the input from ith glomerulus to the
perceptron, and ε is the difference between the perceptron's output and target value.
Additionally, we constrained the sign of the weights to be non-negative. If the updated weight
took a negative value this weight was reverted to its previous non-negative value before
presenting the next training input. The threshold c was constrained to be the same for all
perceptrons within the same set, and was adjusted during training so that the false hits rate was
equal to the rate of false misses.

For each set of perceptrons, we generated 100 noisy training matrices by picking the appropriate
matrix in Figure 5A and adding Gaussian noise to each entry (Figure S6). Noise was drawn
independently for each entry in every training matrix. Weights were adjusted for 100 iterations
of the learning rule, by which time weights had converged. We tested performance by
presenting the set of perceptrons with 50 noisy test matrices, generated in the same way as for
the training matrices. Results in Figures 6 and 7 are shown as the mean for 500 independent
networks (i.e., 100 training iterations, followed by 50 tests, this repeated 500 times).

We trained and tested perceptrons separately for two classification tasks. For the first task we
generated four sets of 176 perceptrons, each designed to respond selectively to one out of the
176 stimuli. For the second task we generated four sets of 19 perceptrons, each designed to
respond to the same odor across 3 different concentrations (19 × 3 = 57 stimuli). These 57
stimuli are only a subset of the 176 stimuli because Hallem & Carlson (2006) tested most odors
at only one concentration. The low and medium concentrations of each odor represent 100-
fold and 10,000-fold dilutions of the high concentration.

Alternative models of gain control and odor discrimination—See Supplemental
Experimental Procedures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A generalized intra-glomerular transformation
A. Experimental design. Varying the concentration of a private odor stimulus activates one
ORN type to varying degrees. Recordings are performed from both these ORNs and their
cognate PNs. In this figure, we use only private odors. In the experiments that follow, we will
blend in a public odor that activates other ORNs (but not the cognate ORNs of the PNs we are
recording from). This allows us to manipulate direct and lateral input independently.
B. Intra-glomerular input-output functions for four glomeruli. Within a graph, each point is a
different concentration of the same private odor. GABA receptor antagonists (5 μM picrotoxin
+10 μM CGP54626) increase the gain in DM1 but not VM7 (red). All values are means of 6
-12 recordings, ± SEM. Curves are best fits to Equation (1). Concentrations are: methyl acetate
0, 10-11, 10-10, 10-9, 3×l0-8, 7×l0-8, 10-7, 10-6, 10-5; trans-2-hexenal 10-9, 10-8, 10-7, 5×l0-7; 2-
butanone 10-7, 10-6, 10-5, 10-4; ethyl acetate 0, 10-14, 10-13, 10-12, 10-11, 10-9, 10-8, 10-7,
10-6.
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Figure 2. Increased activity in the ORN population inhibits PN responses to direct ORN input
A. Antennal LFP shows that increasing the concentration of the public odor (pentyl acetate)
increases total ORN activity. Black bars are odor stimulus period. Each trace is a mean of 9-19
recordings, ± SEM.
B. Peri-stimulus time histograms (PSTHs) for VM7 PNs, each averaged across 10-11
recordings, ± SEM. Each column is a different concentration of pentyl acetate, each row a
different concentration of 2-butanone. See D for scale bars.
C. Average spike rate during 500 msec of odor presentation, ± SEM. Matrix of bars is analogous
to the matrix of PSTHs in B.
D. GABA receptor antagonists block the suppressive effect of pentyl acetate (10-3) on the
response of VM7 PNs to a private odor (2-butanone 10-6; n=5, ± SEM). Picrotoxin (5 μM) and
CGP54626 (10 μM) were applied together to block both GABA-A and GABA-B receptors
(Olsen and Wilson, 2008). With antagonists, the response to the blend is significantly different
from the response in control saline, and not significantly different from the response to the
private odor alone (p<0.05 and p=0.18, paired t-tests).
E. Same as D but for DL5 PNs. The same concentrations of pentyl acetate were used as the
public odor (except 10-6, which was omitted). The private odor was trans-2-hexenal. Each bar
is a mean of 9-19 recordings, ± SEM.
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Figure 3. Input gain control describes how lateral inhibition changes the input-output function
A. Schematic of input gain control.
B. Schematic of response gain control.
C. VM7 PN firing rates are plotted as a function of VM7 ORN firing rates. Each shade is a
different pentyl acetate concentration, with ligher shades for higher concentrations. Within
each curve each point is a different concentration of the private odor. Fits are to Equation (2),
with Rmax and σ as fixed constants, and s as a free parameter. Same PN data as Figure 2C; ORN
responses are means of 5-10 recordings.
D. Same data as in B, but fits to Equation (3).
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E. Same as C, but for DL5. Same PN data as Figure 2E; ORN responses are means of 5-8
recordings.
F. Same as D, but for DL5.
G. The input gain model produces better fits than the response gain model.
H. Values of the suppression factor s obtained from the fitted curves in C and E, plotted against
the LFP response corresponding to each curve. A linear fit produced good predictions for novel
odors (see Figure 4 and Figure S4) whereas sublinear (e.g., exponential) fits did not.
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Figure 4. The input gain control model accurately predicts PN responses
A. For each stimulus used to test the VM7 model, VM7 ORN responses (mean of 5-10
recordings) and antennal LFP responses (mean of 6 recordings) are shown. We selected test
stimuli to span a wide distribution of ORN and LFP responses.
B. Same as A, but for DL5 test stimuli.
C. Predicted versus measured responses for VM7 PNs (r2 = 0.95). Each point is a different test
stimulus. Filled symbols are predictions of the input gain model (Equation (2)). Open symbols
are predictions of the model without inhibition (Equation (1)). Each measured PN response is
a mean of 6-12 recordings, except one where n=3.
D. Same as C, but for DL5 (r2 = 0.88). Each measured PN response is a mean of 10 recordings.
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Figure 5. Modeling PN population codes for odors
A. ORN data from Hallem and Carlson (2006). (A1). Stimuli (176 in total) are sorted top to
bottom by the number of spikes in the ORN. Glomeruli (24 in total) are sorted left to right.
PNs were simulated using the intra-glomerular transformation alone (A2), or the input gain
control model (A3), or the response gain control model (A4). The color scale differs for ORN
and PN matrices: maximum is 290 spikes/sec for ORNs and 165 for PNs.
B. Cross-correlation values for each pairwise comparison between glomeruli. Mean correlation
coefficients for each panel are 0.35, 0.41, 0.09, and 0.15.
C. Histograms show the distribution of population response magnitudes (defined as the
Euclidean distance of the response from the origin of 24-dimensional glomerular space). Each
histogram contains 176 values, one for each stimulus.
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Figure 6. Input gain control promotes odor discrimination
A-D. Confusion matrices show the performance of 176 perceptrons, each trained to respond
to a single stimulus. Each row is a different stimulus and each column is a different perceptron.
Stimuli are arranged top-to-bottom in order of increasing total number of ORN spikes.
Perceptron 1 targets odor 1, perceptron 2 targets odor 2, etc. Values along the diagonal indicate
the probability of a correct hit, and values off the diagonal indicate the probability of a false
positive; see color scale in D. Perfect performance would be represented by red squares on the
diagonal and blue off-diagonal.
E. Mean performance for each set of perceptrons, averaged across 500 independent networks,
± SD. Correct performance = percent hits correct = percent misses correct (see Experimental
Procedures).
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Figure 7. Input gain control promotes concentration-invariant discrimination
A-D. Confusion matrices show the performance of 19 perceptrons trained to respond to a
chemical stimulus regardless of concentration. Perceptron 1 is trained to target odor 1 at low,
medium, and high concentrations; perceptron 2 is trained to target odor 2 at low, medium, and
high concentrations, etc.
E. Mean performance for each set of perceptrons, averaged across 500 independent networks,
± SD.

Olsen et al. Page 25

Neuron. Author manuscript; available in PMC 2011 April 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8. Increasing total activity makes PN responses more transient
A. Mixing in a public odor modulates the dynamics of PN responses to weak private input (2-
butanone 10-6). The highest concentration of the public odor has the largest effect. PSTHs are
averages of 10-11 recordings, reproduced from Figure 2B.
B. The same public odor has smaller effects on PN dynamics when the private odor is strong
(10-5).
C. Overall, increasing total ORN activity makes PN responses more transient. Transience is
quantified as the ratio of peak firing rate to the mean firing rate. Each curve represents a
different concentration of 2-butanone (10-6, 10-5, 10-4), and each point within a curve is a
different concentration of pentyl acetate (0, 10-6, 10-5, 10-4, 10-3). The dynamics of responses
to the lowest concentration of 2-butanone (10-7) were not analyzed because these responses
are close to zero.
D. A strong public odor elicits a faster field potential response than a weak odor (averages of
19 and 9 LFP recordings, respectively, normalized to the same amplitude).
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