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Abstract

Cell number changes during normal development, and in disease (e.g., neurodegeneration, cancer). Many genes affect cell
number, thus functional genetic analysis frequently requires analysis of cell number alterations upon loss of function
mutations or in gain of function experiments. Drosophila is a most powerful model organism to investigate the function of
genes involved in development or disease in vivo. Image processing and pattern recognition techniques can be used to
extract information from microscopy images to quantify automatically distinct cellular features, but these methods are still
not very extended in this model organism. Thus cellular quantification is often carried out manually, which is laborious,
tedious, error prone or humanly unfeasible. Here, we present DeadEasy Mito-Glia, an image processing method to count
automatically the number of mitotic cells labelled with anti-phospho-histone H3 and of glial cells labelled with anti-Repo in
Drosophila embryos. This programme belongs to the DeadEasy suite of which we have previously developed versions to
count apoptotic cells and neuronal nuclei. Having separate programmes is paramount for accuracy. DeadEasy Mito-Glia is
very easy to use, fast, objective and very accurate when counting dividing cells and glial cells labelled with a nuclear marker.
Although this method has been validated for Drosophila embryos, we provide an interactive window for biologists to easily
extend its application to other nuclear markers and other sample types. DeadEasy MitoGlia is freely available as an ImageJ
plug-in, it increases the repertoire of tools for in vivo genetic analysis, and it will be of interest to a broad community of
developmental, cancer and neuro-biologists.
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Introduction

Drosophila is a most powerful model organism to analyse gene

function in vivo. Fluorescence labelling and laser scanning

confocal microscopy are employed routinely by many Drosophila

labs to visualise and analyse cellular features in embryos, larvae

and adult fruit-flies, because they enable capturing 3D images by

focusing through increasing depths. Generally phenotypic analyses

are carried out by qualitative and manual inspection of images.

There is great potential in extracting information from the large

collections of images resulting from confocal microscopy, and

image processing and pattern recognition methods can be used to

automatically quantify information (e.g. number of cells) from such

images. Surprisingly, not a lot has been done to date to enable

automatic measurements from Drosophila using image processing

solutions. We have been addressing the question of how to obtain

accurate, simple and fast quantitative information on cell number

in vivo [1,2]. Knowing the number of dividing cells or glial cells in

a Drosophila embryo can be important, e.g. to address questions

relating to the control of growth and nervous system development,

the functions of growth factors in vivo, and the consequences of

abnormal gene function that may result in tumorous growth,

including gliomas.

The identification and counting of cells is a difficult task both for

human, manual counters and for image processing. Samples are

analysed by observing each image of a stack and verifying whether

an object positive for the marker used is a cell or not. There are

several sources of error, related to the properties of the lenses, the

detector and the fluorescence [3], large variations in image

contrast, thickness of the sample and irregular staining of objects.

Projections of sections cannot be used since they obscure

individual cells. However, in 3D a cell may change considerably

in intensity, shape or distribution across images in the stack,

making reference points difficult to establish. Similar to astro-

nomical images, the objects of interest (i.e. cells) are fuzzy and they

do not have clearly defined borders, so in many cases cells are

difficult to distinguish, introducing a subjective assessment by the

observer of whether an object is a cell or not. As a result, objects

having similar intensities and sizes are counted as cells in some

images, but rejected in others. Thus error can be due to variations

in cell size and morphology, and in signal intensity.

The problem of counting cells from confocal microscopy images

has been addressed before [4,5]. For the analysis of 2D images, a

method for segmenting grayscale images of corneal endothelial

tissue used a dome extractor based on morphological grayscale

reconstruction and marker-driven watershed segmentation, yield-

ing binary images of the corneal cell network [6,7]. A technique

was developed for counting Drosophila brain nuclei, but several

parameters must still be adjusted manually [8]. There is a

technique that combines morphological filtering, the gradient of
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the images and the data’s shape to segment cells in 2D and 3D

images, but it is time consuming and requires good image contrast

[9,10,11]. Automatic techniques have been developed to segment

cell nuclei from tissue sections or whole Drosophila brains in 2D

and 3D images, but they require intensive computation, making

them unsuitable for large sample sizes. Cell Profiler software [12]

allows users to combine image-processing methods to develop

techniques to count cells, but this requires some knowledge of

computation and it has not been tested for specific applications.

Several methods have been developed in order to identify dividing

cells in microscopy: a 2D method to track dividing cells in living

fungal networks [13]; and a method for the determination of

mitotic delays in human cells [14,15], which however is applied to

2D Maximum Intensity Projections of the stack. However, these

methods do not answer the question of how many mitotic cells

there are per stack.

Counting cells in Drosophila is a complex task, due the

variability in image qualities given by the different properties of

each cell marker [1,2]. We present here a new method that

employs image filtering and mathematical morphology techniques

to count dividing cells labelled with anti-phospho-Histone-H3 and

glial cells labelled with the nuclear marker anti-Repo, from images

acquired by confocal microscopy. This programme belongs to the

DeadEasy suit of methods that we are developing to count the

number of different cell types in Drosophila: we have previously

shown that DeadEasy Caspase counts accurately the number of

dying cells in vivo [2], and DeadEasy Neurons counts automat-

ically the number of neuronal nuclei in vivo [1]. Having separate

methods for each cell type and marker is paramount for accuracy.

The difference between the DeadEasy programmes lies in the

methods developed to segment and distinguish the objects of

interest, which depend on the characteristic of the cell marker

employed to label the cells. Together, these methods expand the

repertoire of technical approaches for functional genetic in vivo

analysis using Drosophila.

Materials and Methods

Genetics
The stock used as wild-type was y w. Mutants: i) wt = y w; i)

prosJ013/TM6B lacZ. iii) cycEAR95/CyO lacZ. Mutant embryos were

identified by the absence of anti-bgal signal when staining the

embryonic population with anti- b gal antibodies.

Immunohistrochemistry and laser scanning confocal
microscopy

Drosophila embryos were stained with rabbit anti-pHistone-H3

antibodies to visualise mitotic cells (at 1:300 Upstate Biotechnol-

ogy) or mouse anti-Repo antibodies (at 1:100 Developmental

Studies Hybridoma Bank, Iowa), to visualise glial nuclei antibodies

using standard methods (Figure 1A). Antibody labelled cells were

detected with anti-Rabbit or anti-Mouse secondary antibodies,

directly conjugated to the fluorochrome Alexa-488. Specimens

were mounted in Vectashield (Vector Labs).

Mounted whole embryos were scanned using a BioRad

Radiance 2000 or Leica TCS-SP2-AOBS laser scanning confocal

microscopes. The settings at the confocal microscope need to be

fixed for all samples and acquisition has to be set ensuring that the

dynamic range of the histogram covers all grey values. The

conditions for scanning were 606 lens, no zoom and 0.5mm slice

step, acquisition resolution of 5126512 pixels. Fixed iris (pinhole),

laser intensity, gain and offset were maintained throughout all

samples of the same experiment. Software algorithm was

developed and evaluated using Java and ImageJ under Ubuntu

Linux platform in a PC Pentium 4 running at 3 GHz with 1.5 GB

RAM.

Mathematical Algorithm
DeadEasy MitoGlia was developed to count cells stained with

either anti-phospho-Histone-H3 (pH3) or anti-Repo (Repo)

antibodies in embryos (Figures 1A–C). The image characteristics

are (Figure 1B,C): (1) sparsely distributed embryonic nuclei; (2)

nuclei can appear connected and must be separated; (3) as pH3

stains chromosomes, shape can be irregular, although it is rather

regular when using Repo; (4) non specific background is low; (5)

signal intensity is high. To determine which parameters charac-

Figure 1. Cell division and glia in the embryonic VNC. (A)
Diagram showing an embryo (left) and a cross-section view of the
ventral nerve cord (VNC, right). The red box indicates an example of a
region of interest (ROI) comprising the VNC and excluding the
epidermis; any ROI of choice can be used. (B) Characteristic embryonic
VNCs labelled with the mitotic marker pH3 and the glial marker Repo.
(C) Higher magnification views of details from specimens in (B) to show
the properties of the images. (D) Interactive window to enable users to
change the parameters to apply the programme to other markers or
sample types.
doi:10.1371/journal.pone.0010557.g001
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terize pH3 stained cells, a sample of 100 p-H3 cells obtained from

one embryo were studied.

3D image processing techniques can be employed to process a

stack of images in order to improve the quality of segmentation. This

is important where the signal to noise ratio is low, as some particles

that may appear to be noise in a 2D image, can be recognized as true

particles in 3D [16]. Because of florescence attenuation with

increasing depth due to finite transparency of the sample, photo-

bleaching, and the thickness of the embryo, signal intensity decays

with increasing focus depth. Therefore, frequently 3D techniques

apply an intensity correction. One of the simplest methods employs

the average or the maxima of the foreground of each image as a

parameter of intensity attenuation and then applies an inverse

function to compensate for the loss [11,17,18]. However, these

techniques do not provide good results when the background changes

abruptly from one image to another, as is common in Drosophila

samples. More complex techniques can also be employed, but they

are time-consuming [19,20,21,22,23,24] or require a more compli-

cated acquisition system [25]. However, if a convenient segmentation

technique is applied to each image based specifically on its properties,

an intensity correction method can be avoided. Here, 2D image

processing techniques are used for grey-scale image processing, and

3D techniques are employed once the intensity of the images is no

longer relevant, i.e. after they are binarised, thus gaining speed in the

process.

The first segmentation step tries to reduce the noise present in

the images. Confocal microscopes employ photon emission to

produce images. Given that the number of photons produced is

very small, statistical variation in the number of detected photons -

which follows a Poison distribution - is the most important source

of noise. To reduce noise several non-linear filters can be

employed. One of the simplest techniques, the median filter

[1,2], was employed here given that it provided good noise

reduction without affecting the borders of the objects on the

images (Figure 2A,C and Figure 3).

Given that the cell borders are fuzzy, a thresholding technique is

more appropriate than an edge segmentation technique for

segmentation. Thresholding techniques allow sorting the pixels

Figure 2. Image processing steps. (A) Images showing the image processing steps starting from the raw image and finishing in the result, which
corresponds to the identified objects (cells). (B) Histogram of a typical pH3 stained image. (C) Higher magnification examples to show, as in (A), the
different processing steps. This example shows the power of the programme to separate cells that in some slices may appear to be joined. (D)
Example of a faintly stained sample that DeadEasy MitoGlia cannot process and must be discarded.
doi:10.1371/journal.pone.0010557.g002
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of the image as background or foreground. Due to the decrease of

the cells’ intensity through the stack a threshold value must be

found to binarise each image based on the typical histogram of the

filtered images (Figure 2A,C and Figure 3). The mode corre-

sponding to the cells is almost imperceptible due to the

corresponding small number of pixels compared to the number

of background pixels. Given the low number of foreground pixels

the histogram can be considered unimodal (Figure 2B). Thresh-

olding techniques are generally not appropriate to binarise

unimodal images. Thus, similarly to the method employed by

Forero et al. [2] to threshold Caspase images, the background

mode was assumed to follow a Gaussian distribution G(q) and the

pixels belonging to the mitotic cells were considered outliers. The

best Gaussian function was found by minimizing the square error

between the histogram h(q) in the interval corresponding to the

mode. The threshold value t, to segment the images is given by

t~mz3s

where m and s represent the mean and the standard deviation of

the background mode respectively. After thresholding several

objects still had some small holes (Figure 2A,C and Figure 3). They

were filled with foreground colour by verifying if each hole was

surrounded by foreground pixels.

Cells that initially appeared connected were separated by

defining the watershed lines between them (Figure 2C and

Figure 3). To this end, the first step consisted in marking each cell

with a seed. If more than one seed is found per cell, it will be

subdivided (i.e. over-segmentation), but if no seed is found the cell

will not be recognised. In order to find the seeds a 3D distance

transformation was applied. In this way, each voxel of an object

takes the value of the minimum distance to the background, and

the highest distance will correspond to the furthest point from the

borders (Figure 2A,C and Figure 3). Seeds are determined by

viewing the stack as a 4D orographic system, where the height of

each point is given by the distance of the voxel in that position

from the border, and the cells are viewed as peaks or domes of

mountains separated by dark valleys [6,7]. A 3D h-dome operator

based on a morphological gray scale reconstruction is applied to

extract and mark the cells [7]. The choice of h found

experimentally was 7, corresponding to the standard minimum

distance between the centre of a cell and the voxels surrounding it.

Thus, h = 7 resulted in marking all cells, which allowed to

distinguish cells very close together. However, several seeds could

appear in one cell. The h-domes transform of an image q(x,y) was

obtained by performing a morphological reconstruction of q(x,y)

from the result of the subtraction q(x,y)-h, where h is a positive

scalar, and subtracting the result of the reconstruction from the

original image, that is : Dh q x,yð Þð Þ~q x,yð Þ{r q x,yð Þ{hð Þ [7]

where the reconstruction r q x,yð Þ{hð Þ is also known as the h-

maxima transform. Subsequently, images were binarised by

thresholding the h-domes images [7], resulting in a good

identification of the cells (Figure 2A,C and Figure 3). Each seed

consists of a set of connected voxels. The h extended-maxima, i.e.

the regional maxima of the h-maxima transform, can also be

employed to mark the cells [9,10,11], but the first procedure

produced more domes corresponding to cells. Thus, 3D domes

were found. Each seed was labelled employing 18-connectivity.

In order to avoid over-segmentation after watershed, redundant

seeds must be eliminated, so that there is only one seed per cell.

Several methods have been proposed to eliminate redundant

seeds, although some combine regions after the watershed

procedure. Given that mitotic and glia cells do not form close

clusters, we found a simple solution that was good enough to reject

redundant seeds. Every seed consists of a set of voxels. If a cell has

two or more seeds, this is due to shape irregularities that make an

object have more than one peak. However, these peaks are not

very high and when domes are found, these additional seeds are

formed by a very small quantity of voxels. Therefore, we found

that rejecting seeds formed by less than 20 voxels resulted in the

elimination of most redundant seeds. The minimum value of a

seed is not a very critical value, given that it was found that most of

Figure 3. Image processing algorithm. Digrammatic representa-
tion of the different image processing steps.
doi:10.1371/journal.pone.0010557.g003
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the spurious seeds are constituted by a maximum of 10 voxels and

true seeds by a minimum of 100 voxels. Once the seeds have been

selected the 3D watershed employing the Image Foresting

Transform (IFT) was finally applied [26]. Watershed allowed

separating very close cells (Figure 2C and Figure 3).

In order to identify the mitotic cells stained with pH3 amongst

the candidate objects from the previous steps, a classification

method was used (Figure 3). To determine which parameters

characterize pH3 stained cells, a sample of 100 p-H3 cells

obtained from one embryo were studied. Several parameters were

measured and analysed statistically. pH3 stains mitotic chromo-

somes, resulting in objects of irregular shape. Volume was found to

be the best identifier. Minimum volume was set as the parameter

to reject candidate objects. A 3D labelling method using 6-

connectivity was used to label the remaining objects through all

the slices of the stack. The objects with smaller volume than

V,3.172mm3 were rejected. The remaining objects were identified

as cells and counted. This programme was found to count just as

well Repo labelled glial cells in the embryo.

Results

To validate the proposed method, cells were counted automat-

ically and the resulting cells were verified one by one. We used

DeadEasy to analyse a stack of around 100–150 images (confocal

slices) that span the entire thickness of the embryonic ventral nerve

cord (VNC). DeadEasy creates a second stack where the identified

objects appear in locations corresponding to the cells in the raw data

stack. To validate the programme, every identified object in the

processed stack is compared with the corresponding cell in the raw

stack, and each object/cell is compared in each slice throughout the

entire stack of images. This is important to check, for instance, that a

cell is not counted as two different cells in different focal planes.

Validation and counting are not done in projections of images, since

this would obscure and superimpose cells. Thus, both object

identification and validation are done in 3D.

DeadEasy Mito-Glia was developed for pH3. pH3 is a nuclear

maker, characterised by high intensity and low background. Thus,

DeadEasy Mito-Glia is likely to work also for the quantification of

cells labelled with other nuclear markers. To test this, we validated

the method on embryos labelled with antibodies to the general

glial nuclear marker Repo. DeadEasy Mito-Glia has very low

error consisting of false positives (objects wrongly counted as cells)

and false negatives (missed cells) consistently below 3%, and

sensitivity is very high, for both markers (Table 1). The main

source of false positives is background spots; occasionally one cell

may be counted as two if they appear as separate in one focal

plane or slice (i.e. with pH3, where shape is irregular). The sources

of false negatives are low signal intensity (i.e. objects obvious to the

eye are below threshold), or too short distance between adjacent

cells making them appear as one in at least one slice (e.g. two cells

counted as one). Badly stained samples (Figure 2D) with low signal

intensity are not processed well by DeadEasy Mito-Glia and must

be discarded. DeadEasy performs consistently as it always yields

the same cell number count for a given sample and it treats

different samples in the same objective way. This means that

constant and objective criteria are used to compare multiple

samples across genotypes. Thus the method performs accurately in

the quantification of, at least, mitotic cells and glia.

DeadEasy Mito-Glia is very fast, counting cells in a few seconds

to less than 1 minute (depending on computer) per animal for each

confocal stack of around 150 slices. A virtually unlimited number

of samples can be loaded in one go to be quantified automatically

(e.g. over-night using the plug-in ‘‘Lots DeadEasy MitoGlia’’).

To test the value of DeadEasy software for addressing biological

questions we carried out temporal profiles of dividing cells and glia

in wild-type and mutant embryos (Figure 4). We show here that

DeadEasy can be used to count glia and mitotic cells in embryos.

There is some variability in the number of dividing and glial cells

across a population of embryos of the same age. This variability is

not due to variable cell counting by DeadEasy, since it will yield

exactly the same cell number regardless of how many times it is

run over the same sample. Variability could be due to slight

differences in the selected region of interest (also in the dorso-

ventral plane); variations in immunohistochemistry outcomes;

variations in confocal settings and laser life; biological variation,

for instance due to changes in cell number through time/age, and

regulative events. DeadEasy Mito-Glia can be used to compare

cell counts between large samples of wild-type and mutant

specimens, to infer gene function (Figure 4). We provide examples

of the power of DeadEasy programmes to infer gene function.

Prospero (Pros) is a transcription factor known for its tumour

suppressor functions in neuroblasts. While pros has been shown to

repress cell proliferation [27], it is unclear whether mutations in

pros result in sustained cell division throughout embryogenesis. We

tested this by carrying out a profile of cell proliferation throughout

embryogenesis in prosJ013 null mutants compared to wild-type

(Figure 4A). While cell division decreases markedly in wild-type

embryos from stage 11 to stage 17, it continues at high levels in

prosJ013 mutants throughout embryogenesis (Figure 4A). To test

the use of DeadEasy MitoGlia to count Repo positive glia, we

compared samples of embryos mutant for cyclinE, cycEAR95 , to

wild-type controls. CycE is required for the G1-S transition during

cell division, thus in cycEAR95 mutants the number of dorsal glial

cells is lower than in wild-type (Figure 4B). These data show that

DeadEasy MitoGlia is a powerful tool to count the number of

embryonic dividing cells and of glial cells in vivo.

Discussion

The method presented here is integrated into the DeadEasy

programmes, a set of freely-available ImageJ plug-ins that we have

developed to count automatically cells in vivo in Drosophila [1,2].

DeadEasy Mito-Glia was developed for counting nuclei stained

with a sparsely distributed die, and has been validated for the

mitotic marker pH3 and the nuclear glial marker Repo in

Drosophila embryos. pH3 labels the phosphorylated state of the

evolutionarily conserved Histone-H3 characteristic of M-phase

(mitosis) of the cell cycle. Repo labels all glial nuclei, except

midline glia, in Drosophila. The nuclei stained with pH3 can be of

Table 1. Validation of DeadEasy MitoGlia in identifying mitotic and glia cells.

Cell type Stacks Cells Real counts False P positives (%) False negatives (%) Sensitivity

Mitotic pH3 10 678 685 1.31 2.33 0.98

Glia Repo 7 547 561 0 2.49 0.98

doi:10.1371/journal.pone.0010557.t001
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irregular shape and nuclei stained with Repo tend to be rather

regular. Both of these antibodies yield high signal intensity and low

background, stain nuclei that are relatively sparsely distributed in

the organism and do not tend to overlap or form large clusters in

embryos. The method is very accurate for the validated markers.

The above characteristics of the markers and the resulting images

can be used as a guide to estimate whether DeadEasy could be

used for other markers (e.g. nuclear markers such as BrdU, nuclear

GFP) in Drosophila embryos. In other tissues (e.g. Drosophila

epidermis, imaginal discs, larval VNC) or model organisms (e.g.

fish, mouse) DeadEasy can be also be used so long as stainings of

comparable qualities are used to visualise cells of comparable sizes.

However, we have tested DeadEasy Mito-Glia in larvae, and it is

not satisfactorily accurate at counting larval glial cells , thus we

have developed another method for this purpose (Forero et al, in

preparation). The parameters indicated in Table 2 and within the

algorithms (e.g. threshold) used to identify the cells can be accessed

through the provided interactive window (Figure 1D) and

modified by the user – without any required knowledge of

computation - to adapt the programme to count other cells of

choice. However, in these cases the accuracy of DeadEasy may be

compromised. In order to use DeadEasy MitoGlia – as well as all

other DeadEasy methods – on samples for which we have not

validated the programmes, the users need to go through several

rounds of validation and parameter change until the desired

accuracy is achieved.

DeadEasy counts pH3 cells, therefore it will count equally

mother (just before dividing) and daughter (recently divided) cells

indistinctly. This is not a problem since all samples (e.g. across

multiple genotypes) are treated in exactly the same way. The only

case in which this represents a problem is when daughter cells are

just exiting mitosis and they are considerably smaller and are still

closely adjacent to each other: in this case, DeadEasy Mito-Glia

may count two cells as one. However, if the sample had been

analysed a few minutes earlier, this cell would have appeared as

one single (mother) cell in mitosis anyway. Thus this variability

Figure 4. Examples of applications of DeadEasy MitoGlia to address biological questions. (A) Automatic quantification of mitotic pH3
positive cells in vivo in wild-type and prosJ013 null mutants, showing that proliferation increases in the mutants throughout embryogenesis. (B)
Automatic quantification of Repo positive glia in wild-type and cycEAR95 mutant embryos, showing a decrease in glial number when cell division is
compromised. Only a subset of dorsal glia are counted here. Numbers within bars indicate sample sizes. Error bars are s.e.m.
doi:10.1371/journal.pone.0010557.g004

Table 2. Parameters than can be modified and effects on performance.

DeadEasy MitoGlia (Embryos)

Thresholding This is to separate signal from noise. Increasing the standard deviations away from the mean value of the Gaussian function will
decrease the number of pixels that will be considered to belong to the cells. A minimum threshold must be defined to prevent
noise in darker images.

Particle intersection This is to separate stained nuclei that appear to overlap in some images. Increasing the value of the percentage of intersection
between two objects will increase the number of pixels required to consider that the objects do not belong to the same cell.
Therefore more objects will be separated and the number of counts will increase. This programme works well for sparsely and
slightly overlapping stained nuclei. For a sample type different from the default, if the stained nuclei are too close, the programme
will fail at separating them.

Minimum volume This is to detect the objects in 3D. Increasing the minimum volume will decrease the count, as more small particles will not be
counted. For a different sample size, the minimum volume could be increased if the stained nuclei were larger than for our case.

doi:10.1371/journal.pone.0010557.t002
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associated with the biological phenomenon of cell division is

eliminated when analysing large sample sizes of the same age.

Our demonstrative analysis of pros mutants shows that knowledge is

gained from using different methods to quantify cell number. There is

no longitudinal glial hyperplasia in prosJ013 mutants, but instead the

timing of cell division is altered, with one ectopic round of cell division

at stage 12 and loss of proliferation later on [28]. Therefore the

observed sustained proliferation here must be particular to

neuroblasts, consistently with the notion that the functions of Pros

in neuroblasts and in the longitudinal glioblast lineage differ. In

prosJ013 mutants there is a reduction in the number of neurons that

differentiate to express HB9 despite the increase in proliferation [1],

confirming that in the absence of pros neuronal cell fate determination

is aberrant in the ectopic neurons.

For its direct use as specified (mitotic or glial cells) running

DeadEasy MitoGlia is extremely easy: download from our web-

site, install as an ImageJ plug-in, open ‘‘ImageJ’’, choose ‘‘Plug-

ins’’ from menu, scroll down, run ‘‘DeadEasy MitoGlia’’. Dead-

Easy MitoGlia is extremely fast, and it eliminates the tedium of

manual cell counting. Because automatic counting is objective,

reliable and reproducible, comparison of cell number between

specimens and between genotypes is considerably more accurate

with DeadEasy than with manual counting. DeadEasy pro-

grammes enable automatic cell number counts in vivo. The

programmes are used as freely internet accessible ImageJ plug-ins.

DeadEasy will be of interest for Drosophila researchers and for the

broader scientific community.
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